4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
22 #include <asm/system.h>
25 static int numa_enabled
= 1;
27 static int numa_debug
;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
30 int numa_cpu_lookup_table
[NR_CPUS
];
31 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
32 struct pglist_data
*node_data
[MAX_NUMNODES
];
34 EXPORT_SYMBOL(numa_cpu_lookup_table
);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
36 EXPORT_SYMBOL(node_data
);
38 static bootmem_data_t __initdata plat_node_bdata
[MAX_NUMNODES
];
39 static int min_common_depth
;
40 static int n_mem_addr_cells
, n_mem_size_cells
;
43 * We need somewhere to store start/end/node for each region until we have
44 * allocated the real node_data structures.
46 #define MAX_REGIONS (MAX_LMB_REGIONS*2)
48 unsigned long start_pfn
;
49 unsigned long end_pfn
;
51 } init_node_data
[MAX_REGIONS
] __initdata
;
53 int __init
early_pfn_to_nid(unsigned long pfn
)
57 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
58 unsigned long start_pfn
= init_node_data
[i
].start_pfn
;
59 unsigned long end_pfn
= init_node_data
[i
].end_pfn
;
61 if ((start_pfn
<= pfn
) && (pfn
< end_pfn
))
62 return init_node_data
[i
].nid
;
68 void __init
add_region(unsigned int nid
, unsigned long start_pfn
,
73 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 nid
, start_pfn
, pages
);
76 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
77 if (init_node_data
[i
].nid
!= nid
)
79 if (init_node_data
[i
].end_pfn
== start_pfn
) {
80 init_node_data
[i
].end_pfn
+= pages
;
83 if (init_node_data
[i
].start_pfn
== (start_pfn
+ pages
)) {
84 init_node_data
[i
].start_pfn
-= pages
;
90 * Leave last entry NULL so we dont iterate off the end (we use
91 * entry.end_pfn to terminate the walk).
93 if (i
>= (MAX_REGIONS
- 1)) {
94 printk(KERN_ERR
"WARNING: too many memory regions in "
95 "numa code, truncating\n");
99 init_node_data
[i
].start_pfn
= start_pfn
;
100 init_node_data
[i
].end_pfn
= start_pfn
+ pages
;
101 init_node_data
[i
].nid
= nid
;
104 /* We assume init_node_data has no overlapping regions */
105 void __init
get_region(unsigned int nid
, unsigned long *start_pfn
,
106 unsigned long *end_pfn
, unsigned long *pages_present
)
111 *end_pfn
= *pages_present
= 0;
113 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
114 if (init_node_data
[i
].nid
!= nid
)
117 *pages_present
+= init_node_data
[i
].end_pfn
-
118 init_node_data
[i
].start_pfn
;
120 if (init_node_data
[i
].start_pfn
< *start_pfn
)
121 *start_pfn
= init_node_data
[i
].start_pfn
;
123 if (init_node_data
[i
].end_pfn
> *end_pfn
)
124 *end_pfn
= init_node_data
[i
].end_pfn
;
127 /* We didnt find a matching region, return start/end as 0 */
128 if (*start_pfn
== -1UL)
132 static inline void map_cpu_to_node(int cpu
, int node
)
134 numa_cpu_lookup_table
[cpu
] = node
;
136 if (!(cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])))
137 cpu_set(cpu
, numa_cpumask_lookup_table
[node
]);
140 #ifdef CONFIG_HOTPLUG_CPU
141 static void unmap_cpu_from_node(unsigned long cpu
)
143 int node
= numa_cpu_lookup_table
[cpu
];
145 dbg("removing cpu %lu from node %d\n", cpu
, node
);
147 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
148 cpu_clear(cpu
, numa_cpumask_lookup_table
[node
]);
150 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
154 #endif /* CONFIG_HOTPLUG_CPU */
156 static struct device_node
*find_cpu_node(unsigned int cpu
)
158 unsigned int hw_cpuid
= get_hard_smp_processor_id(cpu
);
159 struct device_node
*cpu_node
= NULL
;
160 unsigned int *interrupt_server
, *reg
;
163 while ((cpu_node
= of_find_node_by_type(cpu_node
, "cpu")) != NULL
) {
164 /* Try interrupt server first */
165 interrupt_server
= (unsigned int *)get_property(cpu_node
,
166 "ibm,ppc-interrupt-server#s", &len
);
168 len
= len
/ sizeof(u32
);
170 if (interrupt_server
&& (len
> 0)) {
172 if (interrupt_server
[len
] == hw_cpuid
)
176 reg
= (unsigned int *)get_property(cpu_node
,
178 if (reg
&& (len
> 0) && (reg
[0] == hw_cpuid
))
186 /* must hold reference to node during call */
187 static int *of_get_associativity(struct device_node
*dev
)
189 return (unsigned int *)get_property(dev
, "ibm,associativity", NULL
);
192 static int of_node_numa_domain(struct device_node
*device
)
197 if (min_common_depth
== -1)
200 tmp
= of_get_associativity(device
);
201 if (tmp
&& (tmp
[0] >= min_common_depth
)) {
202 numa_domain
= tmp
[min_common_depth
];
204 dbg("WARNING: no NUMA information for %s\n",
212 * In theory, the "ibm,associativity" property may contain multiple
213 * associativity lists because a resource may be multiply connected
214 * into the machine. This resource then has different associativity
215 * characteristics relative to its multiple connections. We ignore
216 * this for now. We also assume that all cpu and memory sets have
217 * their distances represented at a common level. This won't be
218 * true for heirarchical NUMA.
