4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/stringify.h>
31 #include <linux/delay.h>
32 #include <linux/initrd.h>
33 #include <linux/bitops.h>
34 #include <linux/module.h>
39 #include <asm/abs_addr.h>
41 #include <asm/processor.h>
45 #include <asm/system.h>
47 #include <asm/pgtable.h>
49 #include <asm/iommu.h>
50 #include <asm/bootinfo.h>
51 #include <asm/ppcdebug.h>
52 #include <asm/btext.h>
53 #include <asm/sections.h>
54 #include <asm/machdep.h>
55 #include <asm/pSeries_reconfig.h>
58 #define DBG(fmt...) udbg_printf(fmt)
63 struct pci_reg_property
{
64 struct pci_address addr
;
69 struct isa_reg_property
{
76 typedef int interpret_func(struct device_node
*, unsigned long *,
79 extern struct rtas_t rtas
;
80 extern struct lmb lmb
;
81 extern unsigned long klimit
;
83 static int __initdata dt_root_addr_cells
;
84 static int __initdata dt_root_size_cells
;
85 static int __initdata iommu_is_off
;
86 int __initdata iommu_force_on
;
90 static struct boot_param_header
*initial_boot_params __initdata
;
92 struct boot_param_header
*initial_boot_params
;
95 static struct device_node
*allnodes
= NULL
;
97 /* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
100 static DEFINE_RWLOCK(devtree_lock
);
102 /* export that to outside world */
103 struct device_node
*of_chosen
;
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
112 static void * prom_alloc(unsigned long size
, unsigned long *mem_start
)
117 return kmalloc(size
, GFP_KERNEL
);
125 * Find the device_node with a given phandle.
127 static struct device_node
* find_phandle(phandle ph
)
129 struct device_node
*np
;
131 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
132 if (np
->linux_phandle
== ph
)
138 * Find the interrupt parent of a node.
140 static struct device_node
* __devinit
intr_parent(struct device_node
*p
)
144 parp
= (phandle
*) get_property(p
, "interrupt-parent", NULL
);
147 return find_phandle(*parp
);
151 * Find out the size of each entry of the interrupts property
154 int __devinit
prom_n_intr_cells(struct device_node
*np
)
156 struct device_node
*p
;
159 for (p
= np
; (p
= intr_parent(p
)) != NULL
; ) {
160 icp
= (unsigned int *)
161 get_property(p
, "#interrupt-cells", NULL
);
164 if (get_property(p
, "interrupt-controller", NULL
) != NULL
165 || get_property(p
, "interrupt-map", NULL
) != NULL
) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
172 printk("prom_n_intr_cells failed for %s\n", np
->full_name
);
178 * Map an interrupt from a device up to the platform interrupt
181 static int __devinit
map_interrupt(unsigned int **irq
, struct device_node
**ictrler
,
182 struct device_node
*np
, unsigned int *ints
,
185 struct device_node
*p
, *ipar
;
186 unsigned int *imap
, *imask
, *ip
;
187 int i
, imaplen
, match
;
188 int newintrc
= 0, newaddrc
= 0;
192 reg
= (unsigned int *) get_property(np
, "reg", NULL
);
193 naddrc
= prom_n_addr_cells(np
);
196 if (get_property(p
, "interrupt-controller", NULL
) != NULL
)
197 /* this node is an interrupt controller, stop here */
199 imap
= (unsigned int *)
200 get_property(p
, "interrupt-map", &imaplen
);
205 imask
= (unsigned int *)
206 get_property(p
, "interrupt-map-mask", NULL
);
208 printk("oops, %s has interrupt-map but no mask\n",
212 imaplen
/= sizeof(unsigned int);
215 while (imaplen
> 0 && !match
) {
216 /* check the child-interrupt field */
218 for (i
= 0; i
< naddrc
&& match
; ++i
)
219 match
= ((reg
[i
] ^ imap
[i
]) & imask
[i
]) == 0;
220 for (; i
< naddrc
+ nintrc
&& match
; ++i
)
221 match
= ((ints
[i
-naddrc
] ^ imap
[i
]) & imask
[i
]) == 0;
222 imap
+= naddrc
+ nintrc
;
223 imaplen
-= naddrc
+ nintrc
;
224 /* grab the interrupt parent */
225 ipar
= find_phandle((phandle
) *imap
++);
228 printk("oops, no int parent %x in map of %s\n",
229 imap
[-1], p
->full_name
);
232 /* find the parent's # addr and intr cells */
233 ip
= (unsigned int *)
234 get_property(ipar
, "#interrupt-cells", NULL
);
236 printk("oops, no #interrupt-cells on %s\n",
241 ip
= (unsigned int *)
242 get_property(ipar
, "#address-cells", NULL
);
243 newaddrc
= (ip
== NULL
)? 0: *ip
;
244 imap
+= newaddrc
+ newintrc
;
245 imaplen
-= newaddrc
+ newintrc
;
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p
->full_name
, imaplen
);
254 printk("oops, no match in %s int-map for %s\n",
255 p
->full_name
, np
->full_name
);
262 ints
= imap
- nintrc
;
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
277 static int __devinit
finish_node_interrupts(struct device_node
*np
,
278 unsigned long *mem_start
,
282 int intlen
, intrcells
, intrcount
