[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / arch / powerpc / mm / numa.c
blob2863a912bcd0950d3841d62c035110aa0f5b8d3a
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
25 static int numa_enabled = 1;
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
43 * We need somewhere to store start/end/node for each region until we have
44 * allocated the real node_data structures.
46 #define MAX_REGIONS (MAX_LMB_REGIONS*2)
47 static struct {
48 unsigned long start_pfn;
49 unsigned long end_pfn;
50 int nid;
51 } init_node_data[MAX_REGIONS] __initdata;
53 int __init early_pfn_to_nid(unsigned long pfn)
55 unsigned int i;
57 for (i = 0; init_node_data[i].end_pfn; i++) {
58 unsigned long start_pfn = init_node_data[i].start_pfn;
59 unsigned long end_pfn = init_node_data[i].end_pfn;
61 if ((start_pfn <= pfn) && (pfn < end_pfn))
62 return init_node_data[i].nid;
65 return -1;
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
69 unsigned long pages)
71 unsigned int i;
73 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 nid, start_pfn, pages);
76 for (i = 0; init_node_data[i].end_pfn; i++) {
77 if (init_node_data[i].nid != nid)
78 continue;
79 if (init_node_data[i].end_pfn == start_pfn) {
80 init_node_data[i].end_pfn += pages;
81 return;
83 if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 init_node_data[i].start_pfn -= pages;
85 return;
90 * Leave last entry NULL so we dont iterate off the end (we use
91 * entry.end_pfn to terminate the walk).
93 if (i >= (MAX_REGIONS - 1)) {
94 printk(KERN_ERR "WARNING: too many memory regions in "
95 "numa code, truncating\n");
96 return;
99 init_node_data[i].start_pfn = start_pfn;
100 init_node_data[i].end_pfn = start_pfn + pages;
101 init_node_data[i].nid = nid;
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 unsigned long *end_pfn, unsigned long *pages_present)
108 unsigned int i;
110 *start_pfn = -1UL;
111 *end_pfn = *pages_present = 0;
113 for (i = 0; init_node_data[i].end_pfn; i++) {
114 if (init_node_data[i].nid != nid)
115 continue;
117 *pages_present += init_node_data[i].end_pfn -
118 init_node_data[i].start_pfn;
120 if (init_node_data[i].start_pfn < *start_pfn)
121 *start_pfn = init_node_data[i].start_pfn;
123 if (init_node_data[i].end_pfn > *end_pfn)
124 *end_pfn = init_node_data[i].end_pfn;
127 /* We didnt find a matching region, return start/end as 0 */
128 if (*start_pfn == -1UL)
129 *start_pfn = 0;
132 static inline void map_cpu_to_node(int cpu, int node)
134 numa_cpu_lookup_table[cpu] = node;
136 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
137 cpu_set(cpu, numa_cpumask_lookup_table[node]);
140 #ifdef CONFIG_HOTPLUG_CPU
141 static void unmap_cpu_from_node(unsigned long cpu)
143 int node = numa_cpu_lookup_table[cpu];
145 dbg("removing cpu %lu from node %d\n", cpu, node);
147 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
148 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
149 } else {
150 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
151 cpu, node);
154 #endif /* CONFIG_HOTPLUG_CPU */
156 static struct device_node *find_cpu_node(unsigned int cpu)
158 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
159 struct device_node *cpu_node = NULL;
160 unsigned int *interrupt_server, *reg;
161 int len;
163 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
164 /* Try interrupt server first */
165 interrupt_server = (unsigned int *)get_property(cpu_node,
166 "ibm,ppc-interrupt-server#s", &len);
168 len = len / sizeof(u32);
170 if (interrupt_server && (len > 0)) {
171 while (len--) {
172 if (interrupt_server[len] == hw_cpuid)
173 return cpu_node;
175 } else {
176 reg = (unsigned int *)get_property(cpu_node,
177 "reg", &len);
178 if (reg && (len > 0) && (reg[0] == hw_cpuid))
179 return cpu_node;
183 return NULL;
186 /* must hold reference to node during call */
187 static int *of_get_associativity(struct device_node *dev)
189 return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
192 static int of_node_numa_domain(struct device_node *device)
194 int numa_domain;
195 unsigned int *tmp;
197 if (min_common_depth == -1)
198 return 0;
200 tmp = of_get_associativity(device);
201 if (tmp && (tmp[0] >= min_common_depth)) {
202 numa_domain = tmp[min_common_depth];
203 } else {
204 dbg("WARNING: no NUMA information for %s\n",
205 device->full_name);
206 numa_domain = 0;
208 return numa_domain;
212 * In theory, the "ibm,associativity" property may contain multiple
213 * associativity lists because a resource may be multiply connected
214 * into the machine. This resource then has different associativity
215 * characteristics relative to its multiple connections. We ignore
216 * this for now. We also assume that all cpu and memory sets have
217 * their distances represented at a common level. This won't be
218 * true for heirarchical NUMA.
