2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
5 * Module name: iSeries_setup.c
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/smp.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/initrd.h>
28 #include <linux/seq_file.h>
29 #include <linux/kdev_t.h>
30 #include <linux/major.h>
31 #include <linux/root_dev.h>
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
44 #include "iSeries_setup.h"
47 #include <asm/cache.h>
48 #include <asm/sections.h>
49 #include <asm/abs_addr.h>
50 #include <asm/iSeries/HvCallHpt.h>
51 #include <asm/iSeries/HvLpConfig.h>
52 #include <asm/iSeries/HvCallEvent.h>
53 #include <asm/iSeries/HvCallSm.h>
54 #include <asm/iSeries/HvCallXm.h>
55 #include <asm/iSeries/ItLpQueue.h>
56 #include <asm/iSeries/IoHriMainStore.h>
57 #include <asm/iSeries/mf.h>
58 #include <asm/iSeries/HvLpEvent.h>
59 #include <asm/iSeries/iSeries_irq.h>
60 #include <asm/iSeries/IoHriProcessorVpd.h>
61 #include <asm/iSeries/ItVpdAreas.h>
62 #include <asm/iSeries/LparMap.h>
64 extern void hvlog(char *fmt
, ...);
67 #define DBG(fmt...) hvlog(fmt)
72 /* Function Prototypes */
73 extern void ppcdbg_initialize(void);
75 static void build_iSeries_Memory_Map(void);
76 static void setup_iSeries_cache_sizes(void);
77 static void iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
);
79 extern void iSeries_pci_final_fixup(void);
81 static void iSeries_pci_final_fixup(void) { }
84 /* Global Variables */
85 static unsigned long procFreqHz
;
86 static unsigned long procFreqMhz
;
87 static unsigned long procFreqMhzHundreths
;
89 static unsigned long tbFreqHz
;
90 static unsigned long tbFreqMhz
;
91 static unsigned long tbFreqMhzHundreths
;
93 int piranha_simulator
;
95 extern int rd_size
; /* Defined in drivers/block/rd.c */
96 extern unsigned long klimit
;
97 extern unsigned long embedded_sysmap_start
;
98 extern unsigned long embedded_sysmap_end
;
100 extern unsigned long iSeries_recal_tb
;
101 extern unsigned long iSeries_recal_titan
;
103 static int mf_initialized
;
106 unsigned long absStart
;
107 unsigned long absEnd
;
108 unsigned long logicalStart
;
109 unsigned long logicalEnd
;
113 * Process the main store vpd to determine where the holes in memory are
114 * and return the number of physical blocks and fill in the array of
117 static unsigned long iSeries_process_Condor_mainstore_vpd(
118 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
120 unsigned long holeFirstChunk
, holeSizeChunks
;
121 unsigned long numMemoryBlocks
= 1;
122 struct IoHriMainStoreSegment4
*msVpd
=
123 (struct IoHriMainStoreSegment4
*)xMsVpd
;
124 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
125 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
126 unsigned long holeSize
= holeEnd
- holeStart
;
128 printk("Mainstore_VPD: Condor\n");
130 * Determine if absolute memory has any
131 * holes so that we can interpret the
132 * access map we get back from the hypervisor
135 mb_array
[0].logicalStart
= 0;
136 mb_array
[0].logicalEnd
= 0x100000000;
137 mb_array
[0].absStart
= 0;
138 mb_array
[0].absEnd
= 0x100000000;
142 holeStart
= holeStart
& 0x000fffffffffffff;
143 holeStart
= addr_to_chunk(holeStart
);
144 holeFirstChunk
= holeStart
;
145 holeSize
= addr_to_chunk(holeSize
);
146 holeSizeChunks
= holeSize
;
147 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
148 holeFirstChunk
, holeSizeChunks
);
149 mb_array
[0].logicalEnd
= holeFirstChunk
;
150 mb_array
[0].absEnd
= holeFirstChunk
;
151 mb_array
[1].logicalStart
= holeFirstChunk
;
152 mb_array
[1].logicalEnd
= 0x100000000 - holeSizeChunks
;
153 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
154 mb_array
[1].absEnd
= 0x100000000;
156 return numMemoryBlocks
;
159 #define MaxSegmentAreas 32
160 #define MaxSegmentAdrRangeBlocks 128
161 #define MaxAreaRangeBlocks 4
163 static unsigned long iSeries_process_Regatta_mainstore_vpd(
164 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
166 struct IoHriMainStoreSegment5
*msVpdP
=
167 (struct IoHriMainStoreSegment5
*)xMsVpd
;
168 unsigned long numSegmentBlocks
= 0;
169 u32 existsBits
= msVpdP
->msAreaExists
;
170 unsigned long area_num
;
172 printk("Mainstore_VPD: Regatta\n");
