[NETLINK]: w1_int.c: fix default netlink group
[linux-2.6/verdex.git] / arch / ppc64 / kernel / rtc.c
blobd729fefa0df580f389eb2425edd54f89d53a7752
1 /*
2 * Real Time Clock interface for PPC64.
4 * Based on rtc.c by Paul Gortmaker
6 * This driver allows use of the real time clock
7 * from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * Interface does not support RTC interrupts nor an alarm.
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 * 1.0 Mike Corrigan: IBM iSeries rtc support
19 * 1.1 Dave Engebretsen: IBM pSeries rtc support
22 #define RTC_VERSION "1.1"
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/miscdevice.h>
29 #include <linux/ioport.h>
30 #include <linux/fcntl.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/init.h>
33 #include <linux/poll.h>
34 #include <linux/proc_fs.h>
35 #include <linux/spinlock.h>
36 #include <linux/bcd.h>
37 #include <linux/interrupt.h>
39 #include <asm/io.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/time.h>
43 #include <asm/rtas.h>
45 #include <asm/iSeries/mf.h>
46 #include <asm/machdep.h>
48 extern int piranha_simulator;
51 * We sponge a minor off of the misc major. No need slurping
52 * up another valuable major dev number for this. If you add
53 * an ioctl, make sure you don't conflict with SPARC's RTC
54 * ioctls.
57 static ssize_t rtc_read(struct file *file, char __user *buf,
58 size_t count, loff_t *ppos);
60 static int rtc_ioctl(struct inode *inode, struct file *file,
61 unsigned int cmd, unsigned long arg);
63 static int rtc_read_proc(char *page, char **start, off_t off,
64 int count, int *eof, void *data);
67 * If this driver ever becomes modularised, it will be really nice
68 * to make the epoch retain its value across module reload...
71 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
73 static const unsigned char days_in_mo[] =
74 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
77 * Now all the various file operations that we export.
80 static ssize_t rtc_read(struct file *file, char __user *buf,
81 size_t count, loff_t *ppos)
83 return -EIO;
86 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
87 unsigned long arg)
89 struct rtc_time wtime;
91 switch (cmd) {
92 case RTC_RD_TIME: /* Read the time/date from RTC */
94 memset(&wtime, 0, sizeof(struct rtc_time));
95 ppc_md.get_rtc_time(&wtime);
96 break;
98 case RTC_SET_TIME: /* Set the RTC */
100 struct rtc_time rtc_tm;
101 unsigned char mon, day, hrs, min, sec, leap_yr;
102 unsigned int yrs;
104 if (!capable(CAP_SYS_TIME))
105 return -EACCES;
107 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
108 sizeof(struct rtc_time)))
109 return -EFAULT;
111 yrs = rtc_tm.tm_year;
112 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
113 day = rtc_tm.tm_mday;
114 hrs = rtc_tm.tm_hour;
115 min = rtc_tm.tm_min;
116 sec = rtc_tm.tm_sec;
118 if (yrs < 70)
119 return -EINVAL;
121 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
123 if ((mon > 12) || (day == 0))
124 return -EINVAL;
126 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
127 return -EINVAL;
129 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
130 return -EINVAL;
132 if ( yrs > 169 )
133 return -EINVAL;
135 ppc_md.set_rtc_time(&rtc_tm);
137 return 0;
139 case RTC_EPOCH_READ: /* Read the epoch. */
141 return put_user (epoch, (unsigned long __user *)arg);
143 case RTC_EPOCH_SET: /* Set the epoch. */
146 * There were no RTC clocks before 1900.
148 if (arg < 1900)
149 return -EINVAL;
151 if (!capable(CAP_SYS_TIME))
152 return -EACCES;
154 epoch = arg;
155 return 0;
157 default:
158 return -EINVAL;
160 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
163 static int rtc_open(struct inode *inode, struct file *file)
165 nonseekable_open(inode, file);
166 return 0;
169 static int rtc_release(struct inode *inode, struct file *file)
171 return 0;
175 * The various file operations we support.
177 static struct file_operations rtc_fops = {
178 .owner = THIS_MODULE,
179 .llseek = no_llseek,
180 .read = rtc_read,
181 .ioctl = rtc_ioctl,
182 .open = rtc_open,
183 .release = rtc_release,
186 static struct miscdevice rtc_dev = {
187 .minor = RTC_MINOR,
188 .name = "rtc",
189 .fops = &rtc_fops
192 static int __init rtc_init(void)
194 int retval;
196 retval = misc_register(&rtc_dev);
197 if(retval < 0)
198 return retval;
200 #ifdef CONFIG_PROC_FS
201 if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL)
202 == NULL) {
203 misc_deregister(&rtc_dev);
204 return -ENOMEM;
206 #endif
208 printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n");
210 return 0;
213 static void __exit rtc_exit (void)
215 remove_proc_entry ("driver/rtc", NULL);
216 misc_deregister(&rtc_dev);
219 module_init(rtc_init);
220 module_exit(rtc_exit);
223 * Info exported via "/proc/driver/rtc".
