3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
45 #include <asm/abs_addr.h>
50 #include <asm/mmu_context.h>
51 #include <asm/pgtable.h>
53 #include <asm/uaccess.h>
55 #include <asm/machdep.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/ppcdebug.h>
62 #include <asm/sections.h>
63 #include <asm/system.h>
64 #include <asm/iommu.h>
65 #include <asm/abs_addr.h>
67 #include <asm/imalloc.h>
70 unsigned long ioremap_bot
= IMALLOC_BASE
;
71 static unsigned long phbs_io_bot
= PHBS_IO_BASE
;
73 extern pgd_t swapper_pg_dir
[];
74 extern struct task_struct
*current_set
[NR_CPUS
];
76 unsigned long klimit
= (unsigned long)_end
;
78 unsigned long _SDR1
=0;
81 /* max amount of RAM to use */
82 unsigned long __max_memory
;
84 /* info on what we think the IO hole is */
85 unsigned long io_hole_start
;
86 unsigned long io_hole_size
;
90 unsigned long total
= 0, reserved
= 0;
91 unsigned long shared
= 0, cached
= 0;
96 printk("Mem-info:\n");
98 printk("Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
99 for_each_pgdat(pgdat
) {
100 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
101 page
= pgdat_page_nr(pgdat
, i
);
103 if (PageReserved(page
))
105 else if (PageSwapCache(page
))
107 else if (page_count(page
))
108 shared
+= page_count(page
) - 1;
111 printk("%ld pages of RAM\n", total
);
112 printk("%ld reserved pages\n", reserved
);
113 printk("%ld pages shared\n", shared
);
114 printk("%ld pages swap cached\n", cached
);
117 #ifdef CONFIG_PPC_ISERIES
119 void __iomem
*ioremap(unsigned long addr
, unsigned long size
)
121 return (void __iomem
*)addr
;
124 extern void __iomem
*__ioremap(unsigned long addr
, unsigned long size
,
127 return (void __iomem
*)addr
;
130 void iounmap(volatile void __iomem
*addr
)
138 * map_io_page currently only called by __ioremap
139 * map_io_page adds an entry to the ioremap page table
140 * and adds an entry to the HPT, possibly bolting it
142 static int map_io_page(unsigned long ea
, unsigned long pa
, int flags
)
151 spin_lock(&init_mm
.page_table_lock
);
152 pgdp
= pgd_offset_k(ea
);
153 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
156 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
159 ptep
= pte_alloc_kernel(&init_mm
, pmdp
, ea
);
162 pa
= abs_to_phys(pa
);
163 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
165 spin_unlock(&init_mm
.page_table_lock
);
167 unsigned long va
, vpn
, hash
, hpteg
;
170 * If the mm subsystem is not fully up, we cannot create a
171 * linux page table entry for this mapping. Simply bolt an
172 * entry in the hardware page table.
174 vsid
= get_kernel_vsid(ea
);
175 va
= (vsid
<< 28) | (ea
& 0xFFFFFFF);
176 vpn
= va
>> PAGE_SHIFT
;
178 hash
= hpt_hash(vpn
, 0);
180 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
182 /* Panic if a pte grpup is full */
183 if (ppc_md
.hpte_insert(hpteg
, va
, pa
>> PAGE_SHIFT
,
185 _PAGE_NO_CACHE
|_PAGE_GUARDED
|PP_RWXX
)
187 panic("map_io_page: could not insert mapping");
194 static void __iomem
* __ioremap_com(unsigned long addr
, unsigned long pa
,
195 unsigned long ea
, unsigned long size
,
200 if ((flags
& _PAGE_PRESENT
) == 0)
201 flags
|= pgprot_val(PAGE_KERNEL
);
203 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
204 if (map_io_page(ea
+i
, pa
+i
, flags
))
207 return (void __iomem
*) (ea
+ (addr
& ~PAGE_MASK
));
212 ioremap(unsigned long addr
, unsigned long size
)
214 return __ioremap(addr
, size
, _PAGE_NO_CACHE
| _PAGE_GUARDED
);
217 void __iomem
* __ioremap(unsigned long addr
, unsigned long size
,
220 unsigned long pa
, ea
;
224 * Choose an address to map it to.
225 * Once the imalloc system is running, we use it.
