2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Communication to userspace based on kernel/printk.c
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
23 #include <asm/uaccess.h>
27 #include <asm/nvram.h>
28 #include <asm/atomic.h>
29 #include <asm/systemcfg.h>
32 #define DEBUG(A...) printk(KERN_ERR A)
37 static DEFINE_SPINLOCK(rtasd_log_lock
);
39 DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait
);
41 static char *rtas_log_buf
;
42 static unsigned long rtas_log_start
;
43 static unsigned long rtas_log_size
;
45 static int surveillance_timeout
= -1;
46 static unsigned int rtas_event_scan_rate
;
47 static unsigned int rtas_error_log_max
;
48 static unsigned int rtas_error_log_buffer_max
;
50 static int full_rtas_msgs
= 0;
52 extern int no_logging
;
54 volatile int error_log_cnt
= 0;
57 * Since we use 32 bit RTAS, the physical address of this must be below
58 * 4G or else bad things happen. Allocate this in the kernel data and
61 static unsigned char logdata
[RTAS_ERROR_LOG_MAX
];
63 static int get_eventscan_parms(void);
65 static char *rtas_type
[] = {
66 "Unknown", "Retry", "TCE Error", "Internal Device Failure",
67 "Timeout", "Data Parity", "Address Parity", "Cache Parity",
68 "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
71 static char *rtas_event_type(int type
)
73 if ((type
> 0) && (type
< 11))
74 return rtas_type
[type
];
79 case RTAS_TYPE_PLATFORM
:
80 return "Platform Error";
84 return "Platform Information Event";
85 case RTAS_TYPE_DEALLOC
:
86 return "Resource Deallocation Event";
88 return "Dump Notification Event";
94 /* To see this info, grep RTAS /var/log/messages and each entry
95 * will be collected together with obvious begin/end.
96 * There will be a unique identifier on the begin and end lines.
97 * This will persist across reboots.
99 * format of error logs returned from RTAS:
100 * bytes (size) : contents
101 * --------------------------------------------------------
102 * 0-7 (8) : rtas_error_log
103 * 8-47 (40) : extended info
104 * 48-51 (4) : vendor id
105 * 52-1023 (vendor specific) : location code and debug data
107 static void printk_log_rtas(char *buf
, int len
)
113 char * str
= "RTAS event";
115 if (full_rtas_msgs
) {
116 printk(RTAS_DEBUG
"%d -------- %s begin --------\n",
120 * Print perline bytes on each line, each line will start
121 * with RTAS and a changing number, so syslogd will
122 * print lines that are otherwise the same. Separate every
123 * 4 bytes with a space.
125 for (i
= 0; i
< len
; i
++) {
128 memset(buffer
, 0, sizeof(buffer
));
129 n
= sprintf(buffer
, "RTAS %d:", i
/perline
);
133 n
+= sprintf(buffer
+n
, " ");
135 n
+= sprintf(buffer
+n
, "%02x", (unsigned char)buf
[i
]);
137 if (j
== (perline
-1))
138 printk(KERN_DEBUG
"%s\n", buffer
);
140 if ((i
% perline
) != 0)
141 printk(KERN_DEBUG
"%s\n", buffer
);
143 printk(RTAS_DEBUG
"%d -------- %s end ----------\n",
146 struct rtas_error_log
*errlog
= (struct rtas_error_log
*)buf
;
148 printk(RTAS_DEBUG
"event: %d, Type: %s, Severity: %d\n",
149 error_log_cnt
, rtas_event_type(errlog
->type
),
154 static int log_rtas_len(char * buf
)
157 struct rtas_error_log
*err
;
159 /* rtas fixed header */
161 err
= (struct rtas_error_log
*)buf
;
162 if (err
->extended_log_length
) {
164 /* extended header */
165 len
+= err
->extended_log_length
;
168 if (rtas_error_log_max
== 0) {
169 get_eventscan_parms();
171 if (len
> rtas_error_log_max
)
172 len
= rtas_error_log_max
;
178 * First write to nvram, if fatal error, that is the only
179 * place we log the info. The error will be picked up
180 * on the next reboot by rtasd. If not fatal, run the
181 * method for the type of error. Currently, only RTAS
182 * errors have methods implemented, but in the future
183 * there might be a need to store data in nvram before a
186 * XXX We write to nvram periodically, to indicate error has
187 * been written and sync'd, but there is a possibility
188 * that if we don't shutdown correctly, a duplicate error
189 * record will be created on next reboot.