220 * In any case the ibm,associativity-reference-points should give
221 * the correct depth for a normal NUMA system.
223 * - Dave Hansen <haveblue@us.ibm.com>
225 static int __init find_min_common_depth(void)
227 int depth;
228 unsigned int *ref_points;
229 struct device_node *rtas_root;
230 unsigned int len;
232 rtas_root = of_find_node_by_path("/rtas");
234 if (!rtas_root)
235 return -1;
238 * this property is 2 32-bit integers, each representing a level of
239 * depth in the associativity nodes. The first is for an SMP
240 * configuration (should be all 0's) and the second is for a normal
241 * NUMA configuration.
243 ref_points = (unsigned int *)get_property(rtas_root,
244 "ibm,associativity-reference-points", &len);
246 if ((len >= 1) && ref_points) {
247 depth = ref_points[1];
248 } else {
249 dbg("WARNING: could not find NUMA "
250 "associativity reference point\n");
251 depth = -1;
253 of_node_put(rtas_root);
255 return depth;
258 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
260 struct device_node *memory = NULL;
262 memory = of_find_node_by_type(memory, "memory");
263 if (!memory)
264 panic("numa.c: No memory nodes found!");
266 *n_addr_cells = prom_n_addr_cells(memory);
267 *n_size_cells = prom_n_size_cells(memory);
268 of_node_put(memory);
271 static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
273 unsigned long result = 0;
275 while (n--) {
276 result = (result << 32) | **buf;
277 (*buf)++;
279 return result;
283 * Figure out to which domain a cpu belongs and stick it there.
284 * Return the id of the domain used.
286 static int numa_setup_cpu(unsigned long lcpu)
288 int numa_domain = 0;
289 struct device_node *cpu = find_cpu_node(lcpu);
291 if (!cpu) {
292 WARN_ON(1);
293 goto out;
296 numa_domain = of_node_numa_domain(cpu);
298 if (numa_domain >= num_online_nodes()) {
300 * POWER4 LPAR uses 0xffff as invalid node,
301 * dont warn in this case.
303 if (numa_domain != 0xffff)
304 printk(KERN_ERR "WARNING: cpu %ld "
305 "maps to invalid NUMA node %d\n",
306 lcpu, numa_domain);
307 numa_domain = 0;
309 out:
310 node_set_online(numa_domain);
312 map_cpu_to_node(lcpu, numa_domain);
314 of_node_put(cpu);
316 return numa_domain;
319 static int cpu_numa_callback(struct notifier_block *nfb,
320 unsigned long action,
321 void *hcpu)
323 unsigned long lcpu = (unsigned long)hcpu;
324 int ret = NOTIFY_DONE;
326 switch (action) {
327 case CPU_UP_PREPARE:
328 if (min_common_depth == -1 || !numa_enabled)
329 map_cpu_to_node(lcpu, 0);
330 else
331 numa_setup_cpu(lcpu);
332 ret = NOTIFY_OK;
333 break;
334 #ifdef CONFIG_HOTPLUG_CPU
335 case CPU_DEAD:
336 case CPU_UP_CANCELED:
337 unmap_cpu_from_node(lcpu);
338 break;
339 ret = NOTIFY_OK;
340 #endif
342 return ret;
346 * Check and possibly modify a memory region to enforce the memory limit.