174 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
175 unsigned long numAreaBlocks
;
176 struct IoHriMainStoreArea4
*currentArea
;
178 if (existsBits
& 0x80000000) {
179 unsigned long block_num
;
181 currentArea
= &msVpdP
->msAreaArray
[area_num
];
182 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
183 printk("ms_vpd: processing area %2ld blocks=%ld",
184 area_num
, numAreaBlocks
);
185 for (block_num
= 0; block_num
< numAreaBlocks
;
187 /* Process an address range block */
188 struct MemoryBlock tempBlock
;
192 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
194 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
195 tempBlock
.logicalStart
= 0;
196 tempBlock
.logicalEnd
= 0;
197 printk("\n block %ld absStart=%016lx absEnd=%016lx",
198 block_num
, tempBlock
.absStart
,
201 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
202 if (mb_array
[i
].absStart
==
206 if (i
== numSegmentBlocks
) {
207 if (numSegmentBlocks
== max_entries
)
208 panic("iSeries_process_mainstore_vpd: too many memory blocks");
209 mb_array
[numSegmentBlocks
] = tempBlock
;
212 printk(" (duplicate)");
218 /* Now sort the blocks found into ascending sequence */
219 if (numSegmentBlocks
> 1) {
222 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
223 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
224 if (mb_array
[n
].absStart
<
225 mb_array
[n
-1].absStart
) {
226 struct MemoryBlock tempBlock
;
228 tempBlock
= mb_array
[n
];
229 mb_array
[n
] = mb_array
[n
-1];
230 mb_array
[n
-1] = tempBlock
;
236 * Assign "logical" addresses to each block. These
237 * addresses correspond to the hypervisor "bitmap" space.
238 * Convert all addresses into units of 256K chunks.
241 unsigned long i
, nextBitmapAddress
;
243 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
244 nextBitmapAddress
= 0;
245 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
246 unsigned long length
= mb_array
[i
].absEnd
-
247 mb_array
[i
].absStart
;
249 mb_array
[i
].logicalStart
= nextBitmapAddress
;
250 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
251 nextBitmapAddress
+= length
;
252 printk(" Bitmap range: %016lx - %016lx\n"
253 " Absolute range: %016lx - %016lx\n",
254 mb_array
[i
].logicalStart
,
255 mb_array
[i
].logicalEnd
,
256 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
257 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
259 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
261 mb_array
[i
].logicalStart
=
262 addr_to_chunk(mb_array
[i
].logicalStart
);
263 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
267 return numSegmentBlocks
;
270 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
271 unsigned long max_entries
)
274 unsigned long mem_blocks
= 0;
276 if (cpu_has_feature(CPU_FTR_SLB
))
277 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
280 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
283 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks
);
284 for (i
= 0; i
< mem_blocks
; ++i
) {
285 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
286 " abs chunks %016lx - %016lx\n",
287 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
288 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
293 static void __init
iSeries_get_cmdline(void)
297 /* copy the command line parameter from the primary VSP */
298 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
299 HvLpDma_Direction_RemoteToLocal
);
304 if (!*p
|| *p
== '\n')
311 static void __init
iSeries_init_early(void)
313 extern unsigned long memory_limit
;
315 DBG(" -> iSeries_init_early()\n");
319 #if defined(CONFIG_BLK_DEV_INITRD)
321 * If the init RAM disk has been configured and there is
322 * a non-zero starting address for it, set it up
325 initrd_start
= (unsigned long)__va(naca
.xRamDisk
);
326 initrd_end
= initrd_start
+ naca
.xRamDiskSize
* PAGE_SIZE
;
327 initrd_below_start_ok
= 1; // ramdisk in kernel space
328 ROOT_DEV
= Root_RAM0
;
329 if (((rd_size
* 1024) / PAGE_SIZE
) < naca
.xRamDiskSize
)
330 rd_size
= (naca
.xRamDiskSize
* PAGE_SIZE
) / 1024;
332 #endif /* CONFIG_BLK_DEV_INITRD */
334 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