;
284 unsigned int *irq
, virq
;
285 struct device_node
*ic
;
287 ints
= (unsigned int *) get_property(np
, "interrupts", &intlen
);
290 intrcells
= prom_n_intr_cells(np
);
291 intlen
/= intrcells
* sizeof(unsigned int);
293 np
->intrs
= prom_alloc(intlen
* sizeof(*(np
->intrs
)), mem_start
);
301 for (i
= 0; i
< intlen
; ++i
, ints
+= intrcells
) {
302 n
= map_interrupt(&irq
, &ic
, np
, ints
, intrcells
);
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic
&& device_is_compatible(ic
, "chrp,iic")) {
308 np
->intrs
[intrcount
].line
= irq
[0];
310 virq
= virt_irq_create_mapping(irq
[0]);
311 if (virq
== NO_IRQ
) {
312 printk(KERN_CRIT
"Could not allocate interrupt"
313 " number for %s\n", np
->full_name
);
316 np
->intrs
[intrcount
].line
= irq_offset_up(virq
);
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg
->platform
== PLATFORM_POWERMAC
&& ic
&& ic
->parent
) {
321 char *name
= get_property(ic
->parent
, "name", NULL
);
322 if (name
&& !strcmp(name
, "u3"))
323 np
->intrs
[intrcount
].line
+= 128;
324 else if (!(name
&& !strcmp(name
, "mac-io")))
325 /* ignore other cascaded controllers, such as
329 np
->intrs
[intrcount
].sense
= 1;
331 np
->intrs
[intrcount
].sense
= irq
[1];
333 printk("hmmm, got %d intr cells for %s:", n
,
335 for (j
= 0; j
< n
; ++j
)
336 printk(" %d", irq
[j
]);
341 np
->n_intrs
= intrcount
;
346 static int __devinit
interpret_pci_props(struct device_node
*np
,
347 unsigned long *mem_start
,
348 int naddrc
, int nsizec
,
351 struct address_range
*adr
;
352 struct pci_reg_property
*pci_addrs
;
355 pci_addrs
= (struct pci_reg_property
*)
356 get_property(np
, "assigned-addresses", &l
);
360 n_addrs
= l
/ sizeof(*pci_addrs
);
362 adr
= prom_alloc(n_addrs
* sizeof(*adr
), mem_start
);
370 np
->n_addrs
= n_addrs
;
372 for (i
= 0; i
< n_addrs
; i
++) {
373 adr
[i
].space
= pci_addrs
[i
].addr
.a_hi
;
374 adr
[i
].address
= pci_addrs
[i
].addr
.a_lo
|
375 ((u64
)pci_addrs
[i
].addr
.a_mid
<< 32);
376 adr
[i
].size
= pci_addrs
[i
].size_lo
;
382 static int __init
interpret_dbdma_props(struct device_node
*np
,
383 unsigned long *mem_start
,
384 int naddrc
, int nsizec
,
387 struct reg_property32
*rp
;
388 struct address_range
*adr
;
389 unsigned long base_address
;
391 struct device_node
*db
;
395 for (db
= np
->parent
; db
!= NULL
; db
= db
->parent
) {
396 if (!strcmp(db
->type
, "dbdma") && db
->n_addrs
!= 0) {
397 base_address
= db
->addrs
[0].address
;
403 rp
= (struct reg_property32
*) get_property(np
, "reg", &l
);
404 if (rp
!= 0 && l
>= sizeof(struct reg_property32
)) {
406 adr
= (struct address_range
*) (*mem_start
);
407 while ((l
-= sizeof(struct reg_property32
)) >= 0) {
410 adr
[i
].address
= rp
[i
].address
+ base_address
;
411 adr
[i
].size
= rp
[i
].size
;
417 (*mem_start
) += i
* sizeof(struct address_range
);
423 static int __init
interpret_macio_props(struct device_node
*np
,
424 unsigned long *mem_start
,
425 int naddrc
, int nsizec
,
428 struct reg_property32
*rp
;
429 struct address_range
*adr
;
430 unsigned long base_address
;
432 struct device_node
*db
;
436 for (db
= np
->parent
; db
!= NULL
; db
= db
->parent
) {
437 if (!strcmp(db
->type
, "mac-io") && db
->n_addrs
!= 0) {
438 base_address
= db
->addrs
[0].address
;
444 rp
= (struct reg_property32
*) get_property(np
, "reg", &l
);
445 if (rp
!= 0 && l
>= sizeof(struct reg_property32
)) {
447 adr
= (struct address_range
*) (*mem_start
);
448 while ((l
-= sizeof(struct reg_property32
)) >= 0) {
451 adr
[i
].address
= rp
[i
].address
+ base_address
;
452 adr
[i
].size
= rp
[i
].size
;
458 (*mem_start
) += i
* sizeof(struct address_range
);
464 static int __init
interpret_isa_props(struct device_node
*np
,
465 unsigned long *mem_start
,
466 int naddrc
, int nsizec
,
469 struct isa_reg_property
*rp
;
470 struct address_range
*adr
;
473 rp
= (struct isa_reg_property
*) get_property(np
, "reg", &l
);
474 if (rp
!= 0 && l
>= sizeof(struct isa_reg_property
)) {
476 adr
= (struct address_range
*) (*mem_start
);
477 while ((l
-= sizeof(struct isa_reg_property
)) >= 0) {
479 adr
[i
].space
= rp
[i
].space
;
480 adr
[i
].address
= rp
[i
].address
;
481 adr
[i
].size
= rp
[i
].size
;
487 (*mem_start
) += i
* sizeof(struct address_range
);
493 static int __init
interpret_root_props(struct device_node
*np
,
494 unsigned long *mem_start
,
495 int naddrc
, int nsizec
,
498 struct address_range
*adr
;
501 int rpsize
= (naddrc
+ nsizec
) * sizeof(unsigned int);
503 rp
= (unsigned int *) get_property(np
, "reg", &l
);
504 if (rp
!= 0 && l
>= rpsize
) {
506 adr
