[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / arch / powerpc / mm / hugetlbpage.c
blobb51bb28c054bbb5e14007af0d9efee7be0806a3a
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
28 #include <linux/sysctl.h>
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 /* Modelled after find_linux_pte() */
34 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
36 pgd_t *pg;
37 pud_t *pu;
38 pmd_t *pm;
39 pte_t *pt;
41 BUG_ON(! in_hugepage_area(mm->context, addr));
43 addr &= HPAGE_MASK;
45 pg = pgd_offset(mm, addr);
46 if (!pgd_none(*pg)) {
47 pu = pud_offset(pg, addr);
48 if (!pud_none(*pu)) {
49 pm = pmd_offset(pu, addr);
50 #ifdef CONFIG_PPC_64K_PAGES
51 /* Currently, we use the normal PTE offset within full
52 * size PTE pages, thus our huge PTEs are scattered in
53 * the PTE page and we do waste some. We may change
54 * that in the future, but the current mecanism keeps
55 * things much simpler
57 if (!pmd_none(*pm)) {
58 /* Note: pte_offset_* are all equivalent on
59 * ppc64 as we don't have HIGHMEM
61 pt = pte_offset_kernel(pm, addr);
62 return pt;
64 #else /* CONFIG_PPC_64K_PAGES */
65 /* On 4k pages, we put huge PTEs in the PMD page */
66 pt = (pte_t *)pm;
67 return pt;
68 #endif /* CONFIG_PPC_64K_PAGES */
72 return NULL;
75 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
77 pgd_t *pg;
78 pud_t *pu;
79 pmd_t *pm;
80 pte_t *pt;
82 BUG_ON(! in_hugepage_area(mm->context, addr));
84 addr &= HPAGE_MASK;
86 pg = pgd_offset(mm, addr);
87 pu = pud_alloc(mm, pg, addr);
89 if (pu) {
90 pm = pmd_alloc(mm, pu, addr);
91 if (pm) {
92 #ifdef CONFIG_PPC_64K_PAGES
93 /* See comment in huge_pte_offset. Note that if we ever
94 * want to put the page size in the PMD, we would have
95 * to open code our own pte_alloc* function in order
96 * to populate and set the size atomically
98 pt = pte_alloc_map(mm, pm, addr);
99 #else /* CONFIG_PPC_64K_PAGES */
100 pt = (pte_t *)pm;
101 #endif /* CONFIG_PPC_64K_PAGES */
102 return pt;
106 return NULL;
109 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
110 pte_t *ptep, pte_t pte)
112 if (pte_present(*ptep)) {
113 /* We open-code pte_clear because we need to pass the right
114 * argument to hpte_update (huge / !huge)
116 unsigned long old = pte_update(ptep, ~0UL);
117 if (old & _PAGE_HASHPTE)
118 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
119 flush_tlb_pending();
121 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
124 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
125 pte_t *ptep)
127 unsigned long old = pte_update(ptep, ~0UL);
129 if (old & _PAGE_HASHPTE)
130 hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
131 *ptep = __pte(0);
133 return __pte(old);
137 * This function checks for proper alignment of input addr and len parameters.