337 iSeries_recal_tb
= get_tb();
338 iSeries_recal_titan
= HvCallXm_loadTod();
341 * Cache sizes must be initialized before hpte_init_iSeries is called
342 * as the later need them for flush_icache_range()
344 setup_iSeries_cache_sizes();
347 * Initialize the hash table management pointers
352 * Initialize the DMA/TCE management
354 iommu_init_early_iSeries();
357 * Initialize the table which translate Linux physical addresses to
358 * AS/400 absolute addresses
360 build_iSeries_Memory_Map();
362 iSeries_get_cmdline();
364 /* Save unparsed command line copy for /proc/cmdline */
365 strlcpy(saved_command_line
, cmd_line
, COMMAND_LINE_SIZE
);
367 /* Parse early parameters, in particular mem=x */
371 if (memory_limit
< systemcfg
->physicalMemorySize
)
372 systemcfg
->physicalMemorySize
= memory_limit
;
374 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit
);
379 /* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
380 iSeries_bolt_kernel(0, systemcfg
->physicalMemorySize
);
383 lmb_add(0, systemcfg
->physicalMemorySize
);
385 lmb_reserve(0, __pa(klimit
));
387 /* Initialize machine-dependency vectors */
391 if (itLpNaca
.xPirEnvironMode
== 0)
392 piranha_simulator
= 1;
394 /* Associate Lp Event Queue 0 with processor 0 */
395 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
401 /* If we were passed an initrd, set the ROOT_DEV properly if the values
402 * look sensible. If not, clear initrd reference.
404 #ifdef CONFIG_BLK_DEV_INITRD
405 if (initrd_start
>= KERNELBASE
&& initrd_end
>= KERNELBASE
&&
406 initrd_end
> initrd_start
)
407 ROOT_DEV
= Root_RAM0
;
409 initrd_start
= initrd_end
= 0;
410 #endif /* CONFIG_BLK_DEV_INITRD */
412 DBG(" <- iSeries_init_early()\n");
416 * The iSeries may have very large memories ( > 128 GB ) and a partition
417 * may get memory in "chunks" that may be anywhere in the 2**52 real
418 * address space. The chunks are 256K in size. To map this to the
419 * memory model Linux expects, the AS/400 specific code builds a
420 * translation table to translate what Linux thinks are "physical"
421 * addresses to the actual real addresses. This allows us to make
422 * it appear to Linux that we have contiguous memory starting at
423 * physical address zero while in fact this could be far from the truth.
424 * To avoid confusion, I'll let the words physical and/or real address
425 * apply to the Linux addresses while I'll use "absolute address" to
426 * refer to the actual hardware real address.
428 * build_iSeries_Memory_Map gets information from the Hypervisor and
429 * looks at the Main Store VPD to determine the absolute addresses
430 * of the memory that has been assigned to our partition and builds
431 * a table used to translate Linux's physical addresses to these
432 * absolute addresses. Absolute addresses are needed when
433 * communicating with the hypervisor (e.g. to build HPT entries)
436 static void __init
build_iSeries_Memory_Map(void)
438 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
440 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
442 u32 totalChunks
,moreChunks
;
443 u32 currChunk
, thisChunk
, absChunk
;
447 struct MemoryBlock mb
[32];
448 unsigned long numMemoryBlocks
, curBlock
;
450 /* Chunk size on iSeries is 256K bytes */
451 totalChunks
= (u32
)HvLpConfig_getMsChunks();
452 klimit
= msChunks_alloc(klimit
, totalChunks
, 1UL << 18);
455 * Get absolute address of our load area
456 * and map it to physical address 0
457 * This guarantees that the loadarea ends up at physical 0
458 * otherwise, it might not be returned by PLIC as the first
462 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
463 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
466 * Only add the pages already mapped here.
467 * Otherwise we might add the hpt pages
468 * The rest of the pages of the load area
469 * aren't in the HPT yet and can still
470 * be assigned an arbitrary physical address
472 if ((loadAreaSize
* 64) > HvPagesToMap
)
473 loadAreaSize
= HvPagesToMap
/ 64;
475 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
478 * TODO Do we need to do something if the HPT is in the 64MB load area?
