5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * Modified by Cort Dougan and Paul Mackerras.
12 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mman.h>
29 #include <linux/interrupt.h>
30 #include <linux/smp_lock.h>
31 #include <linux/module.h>
34 #include <asm/pgtable.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/kdebug.h>
42 * Check whether the instruction at regs->nip is a store using
43 * an update addressing form which will update r1.
45 static int store_updates_sp(struct pt_regs
*regs
)
49 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
51 /* check for 1 in the rA field */
52 if (((inst
>> 16) & 0x1f) != 1)
54 /* check major opcode */
62 case 62: /* std or stdu */
63 return (inst
& 3) == 1;
65 /* check minor opcode */
66 switch ((inst
>> 1) & 0x3ff) {
71 case 695: /* stfsux */
72 case 759: /* stfdux */
80 * The error_code parameter is
81 * - DSISR for a non-SLB data access fault,
82 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
84 * The return value is 0 if the fault was handled, or the signal
85 * number if this is a kernel fault that can't be handled here.
87 int do_page_fault(struct pt_regs
*regs
, unsigned long address
,
88 unsigned long error_code
)
90 struct vm_area_struct
* vma
;
91 struct mm_struct
*mm
= current
->mm
;
93 unsigned long code
= SEGV_MAPERR
;
94 unsigned long is_write
= error_code
& DSISR_ISSTORE
;
95 unsigned long trap
= TRAP(regs
);
96 unsigned long is_exec
= trap
== 0x400;
98 BUG_ON((trap
== 0x380) || (trap
== 0x480));
100 if (notify_die(DIE_PAGE_FAULT
, "page_fault", regs
, error_code
,
101 11, SIGSEGV
) == NOTIFY_STOP
)
105 if (debugger_fault_handler(regs
))
109 /* On a kernel SLB miss we can only check for a valid exception entry */
110 if (!user_mode(regs
) && (address
>= TASK_SIZE
))
113 if (error_code
& DSISR_DABRMATCH
) {
114 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
115 11, SIGSEGV
) == NOTIFY_STOP
)
117 if (debugger_dabr_match(regs
))
121 if (in_atomic() || mm
== NULL
) {
122 if (!user_mode(regs
))
124 /* in_atomic() in user mode is really bad,
125 as is current->mm == NULL. */
126 printk(KERN_EMERG
"Page fault in user mode with"
127 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
128 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
129 regs
->nip
, regs
->msr
);
130 die("Weird page fault", regs
, SIGSEGV
);
133 /* When running in the kernel we expect faults to occur only to
134 * addresses in user space. All other faults represent errors in the
135 * kernel and should generate an OOPS. Unfortunatly, in the case of an
136 * erroneous fault occuring in a code path which already holds mmap_sem
137 * we will deadlock attempting to validate the fault against the
138 * address space. Luckily the kernel only validly references user
139 * space from well defined areas of code, which are listed in the
142 * As the vast majority of faults will be valid we will only perform
143 * the source reference check when there is a possibilty of a deadlock.
144 * Attempt to lock the address space, if we cannot we then validate the
145 * source. If this is invalid we can skip the address space check,
146 * thus avoiding the deadlock.
148 if (!down_read_trylock(&mm
->mmap_sem
)) {
149 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
150 goto bad_area_nosemaphore
;
152 down_read(&mm
->mmap_sem
);
155 vma
= find_vma(mm
, address
);
159 if (vma
->vm_start
<= address
) {
162 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
166 * N.B. The POWER/Open ABI allows programs to access up to
167 * 288 bytes below the stack pointer.
168 * The kernel signal delivery code writes up to about 1.5kB
169 * below the stack pointer (r1) before decrementing it.
170 * The exec code can write slightly over 640kB to the stack
171 * before setting the user r1. Thus we allow the stack to
172 * expand to 1MB without further checks.
174 if (address
+ 0x100000 < vma
->vm_end
) {
175 /* get user regs even if this fault is in kernel mode */
176 struct pt_regs
*uregs
= current
->thread
.regs
;
181 * A user-mode access to an address a long way below
182 * the stack pointer is only valid if the instruction
183 * is one which would update the stack pointer to the
184 * address accessed if the instruction completed,
185 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
186 * (or the byte, halfword, float or double forms).
188 * If we don't check this then any write to the area
189 * between the last mapped region and the stack will
190 * expand the stack rather than segfaulting.
192 if (address
+ 2048 < uregs
->gpr
[1]
193 && (!user_mode(regs
) || !store_updates_sp(regs
)))
197 if (expand_stack(vma
, address
))
204 /* protection fault */
205 if (error_code
& DSISR_PROTFAULT
)
207 if (!(vma
->vm_flags
& VM_EXEC
))
210 } else if (is_write
) {
211 if (!(vma
->vm_flags
& VM_WRITE
))
215 if (!(vma
->vm_flags
& VM_READ
))
221 * If for any reason at all we couldn't handle the fault,
222 * make sure we exit gracefully rather than endlessly redo
225 switch (handle_mm_fault(mm
, vma
, address
, is_write
)) {
233 case VM_FAULT_SIGBUS
:
241 up_read(&mm
->mmap_sem
);
245 up_read(&mm
->mmap_sem
);
247 bad_area_nosemaphore
:
248 /* User mode accesses cause a SIGSEGV */
249 if (user_mode(regs
)) {
250 info
.si_signo
= SIGSEGV
;
253 info
.si_addr
= (void __user
*) address
;
254 force_sig_info(SIGSEGV
, &info
, current
);
258 if (trap
== 0x400 && (error_code
& DSISR_PROTFAULT
)
259 && printk_ratelimit())
260 printk(KERN_CRIT
"kernel tried to execute NX-protected"
261 " page (%lx) - exploit attempt? (uid: %d)\n",
262 address
, current
->uid
);
267 * We ran out of memory, or some other thing happened to us that made
268 * us unable to handle the page fault gracefully.
271 up_read(&mm
->mmap_sem
);
272 if (current
->pid
== 1) {
274 down_read(&mm
->mmap_sem
);
277 printk("VM: killing process %s\n", current
->comm
);
283 up_read(&mm
->mmap_sem
);
284 if (user_mode(regs
)) {
285 info
.si_signo
= SIGBUS
;
287 info
.si_code
= BUS_ADRERR
;
288 info
.si_addr
= (void __user
*)address
;
289 force_sig_info(SIGBUS
, &info
, current
);
296 * bad_page_fault is called when we have a bad access from the kernel.
297 * It is called from do_page_fault above and from some of the procedures
300 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
302 const struct exception_table_entry
*entry
;
304 /* Are we prepared to handle this fault? */
305 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
306 regs
->nip
= entry
->fixup
;
310 /* kernel has accessed a bad area */
311 die("Kernel access of bad area", regs
, sig
);