139 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
141 if (len & ~HPAGE_MASK)
142 return -EINVAL;
143 if (addr & ~HPAGE_MASK)
144 return -EINVAL;
145 if (! (within_hugepage_low_range(addr, len)
146 || within_hugepage_high_range(addr, len)) )
147 return -EINVAL;
148 return 0;
151 struct slb_flush_info {
152 struct mm_struct *mm;
153 u16 newareas;
156 static void flush_low_segments(void *parm)
158 struct slb_flush_info *fi = parm;
159 unsigned long i;
161 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
163 if (current->active_mm != fi->mm)
164 return;
166 /* Only need to do anything if this CPU is working in the same
167 * mm as the one which has changed */
169 /* update the paca copy of the context struct */
170 get_paca()->context = current->active_mm->context;
172 asm volatile("isync" : : : "memory");
173 for (i = 0; i < NUM_LOW_AREAS; i++) {
174 if (! (fi->newareas & (1U << i)))
175 continue;
176 asm volatile("slbie %0"
177 : : "r" ((i << SID_SHIFT) | SLBIE_C));
179 asm volatile("isync" : : : "memory");
182 static void flush_high_segments(void *parm)
184 struct slb_flush_info *fi = parm;
185 unsigned long i, j;
188 BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
190 if (current->active_mm != fi->mm)
191 return;
193 /* Only need to do anything if this CPU is working in the same
194 * mm as the one which has changed */
196 /* update the paca copy of the context struct */
197 get_paca()->context = current->active_mm->context;
199 asm volatile("isync" : : : "memory");
200 for (i = 0; i < NUM_HIGH_AREAS; i++) {
201 if (! (fi->newareas & (1U << i)))
202 continue;
203 for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
204 asm volatile("slbie %0"
205 :: "r" (((i << HTLB_AREA_SHIFT)
206 + (j << SID_SHIFT)) | SLBIE_C));
208 asm volatile("isync" : : : "memory");
211 static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
213 unsigned long start = area << SID_SHIFT;
214 unsigned long end = (area+1) << SID_SHIFT;
215 struct vm_area_struct *vma;
217 BUG_ON(area >= NUM_LOW_AREAS);
219 /* Check no VMAs are in the region */
220 vma = find_vma(mm, start);
221 if (vma && (vma->vm_start < end))
222 return -EBUSY;
224 return 0;
227 static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
229 unsigned long start = area << HTLB_AREA_SHIFT;
230 unsigned long end = (area+1) << HTLB_AREA_SHIFT;
231 struct vm_area_struct *vma;
233 BUG_ON(area >= NUM_HIGH_AREAS);
235 /* Hack, so that each addresses is controlled by exactly one
236 * of the high or low area bitmaps, the first high area starts
237 * at 4GB, not 0 */
238 if (start == 0)
239 start = 0x100000000UL;
241 /* Check no VMAs are in the region */
242 vma = find_vma(mm, start);
243 if (vma && (vma->vm_start < end))
244 return -EBUSY;
246 return 0;
249 static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
251 unsigned long i;
252 struct slb_flush_info fi;
254 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
255 BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
257 newareas &= ~(mm->context.low_htlb_areas);
258 if (! newareas)
259 return 0; /* The segments we want are already open */
261 for (i = 0; i < NUM_LOW_AREAS; i++)
262 if ((1 << i) & newareas)
263 if (prepare_low_area_for_htlb(mm, i) != 0)
264 return -EBUSY;
266 mm->context.low_htlb_areas |= newareas;
268 /* the context change must make it to memory before the flush,
269 * so that further SLB misses do the right thing. */
270 mb();
272 fi.mm = mm;
273 fi.newareas = newareas;
274 on_each_cpu(flush_low_segments, &fi, 0, 1);
276 return 0;
279 static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
281 struct slb_flush_info fi;
282 unsigned long i;
284 BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
285 BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
286 != NUM_HIGH_AREAS);
288 newareas &= ~(mm->context.high_htlb_areas);
