3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/bootmem.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/pci.h>
26 #include <linux/proc_fs.h>
27 #include <linux/rbtree.h>
28 #include <linux/seq_file.h>
29 #include <linux/spinlock.h>
32 #include <asm/machdep.h>
34 #include <asm/atomic.h>
35 #include <asm/systemcfg.h>
41 * EEH, or "Extended Error Handling" is a PCI bridge technology for
42 * dealing with PCI bus errors that can't be dealt with within the
43 * usual PCI framework, except by check-stopping the CPU. Systems
44 * that are designed for high-availability/reliability cannot afford
45 * to crash due to a "mere" PCI error, thus the need for EEH.
46 * An EEH-capable bridge operates by converting a detected error
47 * into a "slot freeze", taking the PCI adapter off-line, making
48 * the slot behave, from the OS'es point of view, as if the slot
49 * were "empty": all reads return 0xff's and all writes are silently
50 * ignored. EEH slot isolation events can be triggered by parity
51 * errors on the address or data busses (e.g. during posted writes),
52 * which in turn might be caused by dust, vibration, humidity,
53 * radioactivity or plain-old failed hardware.
55 * Note, however, that one of the leading causes of EEH slot
56 * freeze events are buggy device drivers, buggy device microcode,
57 * or buggy device hardware. This is because any attempt by the
58 * device to bus-master data to a memory address that is not
59 * assigned to the device will trigger a slot freeze. (The idea
60 * is to prevent devices-gone-wild from corrupting system memory).
61 * Buggy hardware/drivers will have a miserable time co-existing
64 * Ideally, a PCI device driver, when suspecting that an isolation
65 * event has occured (e.g. by reading 0xff's), will then ask EEH
66 * whether this is the case, and then take appropriate steps to
67 * reset the PCI slot, the PCI device, and then resume operations.
68 * However, until that day, the checking is done here, with the
69 * eeh_check_failure() routine embedded in the MMIO macros. If
70 * the slot is found to be isolated, an "EEH Event" is synthesized
71 * and sent out for processing.
74 /** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
75 #define BUID_HI(buid) ((buid) >> 32)
76 #define BUID_LO(buid) ((buid) & 0xffffffff)
78 /* EEH event workqueue setup. */
79 static DEFINE_SPINLOCK(eeh_eventlist_lock
);
80 LIST_HEAD(eeh_eventlist
);
81 static void eeh_event_handler(void *);
82 DECLARE_WORK(eeh_event_wq
, eeh_event_handler
, NULL
);
84 static struct notifier_block
*eeh_notifier_chain
;
87 * If a device driver keeps reading an MMIO register in an interrupt
88 * handler after a slot isolation event has occurred, we assume it
89 * is broken and panic. This sets the threshold for how many read
90 * attempts we allow before panicking.
92 #define EEH_MAX_FAILS 1000
93 static atomic_t eeh_fail_count
;
96 static int ibm_set_eeh_option
;
97 static int ibm_set_slot_reset
;
98 static int ibm_read_slot_reset_state
;
99 static int ibm_read_slot_reset_state2
;
100 static int ibm_slot_error_detail
;
102 static int eeh_subsystem_enabled
;
104 /* Buffer for reporting slot-error-detail rtas calls */
105 static unsigned char slot_errbuf
[RTAS_ERROR_LOG_MAX
];
106 static DEFINE_SPINLOCK(slot_errbuf_lock
);
107 static int eeh_error_buf_size
;
109 /* System monitoring statistics */
110 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs
);
111 static DEFINE_PER_CPU(unsigned long, false_positives
);
112 static DEFINE_PER_CPU(unsigned long, ignored_failures
);
113 static DEFINE_PER_CPU(unsigned long, slot_resets
);
116 * The pci address cache subsystem. This subsystem places
117 * PCI device address resources into a red-black tree, sorted
118 * according to the address range, so that given only an i/o
119 * address, the corresponding PCI device can be **quickly**
120 * found. It is safe to perform an address lookup in an interrupt
121 * context; this ability is an important feature.
123 * Currently, the only customer of this code is the EEH subsystem;
124 * thus, this code has been somewhat tailored to suit EEH better.
