[NETLINK]: w1_int.c: fix default netlink group
[linux-2.6/verdex.git] / arch / ppc64 / mm / init.c
blobe58a24d42879da92448a94a0b84c6f2dec1a682d
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
44 #include <asm/page.h>
45 #include <asm/abs_addr.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/rtas.h>
49 #include <asm/io.h>
50 #include <asm/mmu_context.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu.h>
53 #include <asm/uaccess.h>
54 #include <asm/smp.h>
55 #include <asm/machdep.h>
56 #include <asm/tlb.h>
57 #include <asm/eeh.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/ppcdebug.h>
62 #include <asm/sections.h>
63 #include <asm/system.h>
64 #include <asm/iommu.h>
65 #include <asm/abs_addr.h>
66 #include <asm/vdso.h>
67 #include <asm/imalloc.h>
69 int mem_init_done;
70 unsigned long ioremap_bot = IMALLOC_BASE;
71 static unsigned long phbs_io_bot = PHBS_IO_BASE;
73 extern pgd_t swapper_pg_dir[];
74 extern struct task_struct *current_set[NR_CPUS];
76 unsigned long klimit = (unsigned long)_end;
78 unsigned long _SDR1=0;
79 unsigned long _ASR=0;
81 /* max amount of RAM to use */
82 unsigned long __max_memory;
84 /* info on what we think the IO hole is */
85 unsigned long io_hole_start;
86 unsigned long io_hole_size;
88 void show_mem(void)
90 unsigned long total = 0, reserved = 0;
91 unsigned long shared = 0, cached = 0;
92 struct page *page;
93 pg_data_t *pgdat;
94 unsigned long i;
96 printk("Mem-info:\n");
97 show_free_areas();
98 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
99 for_each_pgdat(pgdat) {
100 for (i = 0; i < pgdat->node_spanned_pages; i++) {
101 page = pgdat_page_nr(pgdat, i);
102 total++;
103 if (PageReserved(page))
104 reserved++;
105 else if (PageSwapCache(page))
106 cached++;
107 else if (page_count(page))
108 shared += page_count(page) - 1;
111 printk("%ld pages of RAM\n", total);
112 printk("%ld reserved pages\n", reserved);
113 printk("%ld pages shared\n", shared);
114 printk("%ld pages swap cached\n", cached);
117 #ifdef CONFIG_PPC_ISERIES
119 void __iomem *ioremap(unsigned long addr, unsigned long size)
121 return (void __iomem *)addr;
124 extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
125 unsigned long flags)
127 return (void __iomem *)addr;
130 void iounmap(volatile void __iomem *addr)
132 return;
135 #else
138 * map_io_page currently only called by __ioremap
139 * map_io_page adds an entry to the ioremap page table
140 * and adds an entry to the HPT, possibly bolting it
142 static int map_io_page(unsigned long ea, unsigned long pa, int flags)
144 pgd_t *pgdp;
145 pud_t *pudp;
146 pmd_t *pmdp;
147 pte_t *ptep;
148 unsigned long vsid;
150 if (mem_init_done) {
151 spin_lock(&init_mm.page_table_lock);
152 pgdp = pgd_offset_k(ea);
153 pudp = pud_alloc(&init_mm, pgdp, ea);
154 if (!pudp)
155 return -ENOMEM;
156 pmdp = pmd_alloc(&init_mm, pudp, ea);
157 if (!pmdp)
158 return -ENOMEM;
159 ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
160 if (!ptep)
161 return -ENOMEM;
162 pa = abs_to_phys(pa);
163 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
164 __pgprot(flags)));
165 spin_unlock(&init_mm.page_table_lock);
166 } else {
167 unsigned long va, vpn, hash, hpteg;
170 * If the mm subsystem is not fully up, we cannot create a
171 * linux page table entry for this mapping. Simply bolt an
172 * entry in the hardware page table.