220 * In any case the ibm,associativity-reference-points should give
221 * the correct depth for a normal NUMA system.
223 * - Dave Hansen <haveblue@us.ibm.com>
225 static int __init
find_min_common_depth(void)
228 unsigned int *ref_points
;
229 struct device_node
*rtas_root
;
232 rtas_root
= of_find_node_by_path("/rtas");
238 * this property is 2 32-bit integers, each representing a level of
239 * depth in the associativity nodes. The first is for an SMP
240 * configuration (should be all 0's) and the second is for a normal
241 * NUMA configuration.
243 ref_points
= (unsigned int *)get_property(rtas_root
,
244 "ibm,associativity-reference-points", &len
);
246 if ((len
>= 1) && ref_points
) {
247 depth
= ref_points
[1];
249 dbg("WARNING: could not find NUMA "
250 "associativity reference point\n");
253 of_node_put(rtas_root
);
258 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
260 struct device_node
*memory
= NULL
;
262 memory
= of_find_node_by_type(memory
, "memory");
264 panic("numa.c: No memory nodes found!");
266 *n_addr_cells
= prom_n_addr_cells(memory
);
267 *n_size_cells
= prom_n_size_cells(memory
);
271 static unsigned long __devinit
read_n_cells(int n
, unsigned int **buf
)
273 unsigned long result
= 0;
276 result
= (result
<< 32) | **buf
;
283 * Figure out to which domain a cpu belongs and stick it there.
284 * Return the id of the domain used.
286 static int numa_setup_cpu(unsigned long lcpu
)
289 struct device_node
*cpu
= find_cpu_node(lcpu
);
296 numa_domain
= of_node_numa_domain(cpu
);
298 if (numa_domain
>= num_online_nodes()) {
300 * POWER4 LPAR uses 0xffff as invalid node,
301 * dont warn in this case.
303 if (numa_domain
!= 0xffff)
304 printk(KERN_ERR
"WARNING: cpu %ld "
305 "maps to invalid NUMA node %d\n",
310 node_set_online(numa_domain
);
312 map_cpu_to_node(lcpu
, numa_domain
);
319 static int cpu_numa_callback(struct notifier_block
*nfb
,
320 unsigned long action
,
323 unsigned long lcpu
= (unsigned long)hcpu
;
324 int ret
= NOTIFY_DONE
;
328 if (min_common_depth
== -1 || !numa_enabled
)
329 map_cpu_to_node(lcpu
, 0);
331 numa_setup_cpu(lcpu
);
334 #ifdef CONFIG_HOTPLUG_CPU
336 case CPU_UP_CANCELED
:
337 unmap_cpu_from_node(lcpu
);
346 * Check and possibly modify a memory region to enforce the memory limit.
348 * Returns the size the region should have to enforce the memory limit.
349 * This will either be the original value of size, a truncated value,
350 * or zero. If the returned value of size is 0 the region should be
351 * discarded as it lies wholy above the memory limit.
353 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
357 * We use lmb_end_of_DRAM() in here instead of memory_limit because
358 * we've already adjusted it for the limit and it takes care of
359 * having memory holes below the limit.
365 if (start
+ size
<= lmb_end_of_DRAM())
368 if (start
>= lmb_end_of_DRAM())
371 return lmb_end_of_DRAM() - start
;
374 static int __init
parse_numa_properties(void)
376 struct device_node
*cpu
= NULL
;
377 struct device_node
*memory
= NULL
;
381 if (numa_enabled
== 0) {
382 printk(KERN_WARNING
"NUMA disabled by user\n");
386 min_common_depth
= find_min_common_depth();
388 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
389 if (min_common_depth
< 0)
390 return min_common_depth
;
392 max_domain
= numa_setup_cpu(boot_cpuid
);
395 * Even though we connect cpus to numa domains later in SMP init,
396 * we need to know the maximum node id now. This is because each
397 * node id must have NODE_DATA etc backing it.
398 * As a result of hotplug we could still have cpus appear later on
399 * with larger node ids. In that case we force the cpu into node 0.