125 * In particular, the cache does *not* hold the addresses of devices
126 * for which EEH is not enabled.
128 * (Implementation Note: The RB tree seems to be better/faster
129 * than any hash algo I could think of for this problem, even
130 * with the penalty of slow pointer chases for d-cache misses).
132 struct pci_io_addr_range
134 struct rb_node rb_node
;
135 unsigned long addr_lo
;
136 unsigned long addr_hi
;
137 struct pci_dev
*pcidev
;
141 static struct pci_io_addr_cache
143 struct rb_root rb_root
;
144 spinlock_t piar_lock
;
145 } pci_io_addr_cache_root
;
147 static inline struct pci_dev
*__pci_get_device_by_addr(unsigned long addr
)
149 struct rb_node
*n
= pci_io_addr_cache_root
.rb_root
.rb_node
;
152 struct pci_io_addr_range
*piar
;
153 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
155 if (addr
< piar
->addr_lo
) {
158 if (addr
> piar
->addr_hi
) {
161 pci_dev_get(piar
->pcidev
);
171 * pci_get_device_by_addr - Get device, given only address
172 * @addr: mmio (PIO) phys address or i/o port number
174 * Given an mmio phys address, or a port number, find a pci device
175 * that implements this address. Be sure to pci_dev_put the device
176 * when finished. I/O port numbers are assumed to be offset
177 * from zero (that is, they do *not* have pci_io_addr added in).
178 * It is safe to call this function within an interrupt.
180 static struct pci_dev
*pci_get_device_by_addr(unsigned long addr
)
185 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
186 dev
= __pci_get_device_by_addr(addr
);
187 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
193 * Handy-dandy debug print routine, does nothing more
194 * than print out the contents of our addr cache.
196 static void pci_addr_cache_print(struct pci_io_addr_cache
*cache
)
201 n
= rb_first(&cache
->rb_root
);
203 struct pci_io_addr_range
*piar
;
204 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
205 printk(KERN_DEBUG
"PCI: %s addr range %d [%lx-%lx]: %s %s\n",
206 (piar
->flags
& IORESOURCE_IO
) ? "i/o" : "mem", cnt
,
207 piar
->addr_lo
, piar
->addr_hi
, pci_name(piar
->pcidev
),
208 pci_pretty_name(piar
->pcidev
));
215 /* Insert address range into the rb tree. */
216 static struct pci_io_addr_range
*
217 pci_addr_cache_insert(struct pci_dev
*dev
, unsigned long alo
,
218 unsigned long ahi
, unsigned int flags
)
220 struct rb_node
**p
= &pci_io_addr_cache_root
.rb_root
.rb_node
;
221 struct rb_node
*parent
= NULL
;
222 struct pci_io_addr_range
*piar
;
224 /* Walk tree, find a place to insert into tree */
227 piar
= rb_entry(parent
, struct pci_io_addr_range
, rb_node
);
228 if (alo
< piar
->addr_lo
) {
229 p
= &parent
->rb_left
;
230 } else if (ahi
> piar
->addr_hi
) {
231 p
= &parent
->rb_right
;
233 if (dev
!= piar
->pcidev
||
234 alo
!= piar
->addr_lo
|| ahi
!= piar
->addr_hi
) {
235 printk(KERN_WARNING
"PIAR: overlapping address range\n");
240 piar
= (struct pci_io_addr_range
*)kmalloc(sizeof(struct pci_io_addr_range
), GFP_ATOMIC
);
249 rb_link_node(&piar
->rb_node
, parent
, p
);
250 rb_insert_color(&piar
->rb_node
, &pci_io_addr_cache_root
.rb_root
);
255 static void __pci_addr_cache_insert_device(struct pci_dev
*dev
)
257 struct device_node
*dn
;
261 dn
= pci_device_to_OF_node(dev
);
263 printk(KERN_WARNING
"PCI: no pci dn found for dev=%s %s\n",
264 pci_name(dev
), pci_pretty_name(dev
));
268 /* Skip any devices for which EEH is not enabled. */
269 if (!(dn
->eeh_mode
& EEH_MODE_SUPPORTED
) ||
270 dn
->eeh_mode
& EEH_MODE_NOCHECK
) {
272 printk(KERN_INFO
"PCI: skip building address cache for=%s %s\n",
273 pci_name(dev
), pci_pretty_name(dev
));
278 /* The cache holds a reference to the device... */
281 /* Walk resources on this device, poke them into the tree */
282 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
283 unsigned long start
= pci_resource_start(dev
,i
);
284 unsigned long end
= pci_resource_end(dev
,i
);
285 unsigned int flags
= pci_resource_flags(dev
,i
);
287 /* We are interested only bus addresses, not dma or other stuff */
288 if (0 == (flags
& (IORESOURCE_IO
| IORESOURCE_MEM
)))
290 if (start
== 0 || ~start
== 0 || end
== 0 || ~end
== 0)
292 pci_addr_cache_insert(dev
, start
, end
, flags
);
296 /* If there was nothing to add, the cache has no reference... */
302 * pci_addr_cache_insert_device - Add a device to the address cache
303 * @dev: PCI device whose I/O addresses we are interested in.