226 * Before that, we map using addresses going
227 * up from ioremap_bot. imalloc will use
228 * the addresses from ioremap_bot through
229 * IMALLOC_END (0xE000001fffffffff)
232 pa
= addr
& PAGE_MASK
;
233 size
= PAGE_ALIGN(addr
+ size
) - pa
;
239 struct vm_struct
*area
;
240 area
= im_get_free_area(size
);
243 ea
= (unsigned long)(area
->addr
);
244 ret
= __ioremap_com(addr
, pa
, ea
, size
, flags
);
249 ret
= __ioremap_com(addr
, pa
, ea
, size
, flags
);
256 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
258 int __ioremap_explicit(unsigned long pa
, unsigned long ea
,
259 unsigned long size
, unsigned long flags
)
261 struct vm_struct
*area
;
264 /* For now, require page-aligned values for pa, ea, and size */
265 if (!IS_PAGE_ALIGNED(pa
) || !IS_PAGE_ALIGNED(ea
) ||
266 !IS_PAGE_ALIGNED(size
)) {
267 printk(KERN_ERR
"unaligned value in %s\n", __FUNCTION__
);
271 if (!mem_init_done
) {
272 /* Two things to consider in this case:
273 * 1) No records will be kept (imalloc, etc) that the region
275 * 2) It won't be easy to iounmap() the region later (because
280 area
= im_get_area(ea
, size
,
281 IM_REGION_UNUSED
|IM_REGION_SUBSET
|IM_REGION_EXISTS
);
283 /* Expected when PHB-dlpar is in play */
286 if (ea
!= (unsigned long) area
->addr
) {
287 printk(KERN_ERR
"unexpected addr return from "
293 ret
= __ioremap_com(pa
, pa
, ea
, size
, flags
);
295 printk(KERN_ERR
"ioremap_explicit() allocation failure !\n");
298 if (ret
!= (void *) ea
) {
299 printk(KERN_ERR
"__ioremap_com() returned unexpected addr\n");
307 * Unmap an IO region and remove it from imalloc'd list.
308 * Access to IO memory should be serialized by driver.
309 * This code is modeled after vmalloc code - unmap_vm_area()
311 * XXX what about calls before mem_init_done (ie python_countermeasures())
313 void iounmap(volatile void __iomem
*token
)
320 addr
= (void *) ((unsigned long __force
) token
& PAGE_MASK
);
325 static int iounmap_subset_regions(unsigned long addr
, unsigned long size
)
327 struct vm_struct
*area
;
329 /* Check whether subsets of this region exist */
330 area
= im_get_area(addr
, size
, IM_REGION_SUPERSET
);
335 iounmap((void __iomem
*) area
->addr
);
336 area
= im_get_area(addr
, size
,
343 int iounmap_explicit(volatile void __iomem
*start
, unsigned long size
)
345 struct vm_struct
*area
;
349 addr
= (unsigned long __force
) start
& PAGE_MASK
;
351 /* Verify that the region either exists or is a subset of an existing
352 * region. In the latter case, split the parent region to create
355 area
= im_get_area(addr
, size
,
356 IM_REGION_EXISTS
| IM_REGION_SUBSET
);
358 /* Determine whether subset regions exist. If so, unmap */
359 rc
= iounmap_subset_regions(addr
, size
);
362 "%s() cannot unmap nonexistent range 0x%lx\n",
367 iounmap((void __iomem
*) area
->addr
);
370 * FIXME! This can't be right:
372 * Maybe it should be "iounmap(area);"
379 EXPORT_SYMBOL(ioremap
);
380 EXPORT_SYMBOL(__ioremap
);
381 EXPORT_SYMBOL(iounmap
);
383 void free_initmem(void)
387 addr
= (unsigned long)__init_begin
;
388 for (; addr
< (unsigned long)__init_end
; addr
+= PAGE_SIZE
) {
389 ClearPageReserved(virt_to_page(addr
));
390 set_page_count(virt_to_page(addr
), 1);
394 printk ("Freeing unused kernel memory: %luk freed\n",
395 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10);
398 #ifdef CONFIG_BLK_DEV_INITRD
399 void free_initrd_mem(unsigned long start
, unsigned long end
)
402 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
403 for (; start
< end
; start
+= PAGE_SIZE
) {
404 ClearPageReserved(virt_to_page(start
));
405 set_page_count(virt_to_page(start
), 1);
412 static DEFINE_SPINLOCK(mmu_context_lock
);
413 static DEFINE_IDR(mmu_context_idr
);
415 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
420 #ifdef CONFIG_HUGETLB_PAGE
421 /* We leave htlb_segs as it was, but for a fork, we need to
422 * clear the huge_pgdir. */
423 mm
->context
.huge_pgdir
= NULL
;
427 if (!idr_pre_get(&mmu_context_idr
, GFP_KERNEL
))
430 spin_lock(&mmu_context_lock
);
431 err
= idr_get_new_above(&mmu_context_idr
, NULL
, 1, &index
);
432 spin_unlock(&mmu_context_lock
);
439 if (index
> MAX_CONTEXT
) {
440 idr_remove(&mmu_context_idr
, index
);
444 mm
->context
.id
= index
;
449 void destroy_context(struct mm_struct
*mm
)
451 spin_lock(&mmu_context_lock
);
452 idr_remove(&mmu_context_idr
, mm
->context
.id
);
453 spin_unlock(&mmu_context_lock
);
455 mm
->context
.id
= NO_CONTEXT
;
457 hugetlb_mm_free_pgd(mm
);
461 * Do very early mm setup.
