[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / arch / powerpc / mm / fault.c
bloba4815d316722cddcf9c614b4524f57238f7a4c9f
1 /*
2 * arch/ppc/mm/fault.c
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * Modified by Cort Dougan and Paul Mackerras.
12 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/system.h>
40 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/kdebug.h>
43 #include <asm/siginfo.h>
46 * Check whether the instruction at regs->nip is a store using
47 * an update addressing form which will update r1.
49 static int store_updates_sp(struct pt_regs *regs)
51 unsigned int inst;
53 if (get_user(inst, (unsigned int __user *)regs->nip))
54 return 0;
55 /* check for 1 in the rA field */
56 if (((inst >> 16) & 0x1f) != 1)
57 return 0;
58 /* check major opcode */
59 switch (inst >> 26) {
60 case 37: /* stwu */
61 case 39: /* stbu */
62 case 45: /* sthu */
63 case 53: /* stfsu */
64 case 55: /* stfdu */
65 return 1;
66 case 62: /* std or stdu */
67 return (inst & 3) == 1;
68 case 31:
69 /* check minor opcode */
70 switch ((inst >> 1) & 0x3ff) {
71 case 181: /* stdux */
72 case 183: /* stwux */
73 case 247: /* stbux */
74 case 439: /* sthux */
75 case 695: /* stfsux */
76 case 759: /* stfdux */
77 return 1;
80 return 0;
83 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
84 static void do_dabr(struct pt_regs *regs, unsigned long address,
85 unsigned long error_code)
87 siginfo_t info;
89 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
90 11, SIGSEGV) == NOTIFY_STOP)
91 return;
93 if (debugger_dabr_match(regs))
94 return;
96 /* Clear the DABR */
97 set_dabr(0);
99 /* Deliver the signal to userspace */
100 info.si_signo = SIGTRAP;
101 info.si_errno = 0;
102 info.si_code = TRAP_HWBKPT;
103 info.si_addr = (void __user *)address;
104 force_sig_info(SIGTRAP, &info, current);
106 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
109 * For 600- and 800-family processors, the error_code parameter is DSISR
110 * for a data fault, SRR1 for an instruction fault. For 400-family processors
111 * the error_code parameter is ESR for a data fault, 0 for an instruction
112 * fault.
113 * For 64-bit processors, the error_code parameter is
114 * - DSISR for a non-SLB data access fault,
115 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
116 * - 0 any SLB fault.
118 * The return value is 0 if the fault was handled, or the signal
119 * number if this is a kernel fault that can't be handled here.
121 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
122 unsigned long error_code)
124 struct vm_area_struct * vma;
125 struct mm_struct *mm = current->mm;
126 siginfo_t info;
127 int code = SEGV_MAPERR;
128 int is_write = 0;
129 int trap = TRAP(regs);
130 int is_exec = trap == 0x400;
132 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
134 * Fortunately the bit assignments in SRR1 for an instruction
135 * fault and DSISR for a data fault are mostly the same for the
136 * bits we are interested in. But there are some bits which
137 * indicate errors in DSISR but can validly be set in SRR1.
139 if (trap == 0x400)
140 error_code &= 0x48200000;
141 else
142 is_write = error_code & DSISR_ISSTORE;
143 #else
144 is_write = error_code & ESR_DST;
145 #endif /* CONFIG_4xx || CONFIG_BOOKE */
147 if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
148 11, SIGSEGV) == NOTIFY_STOP)
149 return 0;
151 if (trap == 0x300) {
152 if (debugger_fault_handler(regs))
153 return 0;
156 /* On a kernel SLB miss we can only check for a valid exception entry */
157 if (!user_mode(regs) && (address >= TASK_SIZE))
158 return SIGSEGV;
160 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
161 if (error_code & DSISR_DABRMATCH) {
162 /* DABR match */
163 do_dabr(regs, address, error_code);
164 return 0;
166 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
168 if (in_atomic() || mm == NULL) {
169 if (!user_mode(regs))
170 return SIGSEGV;
171 /* in_atomic() in user mode is really bad,
172 as is current->mm == NULL. */
173 printk(KERN_EMERG "Page fault in user mode with"
174 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
175 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
176 regs->nip, regs->msr);
177 die("Weird page fault", regs, SIGSEGV);
180 /* When running in the kernel we expect faults to occur only to
181 * addresses in user space. All other faults represent errors in the
182 * kernel and should generate an OOPS. Unfortunatly, in the case of an
183 * erroneous fault occuring in a code path which already holds mmap_sem
184 * we will deadlock attempting to validate the fault against the
185 * address space. Luckily the kernel only validly references user
186 * space from well defined areas of code, which are listed in the
187 * exceptions table.
189 * As the vast majority of faults will be valid we will only perform
190 * the source reference check when there is a possibilty of a deadlock.
191 * Attempt to lock the address space, if we cannot we then validate the
192 * source. If this is invalid we can skip the address space check,
193 * thus avoiding the deadlock.
195 if (!down_read_trylock(&mm->mmap_sem)) {
196 if (!user_mode(regs) && !search_exception_tables(regs->nip))
197 goto bad_area_nosemaphore;
199 down_read(&mm->mmap_sem);
202 vma = find_vma(mm, address);
203 if (!vma)
204 goto bad_area;
205 if (vma->vm_start <= address)
206 goto good_area;
207 if (!(vma->vm_flags & VM_GROWSDOWN))
208 goto bad_area;
211 * N.B. The POWER/Open ABI allows programs to access up to
212 * 288 bytes below the stack pointer.
213 * The kernel signal delivery code writes up to about 1.5kB
214 * below the stack pointer (r1) before decrementing it.