479 * This would be required if the itLpNaca.xLoadAreaChunks includes
483 printk("Mapping load area - physical addr = 0000000000000000\n"
484 " absolute addr = %016lx\n",
485 chunk_to_addr(loadAreaFirstChunk
));
486 printk("Load area size %dK\n", loadAreaSize
* 256);
488 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
489 msChunks
.abs
[nextPhysChunk
] =
490 loadAreaFirstChunk
+ nextPhysChunk
;
493 * Get absolute address of our HPT and remember it so
494 * we won't map it to any physical address
496 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
497 hptSizePages
= (u32
)HvCallHpt_getHptPages();
498 hptSizeChunks
= hptSizePages
>> (msChunks
.chunk_shift
- PAGE_SHIFT
);
499 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
501 printk("HPT absolute addr = %016lx, size = %dK\n",
502 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
504 /* Fill in the hashed page table hash mask */
505 num_ptegs
= hptSizePages
*
506 (PAGE_SIZE
/ (sizeof(hpte_t
) * HPTES_PER_GROUP
));
507 htab_hash_mask
= num_ptegs
- 1;
510 * The actual hashed page table is in the hypervisor,
511 * we have no direct access
516 * Determine if absolute memory has any
517 * holes so that we can interpret the
518 * access map we get back from the hypervisor
521 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
524 * Process the main store access map from the hypervisor
525 * to build up our physical -> absolute translation table
530 moreChunks
= totalChunks
;
533 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
535 thisChunk
= currChunk
;
537 chunkBit
= map
>> 63;
541 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
543 if (curBlock
>= numMemoryBlocks
)
544 panic("out of memory blocks");
546 if (thisChunk
< mb
[curBlock
].logicalStart
)
547 panic("memory block error");
549 absChunk
= mb
[curBlock
].absStart
+
550 (thisChunk
- mb
[curBlock
].logicalStart
);
551 if (((absChunk
< hptFirstChunk
) ||
552 (absChunk
> hptLastChunk
)) &&
553 ((absChunk
< loadAreaFirstChunk
) ||
554 (absChunk
> loadAreaLastChunk
))) {
555 msChunks
.abs
[nextPhysChunk
] = absChunk
;
566 * main store size (in chunks) is
567 * totalChunks - hptSizeChunks
568 * which should be equal to
571 systemcfg
->physicalMemorySize
= chunk_to_addr(nextPhysChunk
);
575 * Set up the variables that describe the cache line sizes
578 static void __init
setup_iSeries_cache_sizes(void)
581 unsigned int procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
583 systemcfg
->icache_size
=
584 ppc64_caches
.isize
= xIoHriProcessorVpd
[procIx
].xInstCacheSize
* 1024;
585 systemcfg
->icache_line_size
=
586 ppc64_caches
.iline_size
=
587 xIoHriProcessorVpd
[procIx
].xInstCacheOperandSize
;
588 systemcfg
->dcache_size
=
590 xIoHriProcessorVpd
[procIx
].xDataL1CacheSizeKB
* 1024;
591 systemcfg
->dcache_line_size
=
592 ppc64_caches
.dline_size
=
593 xIoHriProcessorVpd
[procIx
].xDataCacheOperandSize
;
594 ppc64_caches
.ilines_per_page
= PAGE_SIZE
/ ppc64_caches
.iline_size
;
595 ppc64_caches
.dlines_per_page
= PAGE_SIZE
/ ppc64_caches
.dline_size
;
597 i
= ppc64_caches
.iline_size
;
599 while ((i
= (i
/ 2)))
601 ppc64_caches
.log_iline_size
= n
;
603 i
= ppc64_caches
.dline_size
;
605 while ((i
= (i
/ 2)))
607 ppc64_caches
.log_dline_size
= n
;
609 printk("D-cache line size = %d\n",
610 (unsigned int)ppc64_caches
.dline_size
);
611 printk("I-cache line size = %d\n",
612 (unsigned int)ppc64_caches
.iline_size
);
616 * Create a pte. Used during initialization only.