226 static int rtc_proc_output (char *buf)
229 char *p;
230 struct rtc_time tm;
232 p = buf;
234 ppc_md.get_rtc_time(&tm);
237 * There is no way to tell if the luser has the RTC set for local
238 * time or for Universal Standard Time (GMT). Probably local though.
240 p += sprintf(p,
241 "rtc_time\t: %02d:%02d:%02d\n"
242 "rtc_date\t: %04d-%02d-%02d\n"
243 "rtc_epoch\t: %04lu\n",
244 tm.tm_hour, tm.tm_min, tm.tm_sec,
245 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
247 p += sprintf(p,
248 "DST_enable\t: no\n"
249 "BCD\t\t: yes\n"
250 "24hr\t\t: yes\n" );
252 return p - buf;
255 static int rtc_read_proc(char *page, char **start, off_t off,
256 int count, int *eof, void *data)
258 int len = rtc_proc_output (page);
259 if (len <= off+count) *eof = 1;
260 *start = page + off;
261 len -= off;
262 if (len>count) len = count;
263 if (len<0) len = 0;
264 return len;
267 #ifdef CONFIG_PPC_ISERIES
269 * Get the RTC from the virtual service processor
270 * This requires flowing LpEvents to the primary partition
272 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
274 if (piranha_simulator)
275 return;
277 mf_get_rtc(rtc_tm);
278 rtc_tm->tm_mon--;
282 * Set the RTC in the virtual service processor
283 * This requires flowing LpEvents to the primary partition
285 int iSeries_set_rtc_time(struct rtc_time *tm)
287 mf_set_rtc(tm);
288 return 0;
291 void iSeries_get_boot_time(struct rtc_time *tm)
293 if ( piranha_simulator )
294 return;
296 mf_get_boot_rtc(tm);
297 tm->tm_mon -= 1;
299 #endif
301 #ifdef CONFIG_PPC_RTAS
302 #define MAX_RTC_WAIT 5000 /* 5 sec */
303 #define RTAS_CLOCK_BUSY (-2)
304 void rtas_get_boot_time(struct rtc_time *rtc_tm)
306 int ret[8];
307 int error, wait_time;
308 unsigned long max_wait_tb;
310 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
311 do {
312 error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
313 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
314 wait_time = rtas_extended_busy_delay_time(error);
315 /* This is boot time so we spin. */
316 udelay(wait_time*1000);
317 error = RTAS_CLOCK_BUSY;
319 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
321 if (error != 0 && printk_ratelimit()) {
322 printk(KERN_WARNING "error: reading the clock failed (%d)\n",
323 error);
324 return;
327 rtc_tm->tm_sec = ret[5];
328 rtc_tm->tm_min = ret[4];
329 rtc_tm->tm_hour = ret[3];
330 rtc_tm->tm_mday = ret[2];
331 rtc_tm->tm_mon = ret[1] - 1;
332 rtc_tm->tm_year = ret[0] - 1900;
335 /* NOTE: get_rtc_time will get an error if executed in interrupt context
336 * and if a delay is needed to read the clock. In this case we just
337 * silently return without updating rtc_tm.
339 void rtas_get_rtc_time(struct rtc_time *rtc_tm)
341 int ret[8];
342 int error, wait_time;
343 unsigned long max_wait_tb;
345 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
346 do {
347 error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
348 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
349 if (in_interrupt() && printk_ratelimit()) {
350 printk(KERN_WARNING "error: reading clock would delay interrupt\n");
351 return; /* delay not allowed */
353 wait_time = rtas_extended_busy_delay_time(error);
354 set_current_state(TASK_INTERRUPTIBLE);
355 schedule_timeout(wait_time);
356 error = RTAS_CLOCK_BUSY;
358 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
360 if (error != 0 && printk_ratelimit()) {
361 printk(KERN_WARNING "error: reading the clock failed (%d)\n",
362 error);
363 return;
366 rtc_tm->tm_sec = ret[5];
367 rtc_tm->tm_min = ret[4];
368 rtc_tm->tm_hour = ret[3];
369 rtc_tm->tm_mday = ret[2];
370 rtc_tm->tm_mon = ret[1] - 1;
371 rtc_tm->tm_year = ret[0] - 1900;
374 int rtas_set_rtc_time(struct rtc_time *tm)
376 int error, wait_time;
377 unsigned long max_wait_tb;
379 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
380 do {
381 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
382 tm->tm_year + 1900, tm->tm_mon + 1,
383 tm->tm_mday, tm->tm_hour, tm->tm_min,
384 tm->tm_sec, 0);
385 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
386 if (in_interrupt())
387 return 1; /* probably decrementer */
388 wait_time = rtas_extended_busy_delay_time(error);
389 set_current_state(TASK_INTERRUPTIBLE);
390 schedule_timeout(wait_time);
391 error = RTAS_CLOCK_BUSY;
393 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
395 if (error != 0 && printk_ratelimit())
396 printk(KERN_WARNING "error: setting the clock failed (%d)\n",
397 error);
399 return 0;
401 #endif