348 * Returns the size the region should have to enforce the memory limit.
349 * This will either be the original value of size, a truncated value,
350 * or zero. If the returned value of size is 0 the region should be
351 * discarded as it lies wholy above the memory limit.
353 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
354 unsigned long size)
357 * We use lmb_end_of_DRAM() in here instead of memory_limit because
358 * we've already adjusted it for the limit and it takes care of
359 * having memory holes below the limit.
362 if (! memory_limit)
363 return size;
365 if (start + size <= lmb_end_of_DRAM())
366 return size;
368 if (start >= lmb_end_of_DRAM())
369 return 0;
371 return lmb_end_of_DRAM() - start;
374 static int __init parse_numa_properties(void)
376 struct device_node *cpu = NULL;
377 struct device_node *memory = NULL;
378 int max_domain;
379 unsigned long i;
381 if (numa_enabled == 0) {
382 printk(KERN_WARNING "NUMA disabled by user\n");
383 return -1;
386 min_common_depth = find_min_common_depth();
388 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
389 if (min_common_depth < 0)
390 return min_common_depth;
392 max_domain = numa_setup_cpu(boot_cpuid);
395 * Even though we connect cpus to numa domains later in SMP init,
396 * we need to know the maximum node id now. This is because each
397 * node id must have NODE_DATA etc backing it.
398 * As a result of hotplug we could still have cpus appear later on
399 * with larger node ids. In that case we force the cpu into node 0.
401 for_each_cpu(i) {
402 int numa_domain;
404 cpu = find_cpu_node(i);
406 if (cpu) {
407 numa_domain = of_node_numa_domain(cpu);
408 of_node_put(cpu);
410 if (numa_domain < MAX_NUMNODES &&
411 max_domain < numa_domain)
412 max_domain = numa_domain;
416 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
417 memory = NULL;
418 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
419 unsigned long start;
420 unsigned long size;
421 int numa_domain;
422 int ranges;
423 unsigned int *memcell_buf;
424 unsigned int len;
426 memcell_buf = (unsigned int *)get_property(memory,
427 "linux,usable-memory", &len);
428 if (!memcell_buf || len <= 0)
429 memcell_buf =
430 (unsigned int *)get_property(memory, "reg",
431 &len);
432 if (!memcell_buf || len <= 0)
433 continue;
435 /* ranges in cell */
436 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
437 new_range:
438 /* these are order-sensitive, and modify the buffer pointer */
439 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
440 size = read_n_cells(n_mem_size_cells, &memcell_buf);
442 numa_domain = of_node_numa_domain(memory);
444 if (numa_domain >= MAX_NUMNODES) {
445 if (numa_domain != 0xffff)
446 printk(KERN_ERR "WARNING: memory at %lx maps "
447 "to invalid NUMA node %d\n", start,
448 numa_domain);
449 numa_domain = 0;
452 if (max_domain < numa_domain)
453 max_domain = numa_domain;
455 if (!(size = numa_enforce_memory_limit(start, size))) {
456 if (--ranges)
457 goto new_range;
458 else
459 continue;
462 add_region(numa_domain, start >> PAGE_SHIFT,
463 size >> PAGE_SHIFT);
465 if (--ranges)
466 goto new_range;
469 for (i = 0; i <= max_domain; i++)
470 node_set_online(i);
472 return 0;
475 static void __init setup_nonnuma(void)
477 unsigned long top_of_ram = lmb_end_of_DRAM();
478 unsigned long total_ram = lmb_phys_mem_size();
479 unsigned int i;
481 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
482 top_of_ram, total_ram);
483 printk(KERN_INFO "Memory hole size: %ldMB\n",
484 (top_of_ram - total_ram) >> 20);
486 map_cpu_to_node(boot_cpuid, 0);
487 for (i = 0; i < lmb.memory.cnt; ++i)
488 add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
489 lmb_size_pages(&lmb.memory, i));
490 node_set_online(0);
493 void __init dump_numa_cpu_topology(void)
495 unsigned int node;
496 unsigned int cpu, count;
498 if (min_common_depth == -1 || !numa_enabled)
499 return;
501 for_each_online_node(node) {
502 printk(KERN_INFO "Node %d CPUs:", node);
504 count = 0;
506 * If we used a CPU iterator here we would miss printing
507 * the holes in the cpumap.