305 * In order to support the fast lookup of devices based on addresses,
306 * we maintain a cache of devices that can be quickly searched.
307 * This routine adds a device to that cache.
309 void pci_addr_cache_insert_device(struct pci_dev
*dev
)
313 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
314 __pci_addr_cache_insert_device(dev
);
315 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
318 static inline void __pci_addr_cache_remove_device(struct pci_dev
*dev
)
324 n
= rb_first(&pci_io_addr_cache_root
.rb_root
);
326 struct pci_io_addr_range
*piar
;
327 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
329 if (piar
->pcidev
== dev
) {
330 rb_erase(n
, &pci_io_addr_cache_root
.rb_root
);
338 /* The cache no longer holds its reference to this device... */
344 * pci_addr_cache_remove_device - remove pci device from addr cache
345 * @dev: device to remove
347 * Remove a device from the addr-cache tree.
348 * This is potentially expensive, since it will walk
349 * the tree multiple times (once per resource).
350 * But so what; device removal doesn't need to be that fast.
352 void pci_addr_cache_remove_device(struct pci_dev
*dev
)
356 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
357 __pci_addr_cache_remove_device(dev
);
358 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
362 * pci_addr_cache_build - Build a cache of I/O addresses
364 * Build a cache of pci i/o addresses. This cache will be used to
365 * find the pci device that corresponds to a given address.
366 * This routine scans all pci busses to build the cache.
367 * Must be run late in boot process, after the pci controllers
368 * have been scaned for devices (after all device resources are known).
370 void __init
pci_addr_cache_build(void)
372 struct pci_dev
*dev
= NULL
;
374 spin_lock_init(&pci_io_addr_cache_root
.piar_lock
);
376 while ((dev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, dev
)) != NULL
) {
377 /* Ignore PCI bridges ( XXX why ??) */
378 if ((dev
->class >> 16) == PCI_BASE_CLASS_BRIDGE
) {
381 pci_addr_cache_insert_device(dev
);
385 /* Verify tree built up above, echo back the list of addrs. */
386 pci_addr_cache_print(&pci_io_addr_cache_root
);
390 /* --------------------------------------------------------------- */
391 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
394 * eeh_register_notifier - Register to find out about EEH events.
395 * @nb: notifier block to callback on events
397 int eeh_register_notifier(struct notifier_block
*nb
)
399 return notifier_chain_register(&eeh_notifier_chain
, nb
);
403 * eeh_unregister_notifier - Unregister to an EEH event notifier.
404 * @nb: notifier block to callback on events
406 int eeh_unregister_notifier(struct notifier_block
*nb
)
408 return notifier_chain_unregister(&eeh_notifier_chain
, nb
);
412 * read_slot_reset_state - Read the reset state of a device node's slot
413 * @dn: device node to read
414 * @rets: array to return results in
416 static int read_slot_reset_state(struct device_node
*dn
, int rets
[])
420 if (ibm_read_slot_reset_state2
!= RTAS_UNKNOWN_SERVICE
) {
421 token
= ibm_read_slot_reset_state2
;
424 token
= ibm_read_slot_reset_state
;
428 return rtas_call(token
, 3, outputs
, rets
, dn
->eeh_config_addr
,
429 BUID_HI(dn
->phb
->buid
), BUID_LO(dn
->phb
->buid
));
433 * eeh_panic - call panic() for an eeh event that cannot be handled.