174 vsid = get_kernel_vsid(ea);
175 va = (vsid << 28) | (ea & 0xFFFFFFF);
176 vpn = va >> PAGE_SHIFT;
178 hash = hpt_hash(vpn, 0);
180 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
182 /* Panic if a pte grpup is full */
183 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
184 HPTE_V_BOLTED,
185 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
186 == -1) {
187 panic("map_io_page: could not insert mapping");
190 return 0;
194 static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
195 unsigned long ea, unsigned long size,
196 unsigned long flags)
198 unsigned long i;
200 if ((flags & _PAGE_PRESENT) == 0)
201 flags |= pgprot_val(PAGE_KERNEL);
203 for (i = 0; i < size; i += PAGE_SIZE)
204 if (map_io_page(ea+i, pa+i, flags))
205 return NULL;
207 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
211 void __iomem *
212 ioremap(unsigned long addr, unsigned long size)
214 return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
217 void __iomem * __ioremap(unsigned long addr, unsigned long size,
218 unsigned long flags)
220 unsigned long pa, ea;
221 void __iomem *ret;
224 * Choose an address to map it to.
225 * Once the imalloc system is running, we use it.
226 * Before that, we map using addresses going
227 * up from ioremap_bot. imalloc will use
228 * the addresses from ioremap_bot through
229 * IMALLOC_END (0xE000001fffffffff)
232 pa = addr & PAGE_MASK;
233 size = PAGE_ALIGN(addr + size) - pa;
235 if (size == 0)
236 return NULL;
238 if (mem_init_done) {
239 struct vm_struct *area;
240 area = im_get_free_area(size);
241 if (area == NULL)
242 return NULL;
243 ea = (unsigned long)(area->addr);
244 ret = __ioremap_com(addr, pa, ea, size, flags);
245 if (!ret)
246 im_free(area->addr);
247 } else {
248 ea = ioremap_bot;
249 ret = __ioremap_com(addr, pa, ea, size, flags);
250 if (ret)
251 ioremap_bot += size;
253 return ret;
256 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
258 int __ioremap_explicit(unsigned long pa, unsigned long ea,
259 unsigned long size, unsigned long flags)
261 struct vm_struct *area;
262 void __iomem *ret;
264 /* For now, require page-aligned values for pa, ea, and size */
265 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
266 !IS_PAGE_ALIGNED(size)) {
267 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
268 return 1;
271 if (!mem_init_done) {
272 /* Two things to consider in this case:
273 * 1) No records will be kept (imalloc, etc) that the region
274 * has been remapped
275 * 2) It won't be easy to iounmap() the region later (because
276 * of 1)
279 } else {
280 area = im_get_area(ea, size,
281 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
282 if (area == NULL) {
283 /* Expected when PHB-dlpar is in play */
284 return 1;
286 if (ea != (unsigned long) area->addr) {
287 printk(KERN_ERR "unexpected addr return from "
288 "im_get_area\n");
289 return 1;
293 ret = __ioremap_com(pa, pa, ea, size, flags);
294 if (ret == NULL) {
295 printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
296 return 1;
298 if (ret != (void *) ea) {
299 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
300 return 1;
303 return 0;
307 * Unmap an IO region and remove it from imalloc'd list.
308 * Access to IO memory should be serialized by driver.
309 * This code is modeled after vmalloc code - unmap_vm_area()
311 * XXX what about calls before mem_init_done (ie python_countermeasures())
313 void iounmap(volatile void __iomem *token)
315 void *addr;
317 if (!mem_init_done)
318 return;
320 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
322 im_free(addr);
325 static int iounmap_subset_regions(unsigned long addr, unsigned long size)
327 struct vm_struct *area;
329 /* Check whether subsets of this region exist */
330 area = im_get_area(addr, size, IM_REGION_SUPERSET);
331 if (area == NULL)
332 return 1;
334 while (area) {
335 iounmap((void __iomem *) area->addr);
336 area = im_get_area(addr, size,
337 IM_REGION_SUPERSET);
340 return 0;
343 int iounmap_explicit(volatile void __iomem *start, unsigned long size)
345 struct vm_struct *area;
346 unsigned long addr;
347 int rc;
349 addr = (unsigned long __force) start & PAGE_MASK;
351 /* Verify that the region either exists or is a subset of an existing
352 * region. In the latter case, split the parent region to create
353 * the exact region
355 area = im_get_area(addr, size,
