[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / arch / powerpc / platforms / iseries / mf.c
bloba41d8b78c0cd6e15b8e83c57321eff84fb26dbe9
1 /*
2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
37 #include <asm/time.h>
38 #include <asm/uaccess.h>
39 #include <asm/paca.h>
40 #include <asm/abs_addr.h>
41 #include <asm/iseries/vio.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/it_lp_queue.h>
46 #include "setup.h"
48 extern int piranha_simulator;
51 * This is the structure layout for the Machine Facilites LPAR event
52 * flows.
54 struct vsp_cmd_data {
55 u64 token;
56 u16 cmd;
57 HvLpIndex lp_index;
58 u8 result_code;
59 u32 reserved;
60 union {
61 u64 state; /* GetStateOut */
62 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
63 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
64 u64 page[4]; /* GetSrcHistoryIn */
65 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
66 SetAutoIplWhenPrimaryIplsIn,
67 WhiteButtonPowerOffIn,
68 Function08FastPowerOffIn,
69 IsSpcnRackPowerIncompleteOut */
70 struct {
71 u64 token;
72 u64 address_type;
73 u64 side;
74 u32 length;
75 u32 offset;
76 } kern; /* SetKernelImageIn, GetKernelImageIn,
77 SetKernelCmdLineIn, GetKernelCmdLineIn */
78 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
79 u8 reserved[80];
80 } sub_data;
83 struct vsp_rsp_data {
84 struct completion com;
85 struct vsp_cmd_data *response;
88 struct alloc_data {
89 u16 size;
90 u16 type;
91 u32 count;
92 u16 reserved1;
93 u8 reserved2;
94 HvLpIndex target_lp;
97 struct ce_msg_data;
99 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
101 struct ce_msg_comp_data {
102 ce_msg_comp_hdlr handler;
103 void *token;
106 struct ce_msg_data {
107 u8 ce_msg[12];
108 char reserved[4];
109 struct ce_msg_comp_data *completion;
112 struct io_mf_lp_event {
113 struct HvLpEvent hp_lp_event;
114 u16 subtype_result_code;
115 u16 reserved1;
116 u32 reserved2;
117 union {
118 struct alloc_data alloc;
119 struct ce_msg_data ce_msg;
120 struct vsp_cmd_data vsp_cmd;
121 } data;
124 #define subtype_data(a, b, c, d) \
125 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
128 * All outgoing event traffic is kept on a FIFO queue. The first
129 * pointer points to the one that is outstanding, and all new
130 * requests get stuck on the end. Also, we keep a certain number of
131 * preallocated pending events so that we can operate very early in
132 * the boot up sequence (before kmalloc is ready).
134 struct pending_event {
135 struct pending_event *next;
136 struct io_mf_lp_event event;
137 MFCompleteHandler hdlr;
138 char dma_data[72];
139 unsigned dma_data_length;
140 unsigned remote_address;
142 static spinlock_t pending_event_spinlock;
143 static struct pending_event *pending_event_head;
144 static struct pending_event *pending_event_tail;
145 static struct pending_event *pending_event_avail;
146 static struct pending_event pending_event_prealloc[16];
149 * Put a pending event onto the available queue, so it can get reused.
150 * Attention! You must have the pending_event_spinlock before calling!
152 static void free_pending_event(struct pending_event *ev)
154 if (ev != NULL) {
155 ev->next = pending_event_avail;
156 pending_event_avail = ev;
161 * Enqueue the outbound event onto the stack. If the queue was
162 * empty to begin with, we must also issue it via the Hypervisor
163 * interface. There is a section of code below that will touch
164 * the first stack pointer without the protection of the pending_event_spinlock.
165 * This is OK, because we know that nobody else will be modifying
166 * the first pointer when we do this.