289 if (! newareas)
290 return 0; /* The areas we want are already open */
292 for (i = 0; i < NUM_HIGH_AREAS; i++)
293 if ((1 << i) & newareas)
294 if (prepare_high_area_for_htlb(mm, i) != 0)
295 return -EBUSY;
297 mm->context.high_htlb_areas |= newareas;
299 /* update the paca copy of the context struct */
300 get_paca()->context = mm->context;
302 /* the context change must make it to memory before the flush,
303 * so that further SLB misses do the right thing. */
304 mb();
306 fi.mm = mm;
307 fi.newareas = newareas;
308 on_each_cpu(flush_high_segments, &fi, 0, 1);
310 return 0;
313 int prepare_hugepage_range(unsigned long addr, unsigned long len)
315 int err = 0;
317 if ( (addr+len) < addr )
318 return -EINVAL;
320 if (addr < 0x100000000UL)
321 err = open_low_hpage_areas(current->mm,
322 LOW_ESID_MASK(addr, len));
323 if ((addr + len) > 0x100000000UL)
324 err = open_high_hpage_areas(current->mm,
325 HTLB_AREA_MASK(addr, len));
326 if (err) {
327 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
328 " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
329 addr, len,
330 LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
331 return err;
334 return 0;
337 struct page *
338 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
340 pte_t *ptep;
341 struct page *page;
343 if (! in_hugepage_area(mm->context, address))
344 return ERR_PTR(-EINVAL);
346 ptep = huge_pte_offset(mm, address);
347 page = pte_page(*ptep);
348 if (page)
349 page += (address % HPAGE_SIZE) / PAGE_SIZE;
351 return page;
354 int pmd_huge(pmd_t pmd)
356 return 0;
359 struct page *
360 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
361 pmd_t *pmd, int write)
363 BUG();
364 return NULL;
367 /* Because we have an exclusive hugepage region which lies within the
368 * normal user address space, we have to take special measures to make
369 * non-huge mmap()s evade the hugepage reserved regions. */
370 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
371 unsigned long len, unsigned long pgoff,
372 unsigned long flags)
374 struct mm_struct *mm = current->mm;
375 struct vm_area_struct *vma;
376 unsigned long start_addr;
378 if (len > TASK_SIZE)
379 return -ENOMEM;
381 if (addr) {
382 addr = PAGE_ALIGN(addr);
383 vma = find_vma(mm, addr);
384 if (((TASK_SIZE - len) >= addr)
385 && (!vma || (addr+len) <= vma->vm_start)
386 && !is_hugepage_only_range(mm, addr,len))
387 return addr;
389 if (len > mm->cached_hole_size) {
390 start_addr = addr = mm->free_area_cache;
391 } else {
392 start_addr = addr = TASK_UNMAPPED_BASE;
393 mm->cached_hole_size = 0;
396 full_search:
397 vma = find_vma(mm, addr);
398 while (TASK_SIZE - len >= addr) {
399 BUG_ON(vma && (addr >= vma->vm_end));
401 if (touches_hugepage_low_range(mm, addr, len)) {
402 addr = ALIGN(addr+1, 1<<SID_SHIFT);
403 vma = find_vma(mm, addr);
404 continue;
406 if (touches_hugepage_high_range(mm, addr, len)) {
407 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
408 vma = find_vma(mm, addr);
409 continue;
411 if (!vma || addr + len <= vma->vm_start) {
413 * Remember the place where we stopped the search:
415 mm->free_area_cache = addr + len;
416 return addr;
418 if (addr + mm->cached_hole_size < vma->vm_start)
419 mm->cached_hole_size = vma->vm_start - addr;
420 addr = vma->vm_end;
421 vma = vma->vm_next;
424 /* Make sure we didn't miss any holes */
425 if (start_addr != TASK_UNMAPPED_BASE) {
426 start_addr = addr = TASK_UNMAPPED_BASE;
427 mm->cached_hole_size = 0;
428 goto full_search;
430 return -ENOMEM;
434 * This mmap-allocator allocates new areas top-down from below the
435 * stack's low limit (the base):
437 * Because we have an exclusive hugepage region which lies within the
438 * normal user address space, we have to take special measures to make
439 * non-huge mmap()s evade the hugepage reserved regions.