356 IM_REGION_EXISTS | IM_REGION_SUBSET);
357 if (area == NULL) {
358 /* Determine whether subset regions exist. If so, unmap */
359 rc = iounmap_subset_regions(addr, size);
360 if (rc) {
361 printk(KERN_ERR
362 "%s() cannot unmap nonexistent range 0x%lx\n",
363 __FUNCTION__, addr);
364 return 1;
366 } else {
367 iounmap((void __iomem *) area->addr);
370 * FIXME! This can't be right:
371 iounmap(area->addr);
372 * Maybe it should be "iounmap(area);"
374 return 0;
377 #endif
379 EXPORT_SYMBOL(ioremap);
380 EXPORT_SYMBOL(__ioremap);
381 EXPORT_SYMBOL(iounmap);
383 void free_initmem(void)
385 unsigned long addr;
387 addr = (unsigned long)__init_begin;
388 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
389 ClearPageReserved(virt_to_page(addr));
390 set_page_count(virt_to_page(addr), 1);
391 free_page(addr);
392 totalram_pages++;
394 printk ("Freeing unused kernel memory: %luk freed\n",
395 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
398 #ifdef CONFIG_BLK_DEV_INITRD
399 void free_initrd_mem(unsigned long start, unsigned long end)
401 if (start < end)
402 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
403 for (; start < end; start += PAGE_SIZE) {
404 ClearPageReserved(virt_to_page(start));
405 set_page_count(virt_to_page(start), 1);
406 free_page(start);
407 totalram_pages++;
410 #endif
412 static DEFINE_SPINLOCK(mmu_context_lock);
413 static DEFINE_IDR(mmu_context_idr);
415 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
417 int index;
418 int err;
420 #ifdef CONFIG_HUGETLB_PAGE
421 /* We leave htlb_segs as it was, but for a fork, we need to
422 * clear the huge_pgdir. */
423 mm->context.huge_pgdir = NULL;
424 #endif
426 again:
427 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
428 return -ENOMEM;
430 spin_lock(&mmu_context_lock);
431 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
432 spin_unlock(&mmu_context_lock);
434 if (err == -EAGAIN)
435 goto again;
436 else if (err)
437 return err;
439 if (index > MAX_CONTEXT) {
440 idr_remove(&mmu_context_idr, index);
441 return -ENOMEM;
444 mm->context.id = index;
446 return 0;
449 void destroy_context(struct mm_struct *mm)
451 spin_lock(&mmu_context_lock);
452 idr_remove(&mmu_context_idr, mm->context.id);
453 spin_unlock(&mmu_context_lock);
455 mm->context.id = NO_CONTEXT;
457 hugetlb_mm_free_pgd(mm);
461 * Do very early mm setup.
463 void __init mm_init_ppc64(void)
465 #ifndef CONFIG_PPC_ISERIES
466 unsigned long i;
467 #endif
469 ppc64_boot_msg(0x100, "MM Init");
471 /* This is the story of the IO hole... please, keep seated,
472 * unfortunately, we are out of oxygen masks at the moment.
473 * So we need some rough way to tell where your big IO hole
474 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
475 * that area as well, on POWER4 we don't have one, etc...
476 * We need that as a "hint" when sizing the TCE table on POWER3
477 * So far, the simplest way that seem work well enough for us it
478 * to just assume that the first discontinuity in our physical
479 * RAM layout is the IO hole. That may not be correct in the future
480 * (and isn't on iSeries but then we don't care ;)
483 #ifndef CONFIG_PPC_ISERIES
484 for (i = 1; i < lmb.memory.cnt; i++) {
485 unsigned long base, prevbase, prevsize;
487 prevbase = lmb.memory.region[i-1].physbase;
488 prevsize = lmb.memory.region[i-1].size;
489 base = lmb.memory.region[i].physbase;
490 if (base > (prevbase + prevsize)) {
491 io_hole_start = prevbase + prevsize;
492 io_hole_size = base - (prevbase + prevsize);
493 break;
496 #endif /* CONFIG_PPC_ISERIES */
497 if (io_hole_start)
498 printk("IO Hole assumed to be %lx -> %lx\n",
499 io_hole_start, io_hole_start + io_hole_size - 1);
501 ppc64_boot_msg(0x100, "MM Init Done");
505 * This is called by /dev/mem to know if a given address has to
506 * be mapped non-cacheable or not
508 int page_is_ram(unsigned long pfn)
510 int i;
511 unsigned long paddr = (pfn << PAGE_SHIFT);
513 for (i=0; i < lmb.memory.cnt; i++) {
514 unsigned long base;
516 #ifdef CONFIG_MSCHUNKS
517 base = lmb.memory.region[i].physbase;
518 #else
519 base = lmb.memory.region[i].base;
520 #endif
521 if ((paddr >= base) &&
522 (paddr < (base + lmb.memory.region[i].size))) {
523 return 1;
527 return 0;
529 EXPORT_SYMBOL(page_is_ram);
532 * Initialize the bootmem system and give it all the memory we
533 * have available.