463 void __init
mm_init_ppc64(void)
465 #ifndef CONFIG_PPC_ISERIES
469 ppc64_boot_msg(0x100, "MM Init");
471 /* This is the story of the IO hole... please, keep seated,
472 * unfortunately, we are out of oxygen masks at the moment.
473 * So we need some rough way to tell where your big IO hole
474 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
475 * that area as well, on POWER4 we don't have one, etc...
476 * We need that as a "hint" when sizing the TCE table on POWER3
477 * So far, the simplest way that seem work well enough for us it
478 * to just assume that the first discontinuity in our physical
479 * RAM layout is the IO hole. That may not be correct in the future
480 * (and isn't on iSeries but then we don't care ;)
483 #ifndef CONFIG_PPC_ISERIES
484 for (i
= 1; i
< lmb
.memory
.cnt
; i
++) {
485 unsigned long base
, prevbase
, prevsize
;
487 prevbase
= lmb
.memory
.region
[i
-1].physbase
;
488 prevsize
= lmb
.memory
.region
[i
-1].size
;
489 base
= lmb
.memory
.region
[i
].physbase
;
490 if (base
> (prevbase
+ prevsize
)) {
491 io_hole_start
= prevbase
+ prevsize
;
492 io_hole_size
= base
- (prevbase
+ prevsize
);
496 #endif /* CONFIG_PPC_ISERIES */
498 printk("IO Hole assumed to be %lx -> %lx\n",
499 io_hole_start
, io_hole_start
+ io_hole_size
- 1);
501 ppc64_boot_msg(0x100, "MM Init Done");
505 * This is called by /dev/mem to know if a given address has to
506 * be mapped non-cacheable or not
508 int page_is_ram(unsigned long pfn
)
511 unsigned long paddr
= (pfn
<< PAGE_SHIFT
);
513 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
516 #ifdef CONFIG_MSCHUNKS
517 base
= lmb
.memory
.region
[i
].physbase
;
519 base
= lmb
.memory
.region
[i
].base
;
521 if ((paddr
>= base
) &&
522 (paddr
< (base
+ lmb
.memory
.region
[i
].size
))) {
529 EXPORT_SYMBOL(page_is_ram
);
532 * Initialize the bootmem system and give it all the memory we
535 #ifndef CONFIG_NEED_MULTIPLE_NODES
536 void __init
do_init_bootmem(void)
539 unsigned long start
, bootmap_pages
;
540 unsigned long total_pages
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
544 * Find an area to use for the bootmem bitmap. Calculate the size of
545 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
546 * Add 1 additional page in case the address isn't page-aligned.
548 bootmap_pages
= bootmem_bootmap_pages(total_pages
);
550 start
= abs_to_phys(lmb_alloc(bootmap_pages
<<PAGE_SHIFT
, PAGE_SIZE
));
553 boot_mapsize
= init_bootmem(start
>> PAGE_SHIFT
, total_pages
);
555 max_pfn
= max_low_pfn
;
557 /* Add all physical memory to the bootmem map, mark each area
560 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
561 unsigned long physbase
, size
;
562 unsigned long start_pfn
, end_pfn
;
564 physbase
= lmb
.memory
.region
[i
].physbase
;
565 size
= lmb
.memory
.region
[i
].size
;
567 start_pfn
= physbase
>> PAGE_SHIFT
;
568 end_pfn
= start_pfn
+ (size
>> PAGE_SHIFT
);
569 memory_present(0, start_pfn
, end_pfn
);
571 free_bootmem(physbase
, size
);
574 /* reserve the sections we're already using */
575 for (i
=0; i
< lmb
.reserved
.cnt
; i
++) {
576 unsigned long physbase
= lmb
.reserved
.region
[i
].physbase
;
577 unsigned long size
= lmb
.reserved
.region
[i
].size
;
579 reserve_bootmem(physbase
, size
);
584 * paging_init() sets up the page tables - in fact we've already done this.