509 for (cpu = 0; cpu < NR_CPUS; cpu++) {
510 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
511 if (count == 0)
512 printk(" %u", cpu);
513 ++count;
514 } else {
515 if (count > 1)
516 printk("-%u", cpu - 1);
517 count = 0;
521 if (count > 1)
522 printk("-%u", NR_CPUS - 1);
523 printk("\n");
527 static void __init dump_numa_memory_topology(void)
529 unsigned int node;
530 unsigned int count;
532 if (min_common_depth == -1 || !numa_enabled)
533 return;
535 for_each_online_node(node) {
536 unsigned long i;
538 printk(KERN_INFO "Node %d Memory:", node);
540 count = 0;
542 for (i = 0; i < lmb_end_of_DRAM();
543 i += (1 << SECTION_SIZE_BITS)) {
544 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
545 if (count == 0)
546 printk(" 0x%lx", i);
547 ++count;
548 } else {
549 if (count > 0)
550 printk("-0x%lx", i);
551 count = 0;
555 if (count > 0)
556 printk("-0x%lx", i);
557 printk("\n");
562 * Allocate some memory, satisfying the lmb or bootmem allocator where
563 * required. nid is the preferred node and end is the physical address of
564 * the highest address in the node.
566 * Returns the physical address of the memory.
568 static void __init *careful_allocation(int nid, unsigned long size,
569 unsigned long align,
570 unsigned long end_pfn)
572 int new_nid;
573 unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
575 /* retry over all memory */
576 if (!ret)
577 ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
579 if (!ret)
580 panic("numa.c: cannot allocate %lu bytes on node %d",
581 size, nid);
584 * If the memory came from a previously allocated node, we must
585 * retry with the bootmem allocator.
587 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
588 if (new_nid < nid) {
589 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
590 size, align, 0);
592 if (!ret)
593 panic("numa.c: cannot allocate %lu bytes on node %d",
594 size, new_nid);
596 ret = __pa(ret);
598 dbg("alloc_bootmem %lx %lx\n", ret, size);
601 return (void *)ret;
604 void __init do_init_bootmem(void)
606 int nid;
607 unsigned int i;
608 static struct notifier_block ppc64_numa_nb = {
609 .notifier_call = cpu_numa_callback,
610 .priority = 1 /* Must run before sched domains notifier. */
613 min_low_pfn = 0;
614 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
615 max_pfn = max_low_pfn;
617 if (parse_numa_properties())
618 setup_nonnuma();
619 else
620 dump_numa_memory_topology();
622 register_cpu_notifier(&ppc64_numa_nb);
624 for_each_online_node(nid) {
625 unsigned long start_pfn, end_pfn, pages_present;
626 unsigned long bootmem_paddr;
627 unsigned long bootmap_pages;
629 get_region(nid, &start_pfn, &end_pfn, &pages_present);
631 /* Allocate the node structure node local if possible */
632 NODE_DATA(nid) = careful_allocation(nid,
633 sizeof(struct pglist_data),
634 SMP_CACHE_BYTES, end_pfn);
635 NODE_DATA(nid) = __va(NODE_DATA(nid));
636 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
638 dbg("node %d\n", nid);
639 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
641 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
642 NODE_DATA(nid)->node_start_pfn = start_pfn;
643 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
645 if (NODE_DATA(nid)->node_spanned_pages == 0)
646 continue;
648 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
649 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
651 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
652 bootmem_paddr = (unsigned long)careful_allocation(nid,
653 bootmap_pages << PAGE_SHIFT,
654 PAGE_SIZE, end_pfn);
655 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
657 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
659 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
660 start_pfn, end_pfn);
662 /* Add free regions on this node */
663 for (i = 0; init_node_data[i].end_pfn; i++) {
664 unsigned long start, end;
666 if (init_node_data[i].nid != nid)