434 * The philosophy of this routine is that it is better to panic and
435 * halt the OS than it is to risk possible data corruption by
436 * oblivious device drivers that don't know better.
438 * @dev pci device that had an eeh event
439 * @reset_state current reset state of the device slot
441 static void eeh_panic(struct pci_dev
*dev
, int reset_state
)
444 * XXX We should create a separate sysctl for this.
446 * Since the panic_on_oops sysctl is used to halt the system
447 * in light of potential corruption, we can use it here.
450 panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state
,
451 pci_name(dev
), pci_pretty_name(dev
));
453 __get_cpu_var(ignored_failures
)++;
454 printk(KERN_INFO
"EEH: Ignored MMIO failure (%d) on device:%s %s\n",
455 reset_state
, pci_name(dev
), pci_pretty_name(dev
));
460 * eeh_event_handler - dispatch EEH events. The detection of a frozen
461 * slot can occur inside an interrupt, where it can be hard to do
462 * anything about it. The goal of this routine is to pull these
463 * detection events out of the context of the interrupt handler, and
464 * re-dispatch them for processing at a later time in a normal context.
468 static void eeh_event_handler(void *dummy
)
471 struct eeh_event
*event
;
474 spin_lock_irqsave(&eeh_eventlist_lock
, flags
);
476 if (!list_empty(&eeh_eventlist
)) {
477 event
= list_entry(eeh_eventlist
.next
, struct eeh_event
, list
);
478 list_del(&event
->list
);
480 spin_unlock_irqrestore(&eeh_eventlist_lock
, flags
);
484 printk(KERN_INFO
"EEH: MMIO failure (%d), notifiying device "
485 "%s %s\n", event
->reset_state
,
486 pci_name(event
->dev
), pci_pretty_name(event
->dev
));
488 atomic_set(&eeh_fail_count
, 0);
489 notifier_call_chain (&eeh_notifier_chain
,
490 EEH_NOTIFY_FREEZE
, event
);
492 __get_cpu_var(slot_resets
)++;
494 pci_dev_put(event
->dev
);
500 * eeh_token_to_phys - convert EEH address token to phys address
501 * @token i/o token, should be address in the form 0xE....
503 static inline unsigned long eeh_token_to_phys(unsigned long token
)
508 ptep
= find_linux_pte(init_mm
.pgd
, token
);
511 pa
= pte_pfn(*ptep
) << PAGE_SHIFT
;
513 return pa
| (token
& (PAGE_SIZE
-1));
517 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
519 * @dev pci device, if known
521 * Check for an EEH failure for the given device node. Call this
522 * routine if the result of a read was all 0xff's and you want to
523 * find out if this is due to an EEH slot freeze. This routine
524 * will query firmware for the EEH status.
526 * Returns 0 if there has not been an EEH error; otherwise returns
527 * a non-zero value and queues up a solt isolation event notification.
529 * It is safe to call this routine in an interrupt context.
531 int eeh_dn_check_failure(struct device_node
*dn
, struct pci_dev
*dev
)
537 struct eeh_event
*event
;
539 __get_cpu_var(total_mmio_ffs
)++;
541 if (!eeh_subsystem_enabled
)
547 /* Access to IO BARs might get this far and still not want checking. */
548 if (!(dn
->eeh_mode
& EEH_MODE_SUPPORTED
) ||
549 dn
->eeh_mode
& EEH_MODE_NOCHECK
) {
553 if (!dn
->eeh_config_addr
) {
558 * If we already have a pending isolation event for this
559 * slot, we know it's bad already, we don't need to check...
561 if (dn
->eeh_mode
& EEH_MODE_ISOLATED
) {
562 atomic_inc(&eeh_fail_count
);
563 if (atomic_read(&eeh_fail_count
) >= EEH_MAX_FAILS
) {
564 /* re-read the slot reset state */
565 if (read_slot_reset_state(dn
, rets
) != 0)
566 rets
[0] = -1; /* reset state unknown */
567 eeh_panic(dev
, rets
[0]);
573 * Now test for an EEH failure. This is VERY expensive.