= (struct address_range
*) (*mem_start
);
507 while ((l
-= rpsize
) >= 0) {
510 adr
[i
].address
= rp
[naddrc
- 1];
511 adr
[i
].size
= rp
[naddrc
+ nsizec
- 1];
514 rp
+= naddrc
+ nsizec
;
518 (*mem_start
) += i
* sizeof(struct address_range
);
524 static int __devinit
finish_node(struct device_node
*np
,
525 unsigned long *mem_start
,
526 interpret_func
*ifunc
,
527 int naddrc
, int nsizec
,
530 struct device_node
*child
;
533 /* get the device addresses and interrupts */
535 rc
= ifunc(np
, mem_start
, naddrc
, nsizec
, measure_only
);
539 rc
= finish_node_interrupts(np
, mem_start
, measure_only
);
543 /* Look for #address-cells and #size-cells properties. */
544 ip
= (int *) get_property(np
, "#address-cells", NULL
);
547 ip
= (int *) get_property(np
, "#size-cells", NULL
);
551 if (!strcmp(np
->name
, "device-tree") || np
->parent
== NULL
)
552 ifunc
= interpret_root_props
;
553 else if (np
->type
== 0)
555 else if (!strcmp(np
->type
, "pci") || !strcmp(np
->type
, "vci"))
556 ifunc
= interpret_pci_props
;
557 else if (!strcmp(np
->type
, "dbdma"))
558 ifunc
= interpret_dbdma_props
;
559 else if (!strcmp(np
->type
, "mac-io") || ifunc
== interpret_macio_props
)
560 ifunc
= interpret_macio_props
;
561 else if (!strcmp(np
->type
, "isa"))
562 ifunc
= interpret_isa_props
;
563 else if (!strcmp(np
->name
, "uni-n") || !strcmp(np
->name
, "u3"))
564 ifunc
= interpret_root_props
;
565 else if (!((ifunc
== interpret_dbdma_props
566 || ifunc
== interpret_macio_props
)
567 && (!strcmp(np
->type
, "escc")
568 || !strcmp(np
->type
, "media-bay"))))
571 for (child
= np
->child
; child
!= NULL
; child
= child
->sibling
) {
572 rc
= finish_node(child
, mem_start
, ifunc
,
573 naddrc
, nsizec
, measure_only
);
582 * finish_device_tree is called once things are running normally
583 * (i.e. with text and data mapped to the address they were linked at).
584 * It traverses the device tree and fills in some of the additional,
585 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
586 * mapping is also initialized at this point.
588 void __init
finish_device_tree(void)
590 unsigned long start
, end
, size
= 0;
592 DBG(" -> finish_device_tree\n");
594 if (ppc64_interrupt_controller
== IC_INVALID
) {
595 DBG("failed to configure interrupt controller type\n");
596 panic("failed to configure interrupt controller type\n");
599 /* Initialize virtual IRQ map */
603 * Finish device-tree (pre-parsing some properties etc...)
604 * We do this in 2 passes. One with "measure_only" set, which
605 * will only measure the amount of memory needed, then we can
606 * allocate that memory, and call finish_node again. However,
607 * we must be careful as most routines will fail nowadays when
608 * prom_alloc() returns 0, so we must make sure our first pass
609 * doesn't start at 0. We pre-initialize size to 16 for that
610 * reason and then remove those additional 16 bytes
613 finish_node(allnodes
, &size
, NULL
, 0, 0, 1);
615 end
= start
= (unsigned long)abs_to_virt(lmb_alloc(size
, 128));
616 finish_node(allnodes
, &end
, NULL
, 0, 0, 0);
617 BUG_ON(end
!= start
+ size
);
619 DBG(" <- finish_device_tree\n");
623 #define printk udbg_printf
626 static inline char *find_flat_dt_string(u32 offset
)
628 return ((char *)initial_boot_params
) + initial_boot_params
->off_dt_strings
633 * This function is used to scan the flattened device-tree, it is
634 * used to extract the memory informations at boot before we can
637 static int __init
scan_flat_dt(int (*it
)(unsigned long node
,
638 const char *full_path
, void *data
),
641 unsigned long p
= ((unsigned long)initial_boot_params
) +
642 initial_boot_params
->off_dt_struct
;
646 u32 tag
= *((u32
*)p
);
650 if (tag
== OF_DT_END_NODE
)
652 if (tag
== OF_DT_END
)
654 if (tag
== OF_DT_PROP
) {
655 u32 sz
= *((u32
*)p
);
657 p
= _ALIGN(p
, sz
>= 8 ? 8 : 4);
662 if (tag
!= OF_DT_BEGIN_NODE
) {
663 printk(KERN_WARNING
"Invalid tag %x scanning flattened"
664 " device tree !\n", tag
);
668 p
= _ALIGN(p
+ strlen(pathp
) + 1, 4);
669 rc
= it(p
, pathp
, data
);
678 * This function can be used within scan_flattened_dt callback to get
679 * access to properties
681 static void* __init
get_flat_dt_prop(unsigned long node
, const char *name
,
684 unsigned long p
= node
;
687 u32 tag
= *((u32
*)p
);
692 if (tag
!= OF_DT_PROP
)
696 noff
= *((u32
*)(p
+ 4));
698 p
= _ALIGN(p
, sz
>= 8 ? 8 : 4);
700 nstr
= find_flat_dt_string(noff
);
702 printk(KERN_WARNING
"Can't find property index name !\n");
705 if (strcmp(name
, nstr
) == 0) {
715 static void *__init