215 * The exec code can write slightly over 640kB to the stack
216 * before setting the user r1. Thus we allow the stack to
217 * expand to 1MB without further checks.
219 if (address + 0x100000 < vma->vm_end) {
220 /* get user regs even if this fault is in kernel mode */
221 struct pt_regs *uregs = current->thread.regs;
222 if (uregs == NULL)
223 goto bad_area;
226 * A user-mode access to an address a long way below
227 * the stack pointer is only valid if the instruction
228 * is one which would update the stack pointer to the
229 * address accessed if the instruction completed,
230 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
231 * (or the byte, halfword, float or double forms).
233 * If we don't check this then any write to the area
234 * between the last mapped region and the stack will
235 * expand the stack rather than segfaulting.
237 if (address + 2048 < uregs->gpr[1]
238 && (!user_mode(regs) || !store_updates_sp(regs)))
239 goto bad_area;
241 if (expand_stack(vma, address))
242 goto bad_area;
244 good_area:
245 code = SEGV_ACCERR;
246 #if defined(CONFIG_6xx)
247 if (error_code & 0x95700000)
248 /* an error such as lwarx to I/O controller space,
249 address matching DABR, eciwx, etc. */
250 goto bad_area;
251 #endif /* CONFIG_6xx */
252 #if defined(CONFIG_8xx)
253 /* The MPC8xx seems to always set 0x80000000, which is
254 * "undefined". Of those that can be set, this is the only
255 * one which seems bad.
257 if (error_code & 0x10000000)
258 /* Guarded storage error. */
259 goto bad_area;
260 #endif /* CONFIG_8xx */
262 if (is_exec) {
263 #ifdef CONFIG_PPC64
264 /* protection fault */
265 if (error_code & DSISR_PROTFAULT)
266 goto bad_area;
267 if (!(vma->vm_flags & VM_EXEC))
268 goto bad_area;
269 #endif
270 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
271 pte_t *ptep;
273 /* Since 4xx/Book-E supports per-page execute permission,
274 * we lazily flush dcache to icache. */
275 ptep = NULL;
276 if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) {
277 struct page *page = pte_page(*ptep);
279 if (! test_bit(PG_arch_1, &page->flags)) {
280 flush_dcache_icache_page(page);
281 set_bit(PG_arch_1, &page->flags);
283 pte_update(ptep, 0, _PAGE_HWEXEC);
284 _tlbie(address);
285 pte_unmap(ptep);
286 up_read(&mm->mmap_sem);
287 return 0;
289 if (ptep != NULL)
290 pte_unmap(ptep);
291 #endif
292 /* a write */
293 } else if (is_write) {
294 if (!(vma->vm_flags & VM_WRITE))
295 goto bad_area;
296 /* a read */
297 } else {
298 /* protection fault */
299 if (error_code & 0x08000000)
300 goto bad_area;
301 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
302 goto bad_area;
306 * If for any reason at all we couldn't handle the fault,
307 * make sure we exit gracefully rather than endlessly redo
308 * the fault.
310 survive:
311 switch (handle_mm_fault(mm, vma, address, is_write)) {
313 case VM_FAULT_MINOR:
314 current->min_flt++;
315 break;
316 case VM_FAULT_MAJOR:
317 current->maj_flt++;
318 break;
319 case VM_FAULT_SIGBUS:
320 goto do_sigbus;
321 case VM_FAULT_OOM:
322 goto out_of_memory;
323 default:
324 BUG();
327 up_read(&mm->mmap_sem);
328 return 0;
330 bad_area:
331 up_read(&mm->mmap_sem);
333 bad_area_nosemaphore:
334 /* User mode accesses cause a SIGSEGV */
335 if (user_mode(regs)) {
336 _exception(SIGSEGV, regs, code, address);
337 return 0;
340 if (is_exec && (error_code & DSISR_PROTFAULT)
341 && printk_ratelimit())
342 printk(KERN_CRIT "kernel tried to execute NX-protected"
343 " page (%lx) - exploit attempt? (uid: %d)\n",
344 address, current->uid);
346 return SIGSEGV;
349 * We ran out of memory, or some other thing happened to us that made
350 * us unable to handle the page fault gracefully.
352 out_of_memory:
353 up_read(&mm->mmap_sem);
354 if (current->pid == 1) {
355 yield();
356 down_read(&mm->mmap_sem);
357 goto survive;
359 printk("VM: killing process %s\n", current->comm);
360 if (user_mode(regs))
361 do_exit(SIGKILL);
362 return SIGKILL;
364 do_sigbus:
365 up_read(&mm->mmap_sem);
366 if (user_mode(regs)) {
367 info.si_signo = SIGBUS;
368 info.si_errno = 0;
369 info.si_code = BUS_ADRERR;
370 info.si_addr = (void __user *)address;
371 force_sig_info(SIGBUS, &info, current);
372 return 0;
374 return SIGBUS;
378 * bad_page_fault is called when we have a bad access from the kernel.
379 * It is called from the DSI and ISI handlers in head.S and from some
380 * of the procedures in traps.c.
382 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
384 const struct exception_table_entry *entry;
386 /* Are we prepared to handle this fault? */
387 if ((entry = search_exception_tables(regs->nip)) != NULL) {
388 regs->nip = entry->fixup;
389 return;
392 /* kernel has accessed a bad area */
394 printk(KERN_ALERT "Unable to handle kernel paging request for ");
395 switch (regs->trap) {
396 case 0x300:
397 case 0x380:
398 printk("data at address 0x%08lx\n", regs->dar);
399 break;
400 case 0x400:
401 case 0x480:
402 printk("instruction fetch\n");
403 break;
404 default:
405 printk("unknown fault\n");
407 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
408 regs->nip);
410 die("Kernel access of bad area", regs, sig);