574 * Note that the eeh_config_addr may be a parent device
575 * in the case of a device behind a bridge, or it may be
576 * function zero of a multi-function device.
577 * In any case they must share a common PHB.
579 ret
= read_slot_reset_state(dn
, rets
);
580 if (!(ret
== 0 && rets
[1] == 1 && (rets
[0] == 2 || rets
[0] == 4))) {
581 __get_cpu_var(false_positives
)++;
585 /* prevent repeated reports of this failure */
586 dn
->eeh_mode
|= EEH_MODE_ISOLATED
;
588 reset_state
= rets
[0];
590 spin_lock_irqsave(&slot_errbuf_lock
, flags
);
591 memset(slot_errbuf
, 0, eeh_error_buf_size
);
593 rc
= rtas_call(ibm_slot_error_detail
,
594 8, 1, NULL
, dn
->eeh_config_addr
,
595 BUID_HI(dn
->phb
->buid
),
596 BUID_LO(dn
->phb
->buid
), NULL
, 0,
597 virt_to_phys(slot_errbuf
),
599 1 /* Temporary Error */);
602 log_error(slot_errbuf
, ERR_TYPE_RTAS_LOG
, 0);
603 spin_unlock_irqrestore(&slot_errbuf_lock
, flags
);
605 printk(KERN_INFO
"EEH: MMIO failure (%d) on device: %s %s\n",
606 rets
[0], dn
->name
, dn
->full_name
);
607 event
= kmalloc(sizeof(*event
), GFP_ATOMIC
);
609 eeh_panic(dev
, reset_state
);
615 event
->reset_state
= reset_state
;
617 /* We may or may not be called in an interrupt context */
618 spin_lock_irqsave(&eeh_eventlist_lock
, flags
);
619 list_add(&event
->list
, &eeh_eventlist
);
620 spin_unlock_irqrestore(&eeh_eventlist_lock
, flags
);
622 /* Most EEH events are due to device driver bugs. Having
623 * a stack trace will help the device-driver authors figure
624 * out what happened. So print that out. */
626 schedule_work(&eeh_event_wq
);
631 EXPORT_SYMBOL(eeh_dn_check_failure
);
634 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
635 * @token i/o token, should be address in the form 0xA....
636 * @val value, should be all 1's (XXX why do we need this arg??)
638 * Check for an eeh failure at the given token address.
639 * Check for an EEH failure at the given token address. Call this
640 * routine if the result of a read was all 0xff's and you want to
641 * find out if this is due to an EEH slot freeze event. This routine
642 * will query firmware for the EEH status.
644 * Note this routine is safe to call in an interrupt context.
646 unsigned long eeh_check_failure(const volatile void __iomem
*token
, unsigned long val
)
650 struct device_node
*dn
;
652 /* Finding the phys addr + pci device; this is pretty quick. */
653 addr
= eeh_token_to_phys((unsigned long __force
) token
);
654 dev
= pci_get_device_by_addr(addr
);
658 dn
= pci_device_to_OF_node(dev
);
659 eeh_dn_check_failure (dn
, dev
);
665 EXPORT_SYMBOL(eeh_check_failure
);
667 struct eeh_early_enable_info
{
668 unsigned int buid_hi
;
669 unsigned int buid_lo
;
672 /* Enable eeh for the given device node. */
673 static void *early_enable_eeh(struct device_node
*dn
, void *data
)
675 struct eeh_early_enable_info
*info
= data
;
677 char *status
= get_property(dn
, "status", NULL
);
678 u32
*class_code
= (u32
*)get_property(dn
, "class-code", NULL
);
679 u32
*vendor_id
= (u32
*)get_property(dn
, "vendor-id", NULL
);
680 u32
*device_id
= (u32
*)get_property(dn
, "device-id", NULL
);
686 if (status
&& strcmp(status
, "ok") != 0)
687 return NULL
; /* ignore devices with bad status */
689 /* Ignore bad nodes. */
690 if (!class_code
|| !vendor_id
|| !device_id
)
693 /* There is nothing to check on PCI to ISA bridges */
694 if (dn
->type
&& !strcmp(dn
->type
, "isa")) {
695 dn
->eeh_mode
|= EEH_MODE_NOCHECK
;
700 * Now decide if we are going to "Disable" EEH checking
701 * for this device. We still run with the EEH hardware active,
702 * but we won't be checking for ff's. This means a driver
703 * could return bad data (very bad!), an interrupt handler could
704 * hang waiting on status bits that won't change, etc.