unflatten_dt_alloc(unsigned long *mem
, unsigned long size
,
720 *mem
= _ALIGN(*mem
, align
);
727 static unsigned long __init
unflatten_dt_node(unsigned long mem
,
729 struct device_node
*dad
,
730 struct device_node
***allnextpp
)
732 struct device_node
*np
;
733 struct property
*pp
, **prev_pp
= NULL
;
738 tag
= *((u32
*)(*p
));
739 if (tag
!= OF_DT_BEGIN_NODE
) {
740 printk("Weird tag at start of node: %x\n", tag
);
745 l
= strlen(pathp
) + 1;
746 *p
= _ALIGN(*p
+ l
, 4);
748 np
= unflatten_dt_alloc(&mem
, sizeof(struct device_node
) + l
,
749 __alignof__(struct device_node
));
751 memset(np
, 0, sizeof(*np
));
752 np
->full_name
= ((char*)np
) + sizeof(struct device_node
);
753 memcpy(np
->full_name
, pathp
, l
);
754 prev_pp
= &np
->properties
;
756 *allnextpp
= &np
->allnext
;
759 /* we temporarily use the `next' field as `last_child'. */
763 dad
->next
->sibling
= np
;
766 kref_init(&np
->kref
);
772 tag
= *((u32
*)(*p
));
773 if (tag
!= OF_DT_PROP
)
777 noff
= *((u32
*)((*p
) + 4));
778 *p
= _ALIGN((*p
) + 8, sz
>= 8 ? 8 : 4);
780 pname
= find_flat_dt_string(noff
);
782 printk("Can't find property name in list !\n");
785 l
= strlen(pname
) + 1;
786 pp
= unflatten_dt_alloc(&mem
, sizeof(struct property
),
787 __alignof__(struct property
));
789 if (strcmp(pname
, "linux,phandle") == 0) {
790 np
->node
= *((u32
*)*p
);
791 if (np
->linux_phandle
== 0)
792 np
->linux_phandle
= np
->node
;
794 if (strcmp(pname
, "ibm,phandle") == 0)
795 np
->linux_phandle
= *((u32
*)*p
);
798 pp
->value
= (void *)*p
;
802 *p
= _ALIGN((*p
) + sz
, 4);
806 np
->name
= get_property(np
, "name", NULL
);
807 np
->type
= get_property(np
, "device_type", NULL
);
814 while (tag
== OF_DT_BEGIN_NODE
) {
815 mem
= unflatten_dt_node(mem
, p
, np
, allnextpp
);
816 tag
= *((u32
*)(*p
));
818 if (tag
!= OF_DT_END_NODE
) {
819 printk("Weird tag at start of node: %x\n", tag
);
828 * unflattens the device-tree passed by the firmware, creating the
829 * tree of struct device_node. It also fills the "name" and "type"
830 * pointers of the nodes so the normal device-tree walking functions
831 * can be used (this used to be done by finish_device_tree)
833 void __init
unflatten_device_tree(void)
835 unsigned long start
, mem
, size
;
836 struct device_node
**allnextp
= &allnodes
;
840 DBG(" -> unflatten_device_tree()\n");
842 /* First pass, scan for size */
843 start
= ((unsigned long)initial_boot_params
) +
844 initial_boot_params
->off_dt_struct
;
845 size
= unflatten_dt_node(0, &start
, NULL
, NULL
);
847 DBG(" size is %lx, allocating...\n", size
);
849 /* Allocate memory for the expanded device tree */
850 mem
= (unsigned long)abs_to_virt(lmb_alloc(size
,
851 __alignof__(struct device_node
)));
852 DBG(" unflattening...\n", mem
);
854 /* Second pass, do actual unflattening */
855 start
= ((unsigned long)initial_boot_params
) +
856 initial_boot_params
->off_dt_struct
;
857 unflatten_dt_node(mem
, &start
, NULL
, &allnextp
);
858 if (*((u32
*)start
) != OF_DT_END
)
859 printk(KERN_WARNING
"Weird tag at end of tree: %x\n", *((u32
*)start
));
862 /* Get pointer to OF "/chosen" node for use everywhere */
863 of_chosen
= of_find_node_by_path("/chosen");
865 /* Retreive command line */
866 if (of_chosen
!= NULL
) {
867 p
= (char *)get_property(of_chosen
, "bootargs", &l
);
868 if (p
!= NULL
&& l
> 0)
869 strlcpy(cmd_line
, p
, min(l
, COMMAND_LINE_SIZE
));
871 #ifdef CONFIG_CMDLINE
872 if (l
== 0 || (l
== 1 && (*p
) == 0))
873 strlcpy(cmd_line
, CONFIG_CMDLINE
, COMMAND_LINE_SIZE
);
874 #endif /* CONFIG_CMDLINE */
876 DBG("Command line is: %s\n", cmd_line
);
878 DBG(" <- unflatten_device_tree()\n");
882 static int __init
early_init_dt_scan_cpus(unsigned long node
,
883 const char *full_path
, void *data
)
885 char *type
= get_flat_dt_prop(node
, "device_type", NULL
);
889 /* We are scanning "cpu" nodes only */
890 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
893 /* On LPAR, look for the first ibm,pft-size property for the hash table size
895 if (systemcfg
->platform
== PLATFORM_PSERIES_LPAR
&& ppc64_pft_size
== 0) {
897 pft_size
= (u32
*)get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
898 if (pft_size
!= NULL
) {
899 /* pft_size[0] is the NUMA CEC cookie */
900 ppc64_pft_size
= pft_size
[1];
904 if (initial_boot_params
&& initial_boot_params
->version
>= 2) {
905 /* version 2 of the kexec param format adds the phys cpuid
908 boot_cpuid_phys
= initial_boot_params
->boot_cpuid_phys
;
911 /* Check if it's the boot-cpu, set it's hw index in paca now */
912 if (get_flat_dt_prop(node