586 void __init
paging_init(void)
588 unsigned long zones_size
[MAX_NR_ZONES
];
589 unsigned long zholes_size
[MAX_NR_ZONES
];
590 unsigned long total_ram
= lmb_phys_mem_size();
591 unsigned long top_of_ram
= lmb_end_of_DRAM();
593 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
594 top_of_ram
, total_ram
);
595 printk(KERN_INFO
"Memory hole size: %ldMB\n",
596 (top_of_ram
- total_ram
) >> 20);
598 * All pages are DMA-able so we put them all in the DMA zone.
600 memset(zones_size
, 0, sizeof(zones_size
));
601 memset(zholes_size
, 0, sizeof(zholes_size
));
603 zones_size
[ZONE_DMA
] = top_of_ram
>> PAGE_SHIFT
;
604 zholes_size
[ZONE_DMA
] = (top_of_ram
- total_ram
) >> PAGE_SHIFT
;
606 free_area_init_node(0, NODE_DATA(0), zones_size
,
607 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, zholes_size
);
609 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
611 static struct kcore_list kcore_vmem
;
613 static int __init
setup_kcore(void)
617 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
618 unsigned long physbase
, size
;
619 struct kcore_list
*kcore_mem
;
621 physbase
= lmb
.memory
.region
[i
].physbase
;
622 size
= lmb
.memory
.region
[i
].size
;
624 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
625 kcore_mem
= kmalloc(sizeof(struct kcore_list
), GFP_ATOMIC
);
627 panic("mem_init: kmalloc failed\n");
629 kclist_add(kcore_mem
, __va(physbase
), size
);
632 kclist_add(&kcore_vmem
, (void *)VMALLOC_START
, VMALLOC_END
-VMALLOC_START
);
636 module_init(setup_kcore
);
638 void __init
mem_init(void)
640 #ifdef CONFIG_NEED_MULTIPLE_NODES
646 unsigned long reservedpages
= 0, codesize
, initsize
, datasize
, bsssize
;
648 num_physpages
= max_low_pfn
; /* RAM is assumed contiguous */
649 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
);
651 #ifdef CONFIG_NEED_MULTIPLE_NODES
652 for_each_online_node(nid
) {
653 if (NODE_DATA(nid
)->node_spanned_pages
!= 0) {
654 printk("freeing bootmem node %x\n", nid
);
656 free_all_bootmem_node(NODE_DATA(nid
));
660 max_mapnr
= num_physpages
;
661 totalram_pages
+= free_all_bootmem();
664 for_each_pgdat(pgdat
) {
665 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
666 page
= pgdat_page_nr(pgdat
, i
);
667 if (PageReserved(page
))
672 codesize
= (unsigned long)&_etext
- (unsigned long)&_stext
;
673 initsize
= (unsigned long)&__init_end
- (unsigned long)&__init_begin
;
674 datasize
= (unsigned long)&_edata
- (unsigned long)&__init_end
;
675 bsssize
= (unsigned long)&__bss_stop
- (unsigned long)&__bss_start
;
677 printk(KERN_INFO
"Memory: %luk/%luk available (%luk kernel code, "
678 "%luk reserved, %luk data, %luk bss, %luk init)\n",
679 (unsigned long)nr_free_pages() << (PAGE_SHIFT
-10),
680 num_physpages
<< (PAGE_SHIFT
-10),
682 reservedpages
<< (PAGE_SHIFT
-10),
689 #ifdef CONFIG_PPC_ISERIES
692 /* Initialize the vDSO */
697 * This is called when a page has been modified by the kernel.
698 * It just marks the page as not i-cache clean. We do the i-cache
699 * flush later when the page is given to a user process, if necessary.