441 unsigned long
442 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
443 const unsigned long len, const unsigned long pgoff,
444 const unsigned long flags)
446 struct vm_area_struct *vma, *prev_vma;
447 struct mm_struct *mm = current->mm;
448 unsigned long base = mm->mmap_base, addr = addr0;
449 unsigned long largest_hole = mm->cached_hole_size;
450 int first_time = 1;
452 /* requested length too big for entire address space */
453 if (len > TASK_SIZE)
454 return -ENOMEM;
456 /* dont allow allocations above current base */
457 if (mm->free_area_cache > base)
458 mm->free_area_cache = base;
460 /* requesting a specific address */
461 if (addr) {
462 addr = PAGE_ALIGN(addr);
463 vma = find_vma(mm, addr);
464 if (TASK_SIZE - len >= addr &&
465 (!vma || addr + len <= vma->vm_start)
466 && !is_hugepage_only_range(mm, addr,len))
467 return addr;
470 if (len <= largest_hole) {
471 largest_hole = 0;
472 mm->free_area_cache = base;
474 try_again:
475 /* make sure it can fit in the remaining address space */
476 if (mm->free_area_cache < len)
477 goto fail;
479 /* either no address requested or cant fit in requested address hole */
480 addr = (mm->free_area_cache - len) & PAGE_MASK;
481 do {
482 hugepage_recheck:
483 if (touches_hugepage_low_range(mm, addr, len)) {
484 addr = (addr & ((~0) << SID_SHIFT)) - len;
485 goto hugepage_recheck;
486 } else if (touches_hugepage_high_range(mm, addr, len)) {
487 addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
488 goto hugepage_recheck;
492 * Lookup failure means no vma is above this address,
493 * i.e. return with success:
495 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
496 return addr;
499 * new region fits between prev_vma->vm_end and
500 * vma->vm_start, use it:
502 if (addr+len <= vma->vm_start &&
503 (!prev_vma || (addr >= prev_vma->vm_end))) {
504 /* remember the address as a hint for next time */
505 mm->cached_hole_size = largest_hole;
506 return (mm->free_area_cache = addr);
507 } else {
508 /* pull free_area_cache down to the first hole */
509 if (mm->free_area_cache == vma->vm_end) {
510 mm->free_area_cache = vma->vm_start;
511 mm->cached_hole_size = largest_hole;
515 /* remember the largest hole we saw so far */
516 if (addr + largest_hole < vma->vm_start)
517 largest_hole = vma->vm_start - addr;
519 /* try just below the current vma->vm_start */
520 addr = vma->vm_start-len;
521 } while (len <= vma->vm_start);
523 fail:
525 * if hint left us with no space for the requested
526 * mapping then try again:
528 if (first_time) {
529 mm->free_area_cache = base;
530 largest_hole = 0;
531 first_time = 0;
532 goto try_again;
535 * A failed mmap() very likely causes application failure,
536 * so fall back to the bottom-up function here. This scenario
537 * can happen with large stack limits and large mmap()
538 * allocations.