, "linux,boot-cpu", NULL
) != NULL
) {
913 u32
*prop
= get_flat_dt_prop(node
, "reg", NULL
);
914 set_hard_smp_processor_id(0, prop
== NULL
? 0 : *prop
);
915 boot_cpuid_phys
= get_hard_smp_processor_id(0);
919 #ifdef CONFIG_ALTIVEC
920 /* Check if we have a VMX and eventually update CPU features */
921 prop
= (u32
*)get_flat_dt_prop(node
, "ibm,vmx", NULL
);
922 if (prop
&& (*prop
) > 0) {
923 cur_cpu_spec
->cpu_features
|= CPU_FTR_ALTIVEC
;
924 cur_cpu_spec
->cpu_user_features
|= PPC_FEATURE_HAS_ALTIVEC
;
927 /* Same goes for Apple's "altivec" property */
928 prop
= (u32
*)get_flat_dt_prop(node
, "altivec", NULL
);
930 cur_cpu_spec
->cpu_features
|= CPU_FTR_ALTIVEC
;
931 cur_cpu_spec
->cpu_user_features
|= PPC_FEATURE_HAS_ALTIVEC
;
933 #endif /* CONFIG_ALTIVEC */
936 * Check for an SMT capable CPU and set the CPU feature. We do
937 * this by looking at the size of the ibm,ppc-interrupt-server#s
940 prop
= (u32
*)get_flat_dt_prop(node
, "ibm,ppc-interrupt-server#s",
942 cur_cpu_spec
->cpu_features
&= ~CPU_FTR_SMT
;
943 if (prop
&& ((size
/ sizeof(u32
)) > 1))
944 cur_cpu_spec
->cpu_features
|= CPU_FTR_SMT
;
949 static int __init
early_init_dt_scan_chosen(unsigned long node
,
950 const char *full_path
, void *data
)
954 extern unsigned long memory_limit
, tce_alloc_start
, tce_alloc_end
;
956 if (strcmp(full_path
, "/chosen") != 0)
959 /* get platform type */
960 prop
= (u32
*)get_flat_dt_prop(node
, "linux,platform", NULL
);
963 systemcfg
->platform
= *prop
;
965 /* check if iommu is forced on or off */
966 if (get_flat_dt_prop(node
, "linux,iommu-off", NULL
) != NULL
)
968 if (get_flat_dt_prop(node
, "linux,iommu-force-on", NULL
) != NULL
)
971 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,memory-limit", NULL
);
973 memory_limit
= *prop64
;
975 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,tce-alloc-start", NULL
);
977 tce_alloc_start
= *prop64
;
979 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,tce-alloc-end", NULL
);
981 tce_alloc_end
= *prop64
;
983 #ifdef CONFIG_PPC_RTAS
984 /* To help early debugging via the front panel, we retreive a minimal
985 * set of RTAS infos now if available
990 basep
= (u64
*)get_flat_dt_prop(node
, "linux,rtas-base", NULL
);
991 entryp
= (u64
*)get_flat_dt_prop(node
, "linux,rtas-entry", NULL
);
992 prop
= (u32
*)get_flat_dt_prop(node
, "linux,rtas-size", NULL
);
993 if (basep
&& entryp
&& prop
) {
995 rtas
.entry
= *entryp
;
999 #endif /* CONFIG_PPC_RTAS */
1005 static int __init
early_init_dt_scan_root(unsigned long node
,
1006 const char *full_path
, void *data
)
1010 if (strcmp(full_path
, "/") != 0)
1013 prop
= (u32
*)get_flat_dt_prop(node
, "#size-cells", NULL
);
1014 dt_root_size_cells
= (prop
== NULL
) ? 1 : *prop
;
1016 prop
= (u32
*)get_flat_dt_prop(node
, "#address-cells", NULL
);
1017 dt_root_addr_cells
= (prop
== NULL
) ? 2 : *prop
;
1023 static unsigned long __init
dt_mem_next_cell(int s
, cell_t
**cellp
)
1026 unsigned long r
= 0;
1028 /* Ignore more than 2 cells */
1044 static int __init
early_init_dt_scan_memory(unsigned long node
,
1045 const char *full_path
, void *data
)
1047 char *type
= get_flat_dt_prop(node
, "device_type", NULL
);
1051 /* We are scanning "memory" nodes only */
1052 if (type
== NULL
|| strcmp(type
, "memory") != 0)
1055 reg
= (cell_t
*)get_flat_dt_prop(node
, "reg", &l
);
1059 endp
= reg
+ (l
/ sizeof(cell_t
));
1061 DBG("memory scan node %s ...\n", full_path
);
1062 while ((endp
- reg
) >= (dt_root_addr_cells
+ dt_root_size_cells
)) {
1063 unsigned long base
, size
;
1065 base
= dt_mem_next_cell(dt_root_addr_cells
, ®
);
1066 size
= dt_mem_next_cell(dt_root_size_cells
, ®
);
1070 DBG(" - %lx , %lx\n", base
, size
);
1072 if (base
>= 0x80000000ul
)
1074 if ((base
+ size
) > 0x80000000ul
)
1075 size
= 0x80000000ul
- base
;
1077 lmb_add(base
, size
);
1082 static void __init
early_reserve_mem(void)
1085 u64
*reserve_map
= (u64
*)(((unsigned long)initial_boot_params
) +
1086 initial_boot_params
->off_mem_rsvmap
);
1088 base
= *(reserve_map
++);
1089 size
= *(reserve_map
++);
1092 DBG("reserving: %lx -> %lx\n", base
, size
);
1093 lmb_reserve(base
, size
);
1097 DBG("memory reserved, lmbs :\n");
1102 void __init
early_init_devtree(void *params
)
1104 DBG(" -> early_init_devtree()\n");
1106 /* Setup flat device-tree pointer */
1107 initial_boot_params
= params
;
1109 /* By default, hash size is not set */
1112 /* Retreive various informations from the /chosen node of the
1113 * device-tree, including the platform type, initrd location and
1114 * size, TCE reserve, and more ...