667 continue;
669 start = init_node_data[i].start_pfn << PAGE_SHIFT;
670 end = init_node_data[i].end_pfn << PAGE_SHIFT;
672 dbg("free_bootmem %lx %lx\n", start, end - start);
673 free_bootmem_node(NODE_DATA(nid), start, end - start);
676 /* Mark reserved regions on this node */
677 for (i = 0; i < lmb.reserved.cnt; i++) {
678 unsigned long physbase = lmb.reserved.region[i].base;
679 unsigned long size = lmb.reserved.region[i].size;
680 unsigned long start_paddr = start_pfn << PAGE_SHIFT;
681 unsigned long end_paddr = end_pfn << PAGE_SHIFT;
683 if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
684 early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
685 continue;
687 if (physbase < end_paddr &&
688 (physbase+size) > start_paddr) {
689 /* overlaps */
690 if (physbase < start_paddr) {
691 size -= start_paddr - physbase;
692 physbase = start_paddr;
695 if (size > end_paddr - physbase)
696 size = end_paddr - physbase;
698 dbg("reserve_bootmem %lx %lx\n", physbase,
699 size);
700 reserve_bootmem_node(NODE_DATA(nid), physbase,
701 size);
705 /* Add regions into sparsemem */
706 for (i = 0; init_node_data[i].end_pfn; i++) {
707 unsigned long start, end;
709 if (init_node_data[i].nid != nid)
710 continue;
712 start = init_node_data[i].start_pfn;
713 end = init_node_data[i].end_pfn;
715 memory_present(nid, start, end);
720 void __init paging_init(void)
722 unsigned long zones_size[MAX_NR_ZONES];
723 unsigned long zholes_size[MAX_NR_ZONES];
724 int nid;
726 memset(zones_size, 0, sizeof(zones_size));
727 memset(zholes_size, 0, sizeof(zholes_size));
729 for_each_online_node(nid) {
730 unsigned long start_pfn, end_pfn, pages_present;
732 get_region(nid, &start_pfn, &end_pfn, &pages_present);
734 zones_size[ZONE_DMA] = end_pfn - start_pfn;
735 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
737 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
738 zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
740 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
741 zholes_size);
745 static int __init early_numa(char *p)
747 if (!p)
748 return 0;
750 if (strstr(p, "off"))
751 numa_enabled = 0;
753 if (strstr(p, "debug"))
754 numa_debug = 1;
756 return 0;
758 early_param("numa", early_numa);
760 #ifdef CONFIG_MEMORY_HOTPLUG
762 * Find the node associated with a hot added memory section. Section
763 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
764 * sections are fully contained within a single LMB.
766 int hot_add_scn_to_nid(unsigned long scn_addr)
768 struct device_node *memory = NULL;
769 nodemask_t nodes;
770 int numa_domain = 0;
772 if (!numa_enabled || (min_common_depth < 0))
773 return numa_domain;
775 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
776 unsigned long start, size;
777 int ranges;
778 unsigned int *memcell_buf;
779 unsigned int len;
781 memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
782 if (!memcell_buf || len <= 0)
783 continue;
785 /* ranges in cell */
786 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
787 ha_new_range:
788 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
789 size = read_n_cells(n_mem_size_cells, &memcell_buf);
790 numa_domain = of_node_numa_domain(memory);
792 /* Domains not present at boot default to 0 */
793 if (!node_online(numa_domain))
794 numa_domain = any_online_node(NODE_MASK_ALL);
796 if ((scn_addr >= start) && (scn_addr < (start + size))) {
797 of_node_put(memory);
798 goto got_numa_domain;
801 if (--ranges) /* process all ranges in cell */
802 goto ha_new_range;
804 BUG(); /* section address should be found above */
806 /* Temporary code to ensure that returned node is not empty */
807 got_numa_domain:
808 nodes_setall(nodes);
809 while (NODE_DATA(numa_domain)->node_spanned_pages == 0) {
810 node_clear(numa_domain, nodes);
811 numa_domain = any_online_node(nodes);
813 return numa_domain;
815 #endif /* CONFIG_MEMORY_HOTPLUG */