540 mm->free_area_cache = TASK_UNMAPPED_BASE;
541 mm->cached_hole_size = ~0UL;
542 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
544 * Restore the topdown base:
546 mm->free_area_cache = base;
547 mm->cached_hole_size = ~0UL;
549 return addr;
552 static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
554 struct vm_area_struct *vma;
556 vma = find_vma(current->mm, addr);
557 if (!vma || ((addr + len) <= vma->vm_start))
558 return 0;
560 return -ENOMEM;
563 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
565 unsigned long addr = 0;
566 struct vm_area_struct *vma;
568 vma = find_vma(current->mm, addr);
569 while (addr + len <= 0x100000000UL) {
570 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
572 if (! __within_hugepage_low_range(addr, len, segmask)) {
573 addr = ALIGN(addr+1, 1<<SID_SHIFT);
574 vma = find_vma(current->mm, addr);
575 continue;
578 if (!vma || (addr + len) <= vma->vm_start)
579 return addr;
580 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
581 /* Depending on segmask this might not be a confirmed
582 * hugepage region, so the ALIGN could have skipped
583 * some VMAs */
584 vma = find_vma(current->mm, addr);
587 return -ENOMEM;
590 static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
592 unsigned long addr = 0x100000000UL;
593 struct vm_area_struct *vma;
595 vma = find_vma(current->mm, addr);
596 while (addr + len <= TASK_SIZE_USER64) {
597 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
599 if (! __within_hugepage_high_range(addr, len, areamask)) {
600 addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
601 vma = find_vma(current->mm, addr);
602 continue;
605 if (!vma || (addr + len) <= vma->vm_start)
606 return addr;
607 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
608 /* Depending on segmask this might not be a confirmed
609 * hugepage region, so the ALIGN could have skipped
610 * some VMAs */
611 vma = find_vma(current->mm, addr);
614 return -ENOMEM;
617 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
618 unsigned long len, unsigned long pgoff,
619 unsigned long flags)
621 int lastshift;
622 u16 areamask, curareas;
624 if (HPAGE_SHIFT == 0)
625 return -EINVAL;
626 if (len & ~HPAGE_MASK)
627 return -EINVAL;
629 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
630 return -EINVAL;
632 /* Paranoia, caller should have dealt with this */
633 BUG_ON((addr + len) < addr);
635 if (test_thread_flag(TIF_32BIT)) {
636 /* Paranoia, caller should have dealt with this */
637 BUG_ON((addr + len) > 0x100000000UL);
639 curareas = current->mm->context.low_htlb_areas;
641 /* First see if we can use the hint address */
642 if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
643 areamask = LOW_ESID_MASK(addr, len);
644 if (open_low_hpage_areas(current->mm, areamask) == 0)
645 return addr;
648 /* Next see if we can map in the existing low areas */
649 addr = htlb_get_low_area(len, curareas);
650 if (addr != -ENOMEM)
651 return addr;
653 /* Finally go looking for areas to open */
654 lastshift = 0;
655 for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
656 ! lastshift; areamask >>=1) {
657 if (areamask & 1)
658 lastshift = 1;
660 addr = htlb_get_low_area(len, curareas | areamask);
661 if ((addr != -ENOMEM)
662 && open_low_hpage_areas(current->mm, areamask) == 0)
663 return addr;
665 } else {
666 curareas = current->mm->context.high_htlb_areas;
668 /* First see if we can use the hint address */
669 /* We discourage 64-bit processes from doing hugepage
670 * mappings below 4GB (must use MAP_FIXED) */
671 if ((addr >= 0x100000000UL)
672 && (htlb_check_hinted_area(addr, len) == 0)) {
673 areamask = HTLB_AREA_MASK(addr, len);
674 if (open_high_hpage_areas(current->mm, areamask) == 0)
675 return addr;
678 /* Next see if we can map in the existing high areas */
679 addr = htlb_get_high_area(len, curareas);
680 if (addr != -ENOMEM)
681 return addr;
683 /* Finally go looking for areas to open */
684 lastshift = 0;
685 for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
686 ! lastshift; areamask >>=1) {
687 if (areamask & 1)
688 lastshift = 1;
690 addr = htlb_get_high_area(len, curareas | areamask);
691 if ((addr != -ENOMEM)
692 && open_high_hpage_areas(current->mm, areamask) == 0)
693 return addr;
696 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
697 " enough areas\n");
698 return -ENOMEM;
702 * Called by asm hashtable.S for doing lazy icache flush
704 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
705 pte_t pte, int trap)
707 struct page *page;
708 int i;
710 if (!pfn_valid(pte_pfn(pte)))
711 return rflags;
713 page = pte_page(pte);
715 /* page is dirty */
716 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
717 if (trap == 0x400) {
718 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
719 __flush_dcache_icache(page_address(page+i));
720 set_bit(PG_arch_1, &page->flags);
721 } else {
722 rflags |= HPTE_R_N;
725 return rflags;
728 int hash_huge_page(struct mm_struct *mm, unsigned long access,
729 unsigned long ea, unsigned long vsid, int local,
730 unsigned long trap)
732 pte_t *ptep;
733 unsigned long old_pte, new_pte;
734 unsigned long va, rflags, pa;
735 long slot;
736 int err = 1;
738 ptep = huge_pte_offset(mm, ea);
740 /* Search the Linux page table for a match with va */
741 va = (vsid << 28) | (ea & 0x0fffffff);
744 * If no pte found or not present, send the problem up to
745 * do_page_fault
747 if (unlikely(!ptep || pte_none(*ptep)))
748 goto out;
751 * Check the user's access rights to the page. If access should be
752 * prevented then send the problem up to do_page_fault.