705 * But there are a few cases like display devices that make sense.
707 enable
= 1; /* i.e. we will do checking */
708 if ((*class_code
>> 16) == PCI_BASE_CLASS_DISPLAY
)
712 dn
->eeh_mode
|= EEH_MODE_NOCHECK
;
714 /* Ok... see if this device supports EEH. Some do, some don't,
715 * and the only way to find out is to check each and every one. */
716 regs
= (u32
*)get_property(dn
, "reg", NULL
);
718 /* First register entry is addr (00BBSS00) */
719 /* Try to enable eeh */
720 ret
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
721 regs
[0], info
->buid_hi
, info
->buid_lo
,
724 eeh_subsystem_enabled
= 1;
725 dn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
726 dn
->eeh_config_addr
= regs
[0];
728 printk(KERN_DEBUG
"EEH: %s: eeh enabled\n", dn
->full_name
);
732 /* This device doesn't support EEH, but it may have an
733 * EEH parent, in which case we mark it as supported. */
734 if (dn
->parent
&& (dn
->parent
->eeh_mode
& EEH_MODE_SUPPORTED
)) {
735 /* Parent supports EEH. */
736 dn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
737 dn
->eeh_config_addr
= dn
->parent
->eeh_config_addr
;
742 printk(KERN_WARNING
"EEH: %s: unable to get reg property.\n",
750 * Initialize EEH by trying to enable it for all of the adapters in the system.
751 * As a side effect we can determine here if eeh is supported at all.
752 * Note that we leave EEH on so failed config cycles won't cause a machine
753 * check. If a user turns off EEH for a particular adapter they are really
754 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
755 * grant access to a slot if EEH isn't enabled, and so we always enable
756 * EEH for all slots/all devices.
758 * The eeh-force-off option disables EEH checking globally, for all slots.
759 * Even if force-off is set, the EEH hardware is still enabled, so that
760 * newer systems can boot.
762 void __init
eeh_init(void)
764 struct device_node
*phb
, *np
;
765 struct eeh_early_enable_info info
;
767 np
= of_find_node_by_path("/rtas");
771 ibm_set_eeh_option
= rtas_token("ibm,set-eeh-option");
772 ibm_set_slot_reset
= rtas_token("ibm,set-slot-reset");
773 ibm_read_slot_reset_state2
= rtas_token("ibm,read-slot-reset-state2");
774 ibm_read_slot_reset_state
= rtas_token("ibm,read-slot-reset-state");
775 ibm_slot_error_detail
= rtas_token("ibm,slot-error-detail");
777 if (ibm_set_eeh_option
== RTAS_UNKNOWN_SERVICE
)
780 eeh_error_buf_size
= rtas_token("rtas-error-log-max");
781 if (eeh_error_buf_size
== RTAS_UNKNOWN_SERVICE
) {
782 eeh_error_buf_size
= 1024;
784 if (eeh_error_buf_size
> RTAS_ERROR_LOG_MAX
) {
785 printk(KERN_WARNING
"EEH: rtas-error-log-max is bigger than allocated "
786 "buffer ! (%d vs %d)", eeh_error_buf_size
, RTAS_ERROR_LOG_MAX
);
787 eeh_error_buf_size
= RTAS_ERROR_LOG_MAX
;
790 /* Enable EEH for all adapters. Note that eeh requires buid's */
791 for (phb
= of_find_node_by_name(NULL
, "pci"); phb
;
792 phb
= of_find_node_by_name(phb
, "pci")) {
795 buid
= get_phb_buid(phb
);
799 info
.buid_lo
= BUID_LO(buid
);
800 info
.buid_hi
= BUID_HI(buid
);
801 traverse_pci_devices(phb
, early_enable_eeh
, &info
);
804 if (eeh_subsystem_enabled
)
805 printk(KERN_INFO
"EEH: PCI Enhanced I/O Error Handling Enabled\n");
807 printk(KERN_WARNING
"EEH: No capable adapters found\n");
811 * eeh_add_device_early - enable EEH for the indicated device_node
812 * @dn: device node for which to set up EEH
814 * This routine must be used to perform EEH initialization for PCI
815 * devices that were added after system boot (e.g. hotplug, dlpar).