404 cpu
= find_cpu_node(i
);
407 numa_domain
= of_node_numa_domain(cpu
);
410 if (numa_domain
< MAX_NUMNODES
&&
411 max_domain
< numa_domain
)
412 max_domain
= numa_domain
;
416 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
418 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
423 unsigned int *memcell_buf
;
426 memcell_buf
= (unsigned int *)get_property(memory
,
427 "linux,usable-memory", &len
);
428 if (!memcell_buf
|| len
<= 0)
430 (unsigned int *)get_property(memory
, "reg",
432 if (!memcell_buf
|| len
<= 0)
436 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
438 /* these are order-sensitive, and modify the buffer pointer */
439 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
440 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
442 numa_domain
= of_node_numa_domain(memory
);
444 if (numa_domain
>= MAX_NUMNODES
) {
445 if (numa_domain
!= 0xffff)
446 printk(KERN_ERR
"WARNING: memory at %lx maps "
447 "to invalid NUMA node %d\n", start
,
452 if (max_domain
< numa_domain
)
453 max_domain
= numa_domain
;
455 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
462 add_region(numa_domain
, start
>> PAGE_SHIFT
,
469 for (i
= 0; i
<= max_domain
; i
++)
475 static void __init
setup_nonnuma(void)
477 unsigned long top_of_ram
= lmb_end_of_DRAM();
478 unsigned long total_ram
= lmb_phys_mem_size();
481 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
482 top_of_ram
, total_ram
);
483 printk(KERN_INFO
"Memory hole size: %ldMB\n",
484 (top_of_ram
- total_ram
) >> 20);
486 map_cpu_to_node(boot_cpuid
, 0);
487 for (i
= 0; i
< lmb
.memory
.cnt
; ++i
)
488 add_region(0, lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
,
489 lmb_size_pages(&lmb
.memory
, i
));
493 void __init
dump_numa_cpu_topology(void)
496 unsigned int cpu
, count
;
498 if (min_common_depth
== -1 || !numa_enabled
)
501 for_each_online_node(node
) {
502 printk(KERN_INFO
"Node %d CPUs:", node
);
506 * If we used a CPU iterator here we would miss printing
507 * the holes in the cpumap.
509 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
510 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
516 printk("-%u", cpu
- 1);
522 printk("-%u", NR_CPUS
- 1);
527 static void __init
dump_numa_memory_topology(void)
532 if (min_common_depth
== -1 || !numa_enabled
)
535 for_each_online_node(node
) {
538 printk(KERN_INFO
"Node %d Memory:", node
);
542 for (i
= 0; i
< lmb_end_of_DRAM();
543 i
+= (1 << SECTION_SIZE_BITS
)) {
544 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
562 * Allocate some memory, satisfying the lmb or bootmem allocator where
563 * required. nid is the preferred node and end is the physical address of
564 * the highest address in the node.
566 * Returns the physical address of the memory.
568 static void __init
*careful_allocation(int nid
, unsigned long size
,
570 unsigned long end_pfn
)
573 unsigned long ret
= lmb_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
575 /* retry over all memory */
577 ret
= lmb_alloc_base(size
, align
, lmb_end_of_DRAM());
580 panic("numa.c: cannot allocate %lu bytes on node %d",
584 * If the memory came from a previously allocated node, we must
585 * retry with the bootmem allocator.
587 new_nid
= early_pfn_to_nid(ret
>> PAGE_SHIFT
);
589 ret
= (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid
),
593 panic("numa.c: cannot allocate %lu bytes on node %d",
598 dbg("alloc_bootmem %lx %lx\n", ret
, size
);
604 void __init
do_init_bootmem(void)
608 static struct notifier_block ppc64_numa_nb
= {
609 .notifier_call
= cpu_numa_callback
,
610 .priority
= 1 /* Must run before sched domains notifier. */
614 max_low_pfn
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
615 max_pfn
= max_low_pfn
;
617 if (parse_numa_properties())
620 dump_numa_memory_topology();
622 register_cpu_notifier(&ppc64_numa_nb
);
624 for_each_online_node(nid
) {
625 unsigned long start_pfn
, end_pfn
, pages_present
;
626 unsigned long bootmem_paddr
;
627 unsigned long bootmap_pages
;
629 get_region(nid
, &start_pfn
, &end_pfn
, &pages_present
);
631 /* Allocate the node structure node local if possible */
632 NODE_DATA(nid
) = careful_allocation(nid
,
633 sizeof(struct pglist_data
),
634 SMP_CACHE_BYTES
, end_pfn
);
635 NODE_DATA(nid
) = __va(NODE_DATA(nid
));
636 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
638 dbg("node %d\n", nid
);
639 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