754 if (unlikely(access & ~pte_val(*ptep)))
755 goto out;
757 * At this point, we have a pte (old_pte) which can be used to build
758 * or update an HPTE. There are 2 cases:
760 * 1. There is a valid (present) pte with no associated HPTE (this is
761 * the most common case)
762 * 2. There is a valid (present) pte with an associated HPTE. The
763 * current values of the pp bits in the HPTE prevent access
764 * because we are doing software DIRTY bit management and the
765 * page is currently not DIRTY.
769 do {
770 old_pte = pte_val(*ptep);
771 if (old_pte & _PAGE_BUSY)
772 goto out;
773 new_pte = old_pte | _PAGE_BUSY |
774 _PAGE_ACCESSED | _PAGE_HASHPTE;
775 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
776 old_pte, new_pte));
778 rflags = 0x2 | (!(new_pte & _PAGE_RW));
779 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
780 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
781 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
782 /* No CPU has hugepages but lacks no execute, so we
783 * don't need to worry about that case */
784 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
785 trap);
787 /* Check if pte already has an hpte (case 2) */
788 if (unlikely(old_pte & _PAGE_HASHPTE)) {
789 /* There MIGHT be an HPTE for this pte */
790 unsigned long hash, slot;
792 hash = hpt_hash(va, HPAGE_SHIFT);
793 if (old_pte & _PAGE_F_SECOND)
794 hash = ~hash;
795 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
796 slot += (old_pte & _PAGE_F_GIX) >> 12;
798 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
799 local) == -1)
800 old_pte &= ~_PAGE_HPTEFLAGS;
803 if (likely(!(old_pte & _PAGE_HASHPTE))) {
804 unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
805 unsigned long hpte_group;
807 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
809 repeat:
810 hpte_group = ((hash & htab_hash_mask) *
811 HPTES_PER_GROUP) & ~0x7UL;
813 /* clear HPTE slot informations in new PTE */
814 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
816 /* Add in WIMG bits */
817 /* XXX We should store these in the pte */
818 /* --BenH: I think they are ... */
819 rflags |= _PAGE_COHERENT;
821 /* Insert into the hash table, primary slot */
822 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
823 mmu_huge_psize);
825 /* Primary is full, try the secondary */
826 if (unlikely(slot == -1)) {
827 new_pte |= _PAGE_F_SECOND;
828 hpte_group = ((~hash & htab_hash_mask) *
829 HPTES_PER_GROUP) & ~0x7UL;
830 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
831 HPTE_V_SECONDARY,
832 mmu_huge_psize);
833 if (slot == -1) {
834 if (mftb() & 0x1)
835 hpte_group = ((hash & htab_hash_mask) *
836 HPTES_PER_GROUP)&~0x7UL;
838 ppc_md.hpte_remove(hpte_group);
839 goto repeat;
843 if (unlikely(slot == -2))
844 panic("hash_huge_page: pte_insert failed\n");
846 new_pte |= (slot << 12) & _PAGE_F_GIX;
850 * No need to use ldarx/stdcx here
852 *ptep = __pte(new_pte & ~_PAGE_BUSY);
854 err = 0;
856 out:
857 return err;