816 * This routine must be called before any i/o is performed to the
817 * adapter (inluding any config-space i/o).
818 * Whether this actually enables EEH or not for this device depends
819 * on the CEC architecture, type of the device, on earlier boot
820 * command-line arguments & etc.
822 void eeh_add_device_early(struct device_node
*dn
)
824 struct pci_controller
*phb
;
825 struct eeh_early_enable_info info
;
830 if (NULL
== phb
|| 0 == phb
->buid
) {
831 printk(KERN_WARNING
"EEH: Expected buid but found none\n");
835 info
.buid_hi
= BUID_HI(phb
->buid
);
836 info
.buid_lo
= BUID_LO(phb
->buid
);
837 early_enable_eeh(dn
, &info
);
839 EXPORT_SYMBOL(eeh_add_device_early
);
842 * eeh_add_device_late - perform EEH initialization for the indicated pci device
843 * @dev: pci device for which to set up EEH
845 * This routine must be used to complete EEH initialization for PCI
846 * devices that were added after system boot (e.g. hotplug, dlpar).
848 void eeh_add_device_late(struct pci_dev
*dev
)
850 if (!dev
|| !eeh_subsystem_enabled
)
854 printk(KERN_DEBUG
"EEH: adding device %s %s\n", pci_name(dev
),
855 pci_pretty_name(dev
));
858 pci_addr_cache_insert_device (dev
);
860 EXPORT_SYMBOL(eeh_add_device_late
);
863 * eeh_remove_device - undo EEH setup for the indicated pci device
864 * @dev: pci device to be removed
866 * This routine should be when a device is removed from a running
867 * system (e.g. by hotplug or dlpar).
869 void eeh_remove_device(struct pci_dev
*dev
)
871 if (!dev
|| !eeh_subsystem_enabled
)
874 /* Unregister the device with the EEH/PCI address search system */
876 printk(KERN_DEBUG
"EEH: remove device %s %s\n", pci_name(dev
),
877 pci_pretty_name(dev
));
879 pci_addr_cache_remove_device(dev
);
881 EXPORT_SYMBOL(eeh_remove_device
);
883 static int proc_eeh_show(struct seq_file
*m
, void *v
)
886 unsigned long ffs
= 0, positives
= 0, failures
= 0;
887 unsigned long resets
= 0;
890 ffs
+= per_cpu(total_mmio_ffs
, cpu
);
891 positives
+= per_cpu(false_positives
, cpu
);
892 failures
+= per_cpu(ignored_failures
, cpu
);
893 resets
+= per_cpu(slot_resets
, cpu
);
896 if (0 == eeh_subsystem_enabled
) {
897 seq_printf(m
, "EEH Subsystem is globally disabled\n");
898 seq_printf(m
, "eeh_total_mmio_ffs=%ld\n", ffs
);
900 seq_printf(m
, "EEH Subsystem is enabled\n");
901 seq_printf(m
, "eeh_total_mmio_ffs=%ld\n"
902 "eeh_false_positives=%ld\n"
903 "eeh_ignored_failures=%ld\n"
904 "eeh_slot_resets=%ld\n"
905 "eeh_fail_count=%d\n",
906 ffs
, positives
, failures
, resets
,
907 eeh_fail_count
.counter
);
913 static int proc_eeh_open(struct inode
*inode
, struct file
*file
)
915 return single_open(file
, proc_eeh_show
, NULL
);
918 static struct file_operations proc_eeh_operations
= {
919 .open
= proc_eeh_open
,
922 .release
= single_release
,
925 static int __init
eeh_init_proc(void)
927 struct proc_dir_entry
*e
;
929 if (systemcfg
->platform
& PLATFORM_PSERIES
) {
930 e
= create_proc_entry("ppc64/eeh", 0, NULL
);
932 e
->proc_fops
= &proc_eeh_operations
;
937 __initcall(eeh_init_proc
);