618 static void iSeries_make_pte(unsigned long va
, unsigned long pa
,
621 hpte_t local_hpte
, rhpte
;
622 unsigned long hash
, vpn
;
625 vpn
= va
>> PAGE_SHIFT
;
626 hash
= hpt_hash(vpn
, 0);
628 local_hpte
.r
= pa
| mode
;
629 local_hpte
.v
= ((va
>> 23) << HPTE_V_AVPN_SHIFT
)
630 | HPTE_V_BOLTED
| HPTE_V_VALID
;
632 slot
= HvCallHpt_findValid(&rhpte
, vpn
);
634 /* Must find space in primary group */
635 panic("hash_page: hpte already exists\n");
637 HvCallHpt_addValidate(slot
, 0, &local_hpte
);
641 * Bolt the kernel addr space into the HPT
643 static void __init
iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
)
646 unsigned long mode_rw
= _PAGE_ACCESSED
| _PAGE_COHERENT
| PP_RWXX
;
649 for (pa
= saddr
; pa
< eaddr
;pa
+= PAGE_SIZE
) {
650 unsigned long ea
= (unsigned long)__va(pa
);
651 unsigned long vsid
= get_kernel_vsid(ea
);
652 unsigned long va
= (vsid
<< 28) | (pa
& 0xfffffff);
653 unsigned long vpn
= va
>> PAGE_SHIFT
;
654 unsigned long slot
= HvCallHpt_findValid(&hpte
, vpn
);
656 /* Make non-kernel text non-executable */
657 if (!in_kernel_text(ea
))
658 mode_rw
|= HW_NO_EXEC
;
660 if (hpte
.v
& HPTE_V_VALID
) {
661 /* HPTE exists, so just bolt it */
662 HvCallHpt_setSwBits(slot
, 0x10, 0);
663 /* And make sure the pp bits are correct */
664 HvCallHpt_setPp(slot
, PP_RWXX
);
666 /* No HPTE exists, so create a new bolted one */
667 iSeries_make_pte(va
, phys_to_abs(pa
), mode_rw
);
674 static void __init
iSeries_setup_arch(void)
676 unsigned procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
678 /* Add an eye catcher and the systemcfg layout version number */
679 strcpy(systemcfg
->eye_catcher
, "SYSTEMCFG:PPC64");
680 systemcfg
->version
.major
= SYSTEMCFG_MAJOR
;
681 systemcfg
->version
.minor
= SYSTEMCFG_MINOR
;
683 /* Setup the Lp Event Queue */
684 setup_hvlpevent_queue();
686 /* Compute processor frequency */
687 procFreqHz
= ((1UL << 34) * 1000000) /
688 xIoHriProcessorVpd
[procIx
].xProcFreq
;
689 procFreqMhz
= procFreqHz
/ 1000000;
690 procFreqMhzHundreths
= (procFreqHz
/ 10000) - (procFreqMhz
* 100);
691 ppc_proc_freq
= procFreqHz
;
693 /* Compute time base frequency */
694 tbFreqHz
= ((1UL << 32) * 1000000) /
695 xIoHriProcessorVpd
[procIx
].xTimeBaseFreq
;
696 tbFreqMhz
= tbFreqHz
/ 1000000;
697 tbFreqMhzHundreths
= (tbFreqHz
/ 10000) - (tbFreqMhz
* 100);
698 ppc_tb_freq
= tbFreqHz
;
700 printk("Max logical processors = %d\n",
701 itVpdAreas
.xSlicMaxLogicalProcs
);
702 printk("Max physical processors = %d\n",
703 itVpdAreas
.xSlicMaxPhysicalProcs
);
704 printk("Processor frequency = %lu.%02lu\n", procFreqMhz
,
705 procFreqMhzHundreths
);
706 printk("Time base frequency = %lu.%02lu\n", tbFreqMhz
,
708 systemcfg
->processor
= xIoHriProcessorVpd
[procIx
].xPVR
;
709 printk("Processor version = %x\n", systemcfg
->processor
);
712 static void iSeries_get_cpuinfo(struct seq_file
*m
)
714 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
721 static int iSeries_get_irq(struct pt_regs
*regs
)
723 /* -2 means ignore this interrupt */
730 static void iSeries_restart(char *cmd
)
738 static void iSeries_power_off(void)
746 static void iSeries_halt(void)
752 * void __init iSeries_calibrate_decr()
755 * This routine retrieves the internal processor frequency from the VPD,
756 * and sets up the kernel timer decrementer based on that value.
759 static void __init
iSeries_calibrate_decr(void)
761 unsigned long cyclesPerUsec
;
762 struct div_result divres
;
764 /* Compute decrementer (and TB) frequency in cycles/sec */
765 cyclesPerUsec
= ppc_tb_freq
/ 1000000;
768 * Set the amount to refresh the decrementer by. This
769 * is the number of decrementer ticks it takes for
772 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
775 /* TEST CODE FOR ADJTIME */
776 tb_ticks_per_jiffy
+= tb_ticks_per_jiffy
/ 5000;
777 /* END OF TEST CODE */
781 * tb_ticks_per_sec = freq; would give better accuracy
782 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
783 * that jiffies (and xtime) will match the time returned
784 * by do_gettimeofday.