641 NODE_DATA(nid
)->bdata
= &plat_node_bdata
[nid
];
642 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
643 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
645 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
648 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
649 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
651 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
652 bootmem_paddr
= (unsigned long)careful_allocation(nid
,
653 bootmap_pages
<< PAGE_SHIFT
,
655 memset(__va(bootmem_paddr
), 0, bootmap_pages
<< PAGE_SHIFT
);
657 dbg("bootmap_paddr = %lx\n", bootmem_paddr
);
659 init_bootmem_node(NODE_DATA(nid
), bootmem_paddr
>> PAGE_SHIFT
,
662 /* Add free regions on this node */
663 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
664 unsigned long start
, end
;
666 if (init_node_data
[i
].nid
!= nid
)
669 start
= init_node_data
[i
].start_pfn
<< PAGE_SHIFT
;
670 end
= init_node_data
[i
].end_pfn
<< PAGE_SHIFT
;
672 dbg("free_bootmem %lx %lx\n", start
, end
- start
);
673 free_bootmem_node(NODE_DATA(nid
), start
, end
- start
);
676 /* Mark reserved regions on this node */
677 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
678 unsigned long physbase
= lmb
.reserved
.region
[i
].base
;
679 unsigned long size
= lmb
.reserved
.region
[i
].size
;
680 unsigned long start_paddr
= start_pfn
<< PAGE_SHIFT
;
681 unsigned long end_paddr
= end_pfn
<< PAGE_SHIFT
;
683 if (early_pfn_to_nid(physbase
>> PAGE_SHIFT
) != nid
&&
684 early_pfn_to_nid((physbase
+size
-1) >> PAGE_SHIFT
) != nid
)
687 if (physbase
< end_paddr
&&
688 (physbase
+size
) > start_paddr
) {
690 if (physbase
< start_paddr
) {
691 size
-= start_paddr
- physbase
;
692 physbase
= start_paddr
;
695 if (size
> end_paddr
- physbase
)
696 size
= end_paddr
- physbase
;
698 dbg("reserve_bootmem %lx %lx\n", physbase
,
700 reserve_bootmem_node(NODE_DATA(nid
), physbase
,
705 /* Add regions into sparsemem */
706 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
707 unsigned long start
, end
;
709 if (init_node_data
[i
].nid
!= nid
)
712 start
= init_node_data
[i
].start_pfn
;
713 end
= init_node_data
[i
].end_pfn
;
715 memory_present(nid
, start
, end
);
720 void __init
paging_init(void)
722 unsigned long zones_size
[MAX_NR_ZONES
];
723 unsigned long zholes_size
[MAX_NR_ZONES
];
726 memset(zones_size
, 0, sizeof(zones_size
));
727 memset(zholes_size
, 0, sizeof(zholes_size
));
729 for_each_online_node(nid
) {
730 unsigned long start_pfn
, end_pfn
, pages_present
;
732 get_region(nid
, &start_pfn
, &end_pfn
, &pages_present
);
734 zones_size
[ZONE_DMA
] = end_pfn
- start_pfn
;
735 zholes_size
[ZONE_DMA
] = zones_size
[ZONE_DMA
] - pages_present
;
737 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid
,
738 zones_size
[ZONE_DMA
], start_pfn
, zholes_size
[ZONE_DMA
]);
740 free_area_init_node(nid
, NODE_DATA(nid
), zones_size
, start_pfn
,
745 static int __init
early_numa(char *p
)
750 if (strstr(p
, "off"))
753 if (strstr(p
, "debug"))
758 early_param("numa", early_numa
);
760 #ifdef CONFIG_MEMORY_HOTPLUG
762 * Find the node associated with a hot added memory section. Section
763 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
764 * sections are fully contained within a single LMB.
766 int hot_add_scn_to_nid(unsigned long scn_addr
)
768 struct device_node
*memory
= NULL
;
772 if (!numa_enabled
|| (min_common_depth
< 0))
775 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
776 unsigned long start
, size
;
778 unsigned int *memcell_buf
;
781 memcell_buf
= (unsigned int *)get_property(memory
, "reg", &len
);
782 if (!memcell_buf
|| len
<= 0)
786 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
788 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
789 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
790 numa_domain
= of_node_numa_domain(memory
);
792 /* Domains not present at boot default to 0 */
793 if (!node_online(numa_domain
))
794 numa_domain
= any_online_node(NODE_MASK_ALL
);
796 if ((scn_addr
>= start
) && (scn_addr
< (start
+ size
))) {
798 goto got_numa_domain
;
801 if (--ranges
) /* process all ranges in cell */
804 BUG(); /* section address should be found above */
806 /* Temporary code to ensure that returned node is not empty */
809 while (NODE_DATA(numa_domain
)->node_spanned_pages
== 0) {
810 node_clear(numa_domain
, nodes
);
811 numa_domain
= any_online_node(nodes
);
815 #endif /* CONFIG_MEMORY_HOTPLUG */