168 static int signal_event(struct pending_event *ev)
170 int rc = 0;
171 unsigned long flags;
172 int go = 1;
173 struct pending_event *ev1;
174 HvLpEvent_Rc hv_rc;
176 /* enqueue the event */
177 if (ev != NULL) {
178 ev->next = NULL;
179 spin_lock_irqsave(&pending_event_spinlock, flags);
180 if (pending_event_head == NULL)
181 pending_event_head = ev;
182 else {
183 go = 0;
184 pending_event_tail->next = ev;
186 pending_event_tail = ev;
187 spin_unlock_irqrestore(&pending_event_spinlock, flags);
190 /* send the event */
191 while (go) {
192 go = 0;
194 /* any DMA data to send beforehand? */
195 if (pending_event_head->dma_data_length > 0)
196 HvCallEvent_dmaToSp(pending_event_head->dma_data,
197 pending_event_head->remote_address,
198 pending_event_head->dma_data_length,
199 HvLpDma_Direction_LocalToRemote);
201 hv_rc = HvCallEvent_signalLpEvent(
202 &pending_event_head->event.hp_lp_event);
203 if (hv_rc != HvLpEvent_Rc_Good) {
204 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
205 "failed with %d\n", (int)hv_rc);
207 spin_lock_irqsave(&pending_event_spinlock, flags);
208 ev1 = pending_event_head;
209 pending_event_head = pending_event_head->next;
210 if (pending_event_head != NULL)
211 go = 1;
212 spin_unlock_irqrestore(&pending_event_spinlock, flags);
214 if (ev1 == ev)
215 rc = -EIO;
216 else if (ev1->hdlr != NULL)
217 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
219 spin_lock_irqsave(&pending_event_spinlock, flags);
220 free_pending_event(ev1);
221 spin_unlock_irqrestore(&pending_event_spinlock, flags);
225 return rc;
229 * Allocate a new pending_event structure, and initialize it.
231 static struct pending_event *new_pending_event(void)
233 struct pending_event *ev = NULL;
234 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
235 unsigned long flags;
236 struct HvLpEvent *hev;
238 spin_lock_irqsave(&pending_event_spinlock, flags);
239 if (pending_event_avail != NULL) {
240 ev = pending_event_avail;
241 pending_event_avail = pending_event_avail->next;
243 spin_unlock_irqrestore(&pending_event_spinlock, flags);
244 if (ev == NULL) {
245 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
246 if (ev == NULL) {
247 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
248 sizeof(struct pending_event));
249 return NULL;
252 memset(ev, 0, sizeof(struct pending_event));
253 hev = &ev->event.hp_lp_event;
254 hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
255 hev->xType = HvLpEvent_Type_MachineFac;
256 hev->xSourceLp = HvLpConfig_getLpIndex();
257 hev->xTargetLp = primary_lp;
258 hev->xSizeMinus1 = sizeof(ev->event) - 1;
259 hev->xRc = HvLpEvent_Rc_Good;
260 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
261 HvLpEvent_Type_MachineFac);
262 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
263 HvLpEvent_Type_MachineFac);
265 return ev;
268 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
270 struct pending_event *ev = new_pending_event();
271 int rc;
272 struct vsp_rsp_data response;
274 if (ev == NULL)
275 return -ENOMEM;
277 init_completion(&response.com);
278 response.response = vsp_cmd;
279 ev->event.hp_lp_event.xSubtype = 6;
280 ev->event.hp_lp_event.x.xSubtypeData =
281 subtype_data('M', 'F', 'V', 'I');
282 ev->event.data.vsp_cmd.token = (u64)&response;
283 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
284 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
285 ev->event.data.vsp_cmd.result_code = 0xFF;
286 ev->event.data.vsp_cmd.reserved = 0;
287 memcpy(&(ev->event.data.vsp_cmd.sub_data),
288 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
289 mb();
291 rc = signal_event(ev);
292 if (rc == 0)
293 wait_for_completion(&response.com);
294 return rc;
299 * Send a 12-byte CE message to the primary partition VSP object
301 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
303 struct pending_event *ev = new_pending_event();
305 if (ev == NULL)
306 return -ENOMEM;
308 ev->event.hp_lp_event.xSubtype = 0;
309 ev->event.hp_lp_event.x.xSubtypeData =
310 subtype_data('M', 'F', 'C', 'E');
311 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
312 ev->event.data.ce_msg.completion = completion;
313 return signal_event(ev);
317 * Send a 12-byte CE message (with no data) to the primary partition VSP object
319 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
321 u8 ce_msg[12];
323 memset(ce_msg, 0, sizeof(ce_msg));
324 ce_msg[3] = ce_op;
325 return signal_ce_msg(ce_msg, completion);
329 * Send a 12-byte CE message and DMA data to the primary partition VSP object
331 static int dma_and_signal_ce_msg(char *ce_msg,
332 struct ce_msg_comp_data *completion, void *dma_data,
333 unsigned dma_data_length, unsigned remote_address)
335 struct pending_event *ev = new_pending_event();
337 if (ev == NULL)
338 return -ENOMEM;
340 ev->event.hp_lp_event.xSubtype = 0;
341 ev->event.hp_lp_event.x.xSubtypeData =
342 subtype_data('M', 'F', 'C', 'E');
343 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
344 ev->event.data.ce_msg.completion = completion;
345 memcpy(ev->dma_data, dma_data, dma_data_length);
346 ev->dma_data_length = dma_data_length;
347 ev->remote_address = remote_address;
348 return signal_event(ev);
352 * Initiate a nice (hopefully) shutdown of Linux. We simply are
353 * going to try and send the init process a SIGINT signal. If
354 * this fails (why?), we'll simply force it off in a not-so-nice
355 * manner.