1116 scan_flat_dt(early_init_dt_scan_chosen
, NULL
);
1118 /* Scan memory nodes and rebuild LMBs */
1120 scan_flat_dt(early_init_dt_scan_root
, NULL
);
1121 scan_flat_dt(early_init_dt_scan_memory
, NULL
);
1122 lmb_enforce_memory_limit();
1124 systemcfg
->physicalMemorySize
= lmb_phys_mem_size();
1125 lmb_reserve(0, __pa(klimit
));
1127 DBG("Phys. mem: %lx\n", systemcfg
->physicalMemorySize
);
1129 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1130 early_reserve_mem();
1132 DBG("Scanning CPUs ...\n");
1134 /* Retreive hash table size from flattened tree plus other
1135 * CPU related informations (altivec support, boot CPU ID, ...)
1137 scan_flat_dt(early_init_dt_scan_cpus
, NULL
);
1139 /* If hash size wasn't obtained above, we calculate it now based on
1140 * the total RAM size
1142 if (ppc64_pft_size
== 0) {
1143 unsigned long rnd_mem_size
, pteg_count
;
1145 /* round mem_size up to next power of 2 */
1146 rnd_mem_size
= 1UL << __ilog2(systemcfg
->physicalMemorySize
);
1147 if (rnd_mem_size
< systemcfg
->physicalMemorySize
)
1151 pteg_count
= max(rnd_mem_size
>> (12 + 1), 1UL << 11);
1153 ppc64_pft_size
= __ilog2(pteg_count
<< 7);
1156 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size
);
1157 DBG(" <- early_init_devtree()\n");
1163 prom_n_addr_cells(struct device_node
* np
)
1169 ip
= (int *) get_property(np
, "#address-cells", NULL
);
1172 } while (np
->parent
);
1173 /* No #address-cells property for the root node, default to 1 */
1178 prom_n_size_cells(struct device_node
* np
)
1184 ip
= (int *) get_property(np
, "#size-cells", NULL
);
1187 } while (np
->parent
);
1188 /* No #size-cells property for the root node, default to 1 */
1193 * Work out the sense (active-low level / active-high edge)
1194 * of each interrupt from the device tree.
1196 void __init
prom_get_irq_senses(unsigned char *senses
, int off
, int max
)
1198 struct device_node
*np
;
1201 /* default to level-triggered */
1202 memset(senses
, 1, max
- off
);
1204 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1205 for (j
= 0; j
< np
->n_intrs
; j
++) {
1206 i
= np
->intrs
[j
].line
;
1207 if (i
>= off
&& i
< max
)
1208 senses
[i
-off
] = np
->intrs
[j
].sense
?
1209 IRQ_SENSE_LEVEL
| IRQ_POLARITY_NEGATIVE
:
1210 IRQ_SENSE_EDGE
| IRQ_POLARITY_POSITIVE
;
1216 * Construct and return a list of the device_nodes with a given name.
1218 struct device_node
*
1219 find_devices(const char *name
)
1221 struct device_node
*head
, **prevp
, *np
;
1224 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1225 if (np
->name
!= 0 && strcasecmp(np
->name
, name
) == 0) {
1233 EXPORT_SYMBOL(find_devices
);
1236 * Construct and return a list of the device_nodes with a given type.
1238 struct device_node
*
1239 find_type_devices(const char *type
)
1241 struct device_node
*head
, **prevp
, *np
;
1244 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1245 if (np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0) {
1253 EXPORT_SYMBOL(find_type_devices
);
1256 * Returns all nodes linked together
1258 struct device_node
*
1259 find_all_nodes(void)
1261 struct device_node
*head
, **prevp
, *np
;
1264 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1271 EXPORT_SYMBOL(find_all_nodes
);
1273 /** Checks if the given "compat" string matches one of the strings in
1274 * the device's "compatible" property
1277 device_is_compatible(struct device_node
*device
, const char *compat
)
1282 cp
= (char *) get_property(device
, "compatible", &cplen
);
1286 if (strncasecmp(cp
, compat
, strlen(compat
)) == 0)
1295 EXPORT_SYMBOL(device_is_compatible
);
1299 * Indicates whether the root node has a given value in its
1300 * compatible property.
1303 machine_is_compatible(const char *compat
)
1305 struct device_node
*root
;
1308 root
= of_find_node_by_path("/");
1310 rc
= device_is_compatible(root
, compat
);
1315 EXPORT_SYMBOL(machine_is_compatible
);
1318 * Construct and return a list of the device_nodes with a given type
1319 * and compatible property.
1321 struct device_node
*
1322 find_compatible_devices(const char *type
, const char *compat
)
1324 struct device_node
*head
, **prevp
, *np
;
1327 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1329 && !(np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0))
1331 if (device_is_compatible(np
, compat
)) {
1339 EXPORT_SYMBOL(find_compatible_devices
);
1342 * Find the device_node with a given full_name.
1344 struct device_node
*
1345 find_path_device(const char *path
)
1347 struct device_node
*np
;
1349 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
1350 if (np
->full_name
!= 0 && strcasecmp(np
->full_name
, path
) == 0)
1354 EXPORT_SYMBOL(find_path_device
);
1358 * New implementation of the OF "find" APIs, return a refcounted
1359 * object, call of_node_put() when done. The device tree and list
1360 * are protected by a rw_lock.
1362 * Note that property management will need some locking as well,
1363 * this isn't dealt with yet.
1368 * of_find_node_by_name - Find a node by its "name" property
1369 * @from: The node to start searching from or NULL, the node
1370 * you pass will not be searched, only the next one
1371 * will; typically, you pass what the previous call
1372 * returned. of_node_put() will be called on it
1373 * @name: The name string to match against
1375 * Returns a node pointer with refcount incremented, use
1376 * of_node_put() on it when done.