191 void pSeries_log_error(char *buf
, unsigned int err_type
, int fatal
)
193 unsigned long offset
;
197 DEBUG("logging event\n");
201 spin_lock_irqsave(&rtasd_log_lock
, s
);
203 /* get length and increase count */
204 switch (err_type
& ERR_TYPE_MASK
) {
205 case ERR_TYPE_RTAS_LOG
:
206 len
= log_rtas_len(buf
);
207 if (!(err_type
& ERR_FLAG_BOOT
))
210 case ERR_TYPE_KERNEL_PANIC
:
212 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
216 /* Write error to NVRAM */
217 if (!no_logging
&& !(err_type
& ERR_FLAG_BOOT
))
218 nvram_write_error_log(buf
, len
, err_type
);
221 * rtas errors can occur during boot, and we do want to capture
222 * those somewhere, even if nvram isn't ready (why not?), and even
223 * if rtasd isn't ready. Put them into the boot log, at least.
225 if ((err_type
& ERR_TYPE_MASK
) == ERR_TYPE_RTAS_LOG
)
226 printk_log_rtas(buf
, len
);
228 /* Check to see if we need to or have stopped logging */
229 if (fatal
|| no_logging
) {
231 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
235 /* call type specific method for error */
236 switch (err_type
& ERR_TYPE_MASK
) {
237 case ERR_TYPE_RTAS_LOG
:
238 offset
= rtas_error_log_buffer_max
*
239 ((rtas_log_start
+rtas_log_size
) & LOG_NUMBER_MASK
);
241 /* First copy over sequence number */
242 memcpy(&rtas_log_buf
[offset
], (void *) &error_log_cnt
, sizeof(int));
244 /* Second copy over error log data */
245 offset
+= sizeof(int);
246 memcpy(&rtas_log_buf
[offset
], buf
, len
);
248 if (rtas_log_size
< LOG_NUMBER
)
253 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
254 wake_up_interruptible(&rtas_log_wait
);
256 case ERR_TYPE_KERNEL_PANIC
:
258 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
265 static int rtas_log_open(struct inode
* inode
, struct file
* file
)
270 static int rtas_log_release(struct inode
* inode
, struct file
* file
)
275 /* This will check if all events are logged, if they are then, we
276 * know that we can safely clear the events in NVRAM.
277 * Next we'll sit and wait for something else to log.
279 static ssize_t
rtas_log_read(struct file
* file
, char __user
* buf
,
280 size_t count
, loff_t
*ppos
)
285 unsigned long offset
;
287 if (!buf
|| count
< rtas_error_log_buffer_max
)
290 count
= rtas_error_log_buffer_max
;
292 if (!access_ok(VERIFY_WRITE
, buf
, count
))
295 tmp
= kmalloc(count
, GFP_KERNEL
);
300 spin_lock_irqsave(&rtasd_log_lock
, s
);
301 /* if it's 0, then we know we got the last one (the one in NVRAM) */
302 if (rtas_log_size
== 0 && !no_logging
)
303 nvram_clear_error_log();
304 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
307 error
= wait_event_interruptible(rtas_log_wait
, rtas_log_size
);
311 spin_lock_irqsave(&rtasd_log_lock
, s
);
312 offset
= rtas_error_log_buffer_max
* (rtas_log_start
& LOG_NUMBER_MASK
);
313 memcpy(tmp
, &rtas_log_buf
[offset
], count
);
317 spin_unlock_irqrestore(&rtasd_log_lock
, s
);
319 error
= copy_to_user(buf
, tmp
, count
) ? -EFAULT
: count
;
325 static unsigned int rtas_log_poll(struct file
*file
, poll_table
* wait
)
327 poll_wait(file
, &rtas_log_wait
, wait
);
329 return POLLIN
| POLLRDNORM
;
333 struct file_operations proc_rtas_log_operations
= {
334 .read
= rtas_log_read
,
335 .poll
= rtas_log_poll
,
336 .open
= rtas_log_open
,
337 .release
= rtas_log_release
,
340 static int enable_surveillance(int timeout
)
344 error
= rtas_set_indicator(SURVEILLANCE_TOKEN
, 0, timeout
);
349 if (error
== -EINVAL
) {
350 printk(KERN_INFO
"rtasd: surveillance not supported\n");