535 #ifndef CONFIG_NEED_MULTIPLE_NODES
536 void __init do_init_bootmem(void)
538 unsigned long i;
539 unsigned long start, bootmap_pages;
540 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
541 int boot_mapsize;
544 * Find an area to use for the bootmem bitmap. Calculate the size of
545 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
546 * Add 1 additional page in case the address isn't page-aligned.
548 bootmap_pages = bootmem_bootmap_pages(total_pages);
550 start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
551 BUG_ON(!start);
553 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
555 max_pfn = max_low_pfn;
557 /* Add all physical memory to the bootmem map, mark each area
558 * present.
560 for (i=0; i < lmb.memory.cnt; i++) {
561 unsigned long physbase, size;
562 unsigned long start_pfn, end_pfn;
564 physbase = lmb.memory.region[i].physbase;
565 size = lmb.memory.region[i].size;
567 start_pfn = physbase >> PAGE_SHIFT;
568 end_pfn = start_pfn + (size >> PAGE_SHIFT);
569 memory_present(0, start_pfn, end_pfn);
571 free_bootmem(physbase, size);
574 /* reserve the sections we're already using */
575 for (i=0; i < lmb.reserved.cnt; i++) {
576 unsigned long physbase = lmb.reserved.region[i].physbase;
577 unsigned long size = lmb.reserved.region[i].size;
579 reserve_bootmem(physbase, size);
584 * paging_init() sets up the page tables - in fact we've already done this.
586 void __init paging_init(void)
588 unsigned long zones_size[MAX_NR_ZONES];
589 unsigned long zholes_size[MAX_NR_ZONES];
590 unsigned long total_ram = lmb_phys_mem_size();
591 unsigned long top_of_ram = lmb_end_of_DRAM();
593 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
594 top_of_ram, total_ram);
595 printk(KERN_INFO "Memory hole size: %ldMB\n",
596 (top_of_ram - total_ram) >> 20);
598 * All pages are DMA-able so we put them all in the DMA zone.
600 memset(zones_size, 0, sizeof(zones_size));
601 memset(zholes_size, 0, sizeof(zholes_size));
603 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
604 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
606 free_area_init_node(0, NODE_DATA(0), zones_size,
607 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
609 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
611 static struct kcore_list kcore_vmem;
613 static int __init setup_kcore(void)
615 int i;
617 for (i=0; i < lmb.memory.cnt; i++) {
618 unsigned long physbase, size;
619 struct kcore_list *kcore_mem;
621 physbase = lmb.memory.region[i].physbase;
622 size = lmb.memory.region[i].size;
624 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
625 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
626 if (!kcore_mem)
627 panic("mem_init: kmalloc failed\n");
629 kclist_add(kcore_mem, __va(physbase), size);
632 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
634 return 0;
636 module_init(setup_kcore);
638 void __init mem_init(void)
640 #ifdef CONFIG_NEED_MULTIPLE_NODES
641 int nid;
642 #endif
643 pg_data_t *pgdat;
644 unsigned long i;
645 struct page *page;
646 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
648 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
649 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
651 #ifdef CONFIG_NEED_MULTIPLE_NODES
652 for_each_online_node(nid) {
653 if (NODE_DATA(nid)->node_spanned_pages != 0) {
654 printk("freeing bootmem node %x\n", nid);
655 totalram_pages +=
656 free_all_bootmem_node(NODE_DATA(nid));
659 #else
660 max_mapnr = num_physpages;
661 totalram_pages += free_all_bootmem();
662 #endif
664 for_each_pgdat(pgdat) {
665 for (i = 0; i < pgdat->node_spanned_pages; i++) {
666 page = pgdat_page_nr(pgdat, i);
667 if (PageReserved(page))
668 reservedpages++;
672 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
673 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
674 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
675 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
677 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
678 "%luk reserved, %luk data, %luk bss, %luk init)\n",
679 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
680 num_physpages << (PAGE_SHIFT-10),
681 codesize >> 10,
682 reservedpages << (PAGE_SHIFT-10),
683 datasize >> 10,
684 bsssize >> 10,
685 initsize >> 10);
687 mem_init_done = 1;
689 #ifdef CONFIG_PPC_ISERIES
690 iommu_vio_init();
691 #endif
692 /* Initialize the vDSO */
693 vdso_init();
697 * This is called when a page has been modified by the kernel.