1378 struct device_node
*of_find_node_by_name(struct device_node
*from
,
1381 struct device_node
*np
;
1383 read_lock(&devtree_lock
);
1384 np
= from
? from
->allnext
: allnodes
;
1385 for (; np
!= 0; np
= np
->allnext
)
1386 if (np
->name
!= 0 && strcasecmp(np
->name
, name
) == 0
1391 read_unlock(&devtree_lock
);
1394 EXPORT_SYMBOL(of_find_node_by_name
);
1397 * of_find_node_by_type - Find a node by its "device_type" property
1398 * @from: The node to start searching from or NULL, the node
1399 * you pass will not be searched, only the next one
1400 * will; typically, you pass what the previous call
1401 * returned. of_node_put() will be called on it
1402 * @name: The type string to match against
1404 * Returns a node pointer with refcount incremented, use
1405 * of_node_put() on it when done.
1407 struct device_node
*of_find_node_by_type(struct device_node
*from
,
1410 struct device_node
*np
;
1412 read_lock(&devtree_lock
);
1413 np
= from
? from
->allnext
: allnodes
;
1414 for (; np
!= 0; np
= np
->allnext
)
1415 if (np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0
1420 read_unlock(&devtree_lock
);
1423 EXPORT_SYMBOL(of_find_node_by_type
);
1426 * of_find_compatible_node - Find a node based on type and one of the
1427 * tokens in its "compatible" property
1428 * @from: The node to start searching from or NULL, the node
1429 * you pass will not be searched, only the next one
1430 * will; typically, you pass what the previous call
1431 * returned. of_node_put() will be called on it
1432 * @type: The type string to match "device_type" or NULL to ignore
1433 * @compatible: The string to match to one of the tokens in the device
1434 * "compatible" list.
1436 * Returns a node pointer with refcount incremented, use
1437 * of_node_put() on it when done.
1439 struct device_node
*of_find_compatible_node(struct device_node
*from
,
1440 const char *type
, const char *compatible
)
1442 struct device_node
*np
;
1444 read_lock(&devtree_lock
);
1445 np
= from
? from
->allnext
: allnodes
;
1446 for (; np
!= 0; np
= np
->allnext
) {
1448 && !(np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0))
1450 if (device_is_compatible(np
, compatible
) && of_node_get(np
))
1455 read_unlock(&devtree_lock
);
1458 EXPORT_SYMBOL(of_find_compatible_node
);
1461 * of_find_node_by_path - Find a node matching a full OF path
1462 * @path: The full path to match
1464 * Returns a node pointer with refcount incremented, use
1465 * of_node_put() on it when done.
1467 struct device_node
*of_find_node_by_path(const char *path
)
1469 struct device_node
*np
= allnodes
;
1471 read_lock(&devtree_lock
);
1472 for (; np
!= 0; np
= np
->allnext
)
1473 if (np
->full_name
!= 0 && strcasecmp(np
->full_name
, path
) == 0
1476 read_unlock(&devtree_lock
);
1479 EXPORT_SYMBOL(of_find_node_by_path
);
1482 * of_find_node_by_phandle - Find a node given a phandle
1483 * @handle: phandle of the node to find
1485 * Returns a node pointer with refcount incremented, use
1486 * of_node_put() on it when done.
1488 struct device_node
*of_find_node_by_phandle(phandle handle
)
1490 struct device_node
*np
;
1492 read_lock(&devtree_lock
);
1493 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
1494 if (np
->linux_phandle
== handle
)
1498 read_unlock(&devtree_lock
);
1501 EXPORT_SYMBOL(of_find_node_by_phandle
);
1504 * of_find_all_nodes - Get next node in global list
1505 * @prev: Previous node or NULL to start iteration
1506 * of_node_put() will be called on it
1508 * Returns a node pointer with refcount incremented, use
1509 * of_node_put() on it when done.
1511 struct device_node
*of_find_all_nodes(struct device_node
*prev
)
1513 struct device_node
*np
;
1515 read_lock(&devtree_lock
);
1516 np
= prev
? prev
->allnext
: allnodes
;
1517 for (; np
!= 0; np
= np
->allnext
)
1518 if (of_node_get(np
))
1522 read_unlock(&devtree_lock
);
1525 EXPORT_SYMBOL(of_find_all_nodes
);
1528 * of_get_parent - Get a node's parent if any
1529 * @node: Node to get parent
1531 * Returns a node pointer with refcount incremented, use
1532 * of_node_put() on it when done.
1534 struct device_node
*of_get_parent(const struct device_node
*node
)
1536 struct device_node
*np
;
1541 read_lock(&devtree_lock
);
1542 np
= of_node_get(node
->parent
);
1543 read_unlock(&devtree_lock
);
1546 EXPORT_SYMBOL(of_get_parent
);
1549 * of_get_next_child - Iterate a node childs
1550 * @node: parent node
1551 * @prev: previous child of the parent node, or NULL to get first
1553 * Returns a node pointer with refcount incremented, use
1554 * of_node_put() on it when done.
1556 struct device_node
*of_get_next_child(const struct device_node
*node
,
1557 struct device_node
*prev
)
1559 struct device_node
*next
;
1561 read_lock(&devtree_lock
);
1562 next
= prev
? prev
->sibling
: node
->child
;
1563 for (; next
!= 0; next
= next
->sibling
)
1564 if (of_node_get(next
))
1568 read_unlock(&devtree_lock
);
1571 EXPORT_SYMBOL(of_get_next_child
);
1574 * of_node_get - Increment refcount of a node
1575 * @node: Node to inc refcount, NULL is supported to
1576 * simplify writing of callers
1580 struct device_node
*of_node_get(struct device_node
*node
)
1583 kref_get(&node
->kref
);
1586 EXPORT_SYMBOL(of_node_get
);
1588 static inline struct device_node
* kref_to_device_node(struct kref
*kref
)
1590 return container_of(kref
, struct device_node
, kref
);
1594 * of_node_release - release a dynamically allocated node
1595 * @kref: kref element of the node to be released
1597 * In of_node_put() this function is passed to kref_put()
1598 * as the destructor.