786 tb_ticks_per_sec
= tb_ticks_per_jiffy
* HZ
;
787 tb_ticks_per_usec
= cyclesPerUsec
;
788 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
789 div128_by_32(1024 * 1024, 0, tb_ticks_per_sec
, &divres
);
790 tb_to_xs
= divres
.result_low
;
791 setup_default_decr();
794 static void __init
iSeries_progress(char * st
, unsigned short code
)
796 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
797 if (!piranha_simulator
&& mf_initialized
) {
799 mf_display_progress(code
);
805 static void __init
iSeries_fixup_klimit(void)
808 * Change klimit to take into account any ram disk
809 * that may be included
812 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
813 (naca
.xRamDiskSize
* PAGE_SIZE
);
816 * No ram disk was included - check and see if there
817 * was an embedded system map. Change klimit to take
818 * into account any embedded system map
820 if (embedded_sysmap_end
)
821 klimit
= KERNELBASE
+ ((embedded_sysmap_end
+ 4095) &
826 static int __init
iSeries_src_init(void)
828 /* clear the progress line */
829 ppc_md
.progress(" ", 0xffff);
833 late_initcall(iSeries_src_init
);
835 static inline void process_iSeries_events(void)
837 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
840 static void yield_shared_processor(void)
844 HvCall_setEnabledInterrupts(HvCall_MaskIPI
|
850 /* Compute future tb value when yield should expire */
851 HvCall_yieldProcessor(HvCall_YieldTimed
, tb
+tb_ticks_per_jiffy
);
854 * The decrementer stops during the yield. Force a fake decrementer
855 * here and let the timer_interrupt code sort out the actual time.
857 get_paca()->lppaca
.int_dword
.fields
.decr_int
= 1;
858 process_iSeries_events();
861 static int iseries_shared_idle(void)
864 while (!need_resched() && !hvlpevent_is_pending()) {
866 ppc64_runlatch_off();
868 /* Recheck with irqs off */
869 if (!need_resched() && !hvlpevent_is_pending())
870 yield_shared_processor();
878 if (hvlpevent_is_pending())
879 process_iSeries_events();
887 static int iseries_dedicated_idle(void)
892 oldval
= test_and_clear_thread_flag(TIF_NEED_RESCHED
);
895 set_thread_flag(TIF_POLLING_NRFLAG
);
897 while (!need_resched()) {
898 ppc64_runlatch_off();
901 if (hvlpevent_is_pending()) {
904 process_iSeries_events();
909 clear_thread_flag(TIF_POLLING_NRFLAG
);
922 void __init
iSeries_init_IRQ(void) { }
925 void __init
iSeries_early_setup(void)
927 iSeries_fixup_klimit();
929 ppc_md
.setup_arch
= iSeries_setup_arch
;
930 ppc_md
.get_cpuinfo
= iSeries_get_cpuinfo
;
931 ppc_md
.init_IRQ
= iSeries_init_IRQ
;
932 ppc_md
.get_irq
= iSeries_get_irq
;
933 ppc_md
.init_early
= iSeries_init_early
,
935 ppc_md
.pcibios_fixup
= iSeries_pci_final_fixup
;
937 ppc_md
.restart
= iSeries_restart
;
938 ppc_md
.power_off
= iSeries_power_off
;
939 ppc_md
.halt
= iSeries_halt
;
941 ppc_md
.get_boot_time
= iSeries_get_boot_time
;
942 ppc_md
.set_rtc_time
= iSeries_set_rtc_time
;
943 ppc_md
.get_rtc_time
= iSeries_get_rtc_time
;
944 ppc_md
.calibrate_decr
= iSeries_calibrate_decr
;
945 ppc_md
.progress
= iSeries_progress
;
947 if (get_paca()->lppaca
.shared_proc
) {
948 ppc_md
.idle_loop
= iseries_shared_idle
;
949 printk(KERN_INFO
"Using shared processor idle loop\n");
951 ppc_md
.idle_loop
= iseries_dedicated_idle
;
952 printk(KERN_INFO
"Using dedicated idle loop\n");