698 * It just marks the page as not i-cache clean. We do the i-cache
699 * flush later when the page is given to a user process, if necessary.
701 void flush_dcache_page(struct page *page)
703 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
704 return;
705 /* avoid an atomic op if possible */
706 if (test_bit(PG_arch_1, &page->flags))
707 clear_bit(PG_arch_1, &page->flags);
709 EXPORT_SYMBOL(flush_dcache_page);
711 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
713 clear_page(page);
715 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
716 return;
718 * We shouldnt have to do this, but some versions of glibc
719 * require it (ld.so assumes zero filled pages are icache clean)
720 * - Anton
723 /* avoid an atomic op if possible */
724 if (test_bit(PG_arch_1, &pg->flags))
725 clear_bit(PG_arch_1, &pg->flags);
727 EXPORT_SYMBOL(clear_user_page);
729 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
730 struct page *pg)
732 copy_page(vto, vfrom);
735 * We should be able to use the following optimisation, however
736 * there are two problems.
737 * Firstly a bug in some versions of binutils meant PLT sections
738 * were not marked executable.
739 * Secondly the first word in the GOT section is blrl, used
740 * to establish the GOT address. Until recently the GOT was
741 * not marked executable.
742 * - Anton
744 #if 0
745 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
746 return;
747 #endif
749 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
750 return;
752 /* avoid an atomic op if possible */
753 if (test_bit(PG_arch_1, &pg->flags))
754 clear_bit(PG_arch_1, &pg->flags);
757 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
758 unsigned long addr, int len)
760 unsigned long maddr;
762 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
763 flush_icache_range(maddr, maddr + len);
765 EXPORT_SYMBOL(flush_icache_user_range);
768 * This is called at the end of handling a user page fault, when the
769 * fault has been handled by updating a PTE in the linux page tables.
770 * We use it to preload an HPTE into the hash table corresponding to
771 * the updated linux PTE.
773 * This must always be called with the mm->page_table_lock held
775 void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
776 pte_t pte)
778 unsigned long vsid;
779 void *pgdir;
780 pte_t *ptep;
781 int local = 0;
782 cpumask_t tmp;
783 unsigned long flags;
785 /* handle i-cache coherency */
786 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
787 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
788 unsigned long pfn = pte_pfn(pte);
789 if (pfn_valid(pfn)) {
790 struct page *page = pfn_to_page(pfn);
791 if (!PageReserved(page)
792 && !test_bit(PG_arch_1, &page->flags)) {
793 __flush_dcache_icache(page_address(page));
794 set_bit(PG_arch_1, &page->flags);
799 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
800 if (!pte_young(pte))
801 return;
803 pgdir = vma->vm_mm->pgd;
804 if (pgdir == NULL)
805 return;
807 ptep = find_linux_pte(pgdir, ea);
808 if (!ptep)
809 return;
811 vsid = get_vsid(vma->vm_mm->context.id, ea);
813 local_irq_save(flags);
814 tmp = cpumask_of_cpu(smp_processor_id());
815 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
816 local = 1;
818 __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
819 0x300, local);
820 local_irq_restore(flags);
823 void __iomem * reserve_phb_iospace(unsigned long size)
825 void __iomem *virt_addr;
827 if (phbs_io_bot >= IMALLOC_BASE)
828 panic("reserve_phb_iospace(): phb io space overflow\n");
830 virt_addr = (void __iomem *) phbs_io_bot;
831 phbs_io_bot += size;
833 return virt_addr;
836 kmem_cache_t *zero_cache;
838 static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
840 memset(pte, 0, PAGE_SIZE);
843 void pgtable_cache_init(void)
845 zero_cache = kmem_cache_create("zero",
846 PAGE_SIZE,
848 SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
849 zero_ctor,
850 NULL);
851 if (!zero_cache)
852 panic("pgtable_cache_init(): could not create zero_cache!\n");
855 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
856 unsigned long size, pgprot_t vma_prot)
858 if (ppc_md.phys_mem_access_prot)
859 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
861 if (!page_is_ram(addr >> PAGE_SHIFT))
862 vma_prot = __pgprot(pgprot_val(vma_prot)
863 | _PAGE_GUARDED | _PAGE_NO_CACHE);
864 return vma_prot;
866 EXPORT_SYMBOL(phys_mem_access_prot);