1600 static void of_node_release(struct kref
*kref
)
1602 struct device_node
*node
= kref_to_device_node(kref
);
1603 struct property
*prop
= node
->properties
;
1605 if (!OF_IS_DYNAMIC(node
))
1608 struct property
*next
= prop
->next
;
1616 kfree(node
->full_name
);
1621 * of_node_put - Decrement refcount of a node
1622 * @node: Node to dec refcount, NULL is supported to
1623 * simplify writing of callers
1626 void of_node_put(struct device_node
*node
)
1629 kref_put(&node
->kref
, of_node_release
);
1631 EXPORT_SYMBOL(of_node_put
);
1634 * Fix up the uninitialized fields in a new device node:
1635 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1637 * A lot of boot-time code is duplicated here, because functions such
1638 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1641 * This should probably be split up into smaller chunks.
1644 static int of_finish_dynamic_node(struct device_node
*node
,
1645 unsigned long *unused1
, int unused2
,
1646 int unused3
, int unused4
)
1648 struct device_node
*parent
= of_get_parent(node
);
1650 phandle
*ibm_phandle
;
1652 node
->name
= get_property(node
, "name", NULL
);
1653 node
->type
= get_property(node
, "device_type", NULL
);
1660 /* We don't support that function on PowerMac, at least
1663 if (systemcfg
->platform
== PLATFORM_POWERMAC
)
1666 /* fix up new node's linux_phandle field */
1667 if ((ibm_phandle
= (unsigned int *)get_property(node
, "ibm,phandle", NULL
)))
1668 node
->linux_phandle
= *ibm_phandle
;
1671 of_node_put(parent
);
1676 * Plug a device node into the tree and global list.
1678 void of_attach_node(struct device_node
*np
)
1680 write_lock(&devtree_lock
);
1681 np
->sibling
= np
->parent
->child
;
1682 np
->allnext
= allnodes
;
1683 np
->parent
->child
= np
;
1685 write_unlock(&devtree_lock
);
1689 * "Unplug" a node from the device tree. The caller must hold
1690 * a reference to the node. The memory associated with the node
1691 * is not freed until its refcount goes to zero.
1693 void of_detach_node(const struct device_node
*np
)
1695 struct device_node
*parent
;
1697 write_lock(&devtree_lock
);
1699 parent
= np
->parent
;
1702 allnodes
= np
->allnext
;
1704 struct device_node
*prev
;
1705 for (prev
= allnodes
;
1706 prev
->allnext
!= np
;
1707 prev
= prev
->allnext
)
1709 prev
->allnext
= np
->allnext
;
1712 if (parent
->child
== np
)
1713 parent
->child
= np
->sibling
;
1715 struct device_node
*prevsib
;
1716 for (prevsib
= np
->parent
->child
;
1717 prevsib
->sibling
!= np
;
1718 prevsib
= prevsib
->sibling
)
1720 prevsib
->sibling
= np
->sibling
;
1723 write_unlock(&devtree_lock
);
1726 static int prom_reconfig_notifier(struct notifier_block
*nb
, unsigned long action
, void *node
)
1731 case PSERIES_RECONFIG_ADD
:
1732 err
= finish_node(node
, NULL
, of_finish_dynamic_node
, 0, 0, 0);
1734 printk(KERN_ERR
"finish_node returned %d\n", err
);
1745 static struct notifier_block prom_reconfig_nb
= {
1746 .notifier_call
= prom_reconfig_notifier
,
1747 .priority
= 10, /* This one needs to run first */
1750 static int __init
prom_reconfig_setup(void)
1752 return pSeries_reconfig_notifier_register(&prom_reconfig_nb
);
1754 __initcall(prom_reconfig_setup
);
1757 * Find a property with a given name for a given node
1758 * and return the value.
1761 get_property(struct device_node
*np
, const char *name
, int *lenp
)
1763 struct property
*pp
;
1765 for (pp
= np
->properties
; pp
!= 0; pp
= pp
->next
)
1766 if (strcmp(pp
->name
, name
) == 0) {
1773 EXPORT_SYMBOL(get_property
);
1776 * Add a property to a node
1779 prom_add_property(struct device_node
* np
, struct property
* prop
)
1781 struct property
**next
= &np
->properties
;
1785 next
= &(*next
)->next
;
1791 print_properties(struct device_node
*np
)
1793 struct property
*pp
;
1797 for (pp
= np
->properties
; pp
!= 0; pp
= pp
->next
) {
1798 printk(KERN_INFO
"%s", pp
->name
);
1799 for (i
= strlen(pp
->name
); i
< 16; ++i
)
1801 cp
= (char *) pp
->value
;
1802 for (i
= pp
->length
; i
> 0; --i
, ++cp
)
1803 if ((i
> 1 && (*cp
< 0x20 || *cp
> 0x7e))
1804 || (i
== 1 && *cp
!= 0))
1806 if (i
== 0 && pp
->length
> 1) {
1807 /* looks like a string */
1808 printk(" %s\n", (char *) pp
->value
);
1810 /* dump it in hex */
1814 if (pp
->length
% 4 == 0) {
1815 unsigned int *p
= (unsigned int *) pp
->value
;
1818 for (i
= 0; i
< n
; ++i
) {
1819 if (i
!= 0 && (i
% 4) == 0)
1821 printk(" %08x", *p
++);
1824 unsigned char *bp
= pp
->value
;
1826 for (i
= 0; i
< n
; ++i
) {
1827 if (i
!= 0 && (i
% 16) == 0)
1829 printk(" %02x", *bp
++);
1833 if (pp
->length
> 64)
1834 printk(" ... (length = %d)\n",