354 printk(KERN_ERR
"rtasd: could not update surveillance\n");
358 static int get_eventscan_parms(void)
360 struct device_node
*node
;
363 node
= of_find_node_by_path("/rtas");
365 ip
= (int *)get_property(node
, "rtas-event-scan-rate", NULL
);
367 printk(KERN_ERR
"rtasd: no rtas-event-scan-rate\n");
371 rtas_event_scan_rate
= *ip
;
372 DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate
);
374 /* Make room for the sequence number */
375 rtas_error_log_max
= rtas_get_error_log_max();
376 rtas_error_log_buffer_max
= rtas_error_log_max
+ sizeof(int);
383 static void do_event_scan(int event_scan
)
387 memset(logdata
, 0, rtas_error_log_max
);
388 error
= rtas_call(event_scan
, 4, 1, NULL
,
389 RTAS_EVENT_SCAN_ALL_EVENTS
, 0,
390 __pa(logdata
), rtas_error_log_max
);
392 printk(KERN_ERR
"event-scan failed\n");
397 pSeries_log_error(logdata
, ERR_TYPE_RTAS_LOG
, 0);
402 static void do_event_scan_all_cpus(long delay
)
407 cpu
= first_cpu(cpu_online_map
);
409 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
410 do_event_scan(rtas_token("event-scan"));
411 set_cpus_allowed(current
, CPU_MASK_ALL
);
413 /* Drop hotplug lock, and sleep for the specified delay */
414 unlock_cpu_hotplug();
415 set_current_state(TASK_INTERRUPTIBLE
);
416 schedule_timeout(delay
);
419 cpu
= next_cpu(cpu
, cpu_online_map
);
423 unlock_cpu_hotplug();
426 static int rtasd(void *unused
)
428 unsigned int err_type
;
429 int event_scan
= rtas_token("event-scan");
434 if (event_scan
== RTAS_UNKNOWN_SERVICE
|| get_eventscan_parms() == -1)
437 rtas_log_buf
= vmalloc(rtas_error_log_buffer_max
*LOG_NUMBER
);
439 printk(KERN_ERR
"rtasd: no memory\n");
443 printk(KERN_INFO
"RTAS daemon started\n");
445 DEBUG("will sleep for %d jiffies\n", (HZ
*60/rtas_event_scan_rate
) / 2);
447 /* See if we have any error stored in NVRAM */
448 memset(logdata
, 0, rtas_error_log_max
);
450 rc
= nvram_read_error_log(logdata
, rtas_error_log_max
, &err_type
);
452 /* We can use rtas_log_buf now */
456 if (err_type
!= ERR_FLAG_ALREADY_LOGGED
) {
457 pSeries_log_error(logdata
, err_type
| ERR_FLAG_BOOT
, 0);
462 do_event_scan_all_cpus(HZ
);
464 if (surveillance_timeout
!= -1) {
465 DEBUG("enabling surveillance\n");
466 enable_surveillance(surveillance_timeout
);
467 DEBUG("surveillance enabled\n");
470 /* Delay should be at least one second since some
471 * machines have problems if we call event-scan too
474 do_event_scan_all_cpus((HZ
*60/rtas_event_scan_rate
) / 2);
477 /* Should delete proc entries */
481 static int __init
rtas_init(void)
483 struct proc_dir_entry
*entry
;
485 /* No RTAS, only warn if we are on a pSeries box */
486 if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE
) {
487 if (systemcfg
->platform
& PLATFORM_PSERIES
)
488 printk(KERN_INFO
"rtasd: no event-scan on system\n");
492 entry
= create_proc_entry("ppc64/rtas/error_log", S_IRUSR
, NULL
);
494 entry
->proc_fops
= &proc_rtas_log_operations
;
496 printk(KERN_ERR
"Failed to create error_log proc entry\n");
498 if (kernel_thread(rtasd
, NULL
, CLONE_FS
) < 0)
499 printk(KERN_ERR
"Failed to start RTAS daemon\n");
504 static int __init
surveillance_setup(char *str
)
508 if (get_option(&str
,&i
)) {
509 if (i
>= 0 && i
<= 255)
510 surveillance_timeout
= i
;
516 static int __init
rtasmsgs_setup(char *str
)
518 if (strcmp(str
, "on") == 0)
520 else if (strcmp(str
, "off") == 0)
525 __initcall(rtas_init
);
526 __setup("surveillance=", surveillance_setup
);
527 __setup("rtasmsgs=", rtasmsgs_setup
);