701 void flush_dcache_page(struct page
*page
)
703 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
705 /* avoid an atomic op if possible */
706 if (test_bit(PG_arch_1
, &page
->flags
))
707 clear_bit(PG_arch_1
, &page
->flags
);
709 EXPORT_SYMBOL(flush_dcache_page
);
711 void clear_user_page(void *page
, unsigned long vaddr
, struct page
*pg
)
715 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
718 * We shouldnt have to do this, but some versions of glibc
719 * require it (ld.so assumes zero filled pages are icache clean)
723 /* avoid an atomic op if possible */
724 if (test_bit(PG_arch_1
, &pg
->flags
))
725 clear_bit(PG_arch_1
, &pg
->flags
);
727 EXPORT_SYMBOL(clear_user_page
);
729 void copy_user_page(void *vto
, void *vfrom
, unsigned long vaddr
,
732 copy_page(vto
, vfrom
);
735 * We should be able to use the following optimisation, however
736 * there are two problems.
737 * Firstly a bug in some versions of binutils meant PLT sections
738 * were not marked executable.
739 * Secondly the first word in the GOT section is blrl, used
740 * to establish the GOT address. Until recently the GOT was
741 * not marked executable.
745 if (!vma
->vm_file
&& ((vma
->vm_flags
& VM_EXEC
) == 0))
749 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
752 /* avoid an atomic op if possible */
753 if (test_bit(PG_arch_1
, &pg
->flags
))
754 clear_bit(PG_arch_1
, &pg
->flags
);
757 void flush_icache_user_range(struct vm_area_struct
*vma
, struct page
*page
,
758 unsigned long addr
, int len
)
762 maddr
= (unsigned long)page_address(page
) + (addr
& ~PAGE_MASK
);
763 flush_icache_range(maddr
, maddr
+ len
);
765 EXPORT_SYMBOL(flush_icache_user_range
);
768 * This is called at the end of handling a user page fault, when the
769 * fault has been handled by updating a PTE in the linux page tables.
770 * We use it to preload an HPTE into the hash table corresponding to
771 * the updated linux PTE.
773 * This must always be called with the mm->page_table_lock held
775 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long ea
,
785 /* handle i-cache coherency */
786 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
) &&
787 !cpu_has_feature(CPU_FTR_NOEXECUTE
)) {
788 unsigned long pfn
= pte_pfn(pte
);
789 if (pfn_valid(pfn
)) {
790 struct page
*page
= pfn_to_page(pfn
);
791 if (!PageReserved(page
)
792 && !test_bit(PG_arch_1
, &page
->flags
)) {
793 __flush_dcache_icache(page_address(page
));
794 set_bit(PG_arch_1
, &page
->flags
);
799 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
803 pgdir
= vma
->vm_mm
->pgd
;
807 ptep
= find_linux_pte(pgdir
, ea
);
811 vsid
= get_vsid(vma
->vm_mm
->context
.id
, ea
);
813 local_irq_save(flags
);
814 tmp
= cpumask_of_cpu(smp_processor_id());
815 if (cpus_equal(vma
->vm_mm
->cpu_vm_mask
, tmp
))
818 __hash_page(ea
, pte_val(pte
) & (_PAGE_USER
|_PAGE_RW
), vsid
, ptep
,
820 local_irq_restore(flags
);
823 void __iomem
* reserve_phb_iospace(unsigned long size
)
825 void __iomem
*virt_addr
;
827 if (phbs_io_bot
>= IMALLOC_BASE
)
828 panic("reserve_phb_iospace(): phb io space overflow\n");
830 virt_addr
= (void __iomem
*) phbs_io_bot
;
836 kmem_cache_t
*zero_cache
;
838 static void zero_ctor(void *pte
, kmem_cache_t
*cache
, unsigned long flags
)
840 memset(pte
, 0, PAGE_SIZE
);
843 void pgtable_cache_init(void)
845 zero_cache
= kmem_cache_create("zero",
848 SLAB_HWCACHE_ALIGN
| SLAB_MUST_HWCACHE_ALIGN
,
852 panic("pgtable_cache_init(): could not create zero_cache!\n");
855 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long addr
,
856 unsigned long size
, pgprot_t vma_prot
)
858 if (ppc_md
.phys_mem_access_prot
)
859 return ppc_md
.phys_mem_access_prot(file
, addr
, size
, vma_prot
);
861 if (!page_is_ram(addr
>> PAGE_SHIFT
))
862 vma_prot
= __pgprot(pgprot_val(vma_prot
)
863 | _PAGE_GUARDED
| _PAGE_NO_CACHE
);
866 EXPORT_SYMBOL(phys_mem_access_prot
);