357 static int shutdown(void)
359 int rc = kill_proc(1, SIGINT, 1);
361 if (rc) {
362 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
363 "hard shutdown commencing\n", rc);
364 mf_power_off();
365 } else
366 printk(KERN_INFO "mf.c: init has been successfully notified "
367 "to proceed with shutdown\n");
368 return rc;
372 * The primary partition VSP object is sending us a new
373 * event flow. Handle it...
375 static void handle_int(struct io_mf_lp_event *event)
377 struct ce_msg_data *ce_msg_data;
378 struct ce_msg_data *pce_msg_data;
379 unsigned long flags;
380 struct pending_event *pev;
382 /* ack the interrupt */
383 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
384 HvCallEvent_ackLpEvent(&event->hp_lp_event);
386 /* process interrupt */
387 switch (event->hp_lp_event.xSubtype) {
388 case 0: /* CE message */
389 ce_msg_data = &event->data.ce_msg;
390 switch (ce_msg_data->ce_msg[3]) {
391 case 0x5B: /* power control notification */
392 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
393 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
394 if (shutdown() == 0)
395 signal_ce_msg_simple(0xDB, NULL);
397 break;
398 case 0xC0: /* get time */
399 spin_lock_irqsave(&pending_event_spinlock, flags);
400 pev = pending_event_head;
401 if (pev != NULL)
402 pending_event_head = pending_event_head->next;
403 spin_unlock_irqrestore(&pending_event_spinlock, flags);
404 if (pev == NULL)
405 break;
406 pce_msg_data = &pev->event.data.ce_msg;
407 if (pce_msg_data->ce_msg[3] != 0x40)
408 break;
409 if (pce_msg_data->completion != NULL) {
410 ce_msg_comp_hdlr handler =
411 pce_msg_data->completion->handler;
412 void *token = pce_msg_data->completion->token;
414 if (handler != NULL)
415 (*handler)(token, ce_msg_data);
417 spin_lock_irqsave(&pending_event_spinlock, flags);
418 free_pending_event(pev);
419 spin_unlock_irqrestore(&pending_event_spinlock, flags);
420 /* send next waiting event */
421 if (pending_event_head != NULL)
422 signal_event(NULL);
423 break;
425 break;
426 case 1: /* IT sys shutdown */
427 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
428 shutdown();
429 break;
434 * The primary partition VSP object is acknowledging the receipt
435 * of a flow we sent to them. If there are other flows queued
436 * up, we must send another one now...
438 static void handle_ack(struct io_mf_lp_event *event)
440 unsigned long flags;
441 struct pending_event *two = NULL;
442 unsigned long free_it = 0;
443 struct ce_msg_data *ce_msg_data;
444 struct ce_msg_data *pce_msg_data;
445 struct vsp_rsp_data *rsp;
447 /* handle current event */
448 if (pending_event_head == NULL) {
449 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
450 return;
453 switch (event->hp_lp_event.xSubtype) {
454 case 0: /* CE msg */
455 ce_msg_data = &event->data.ce_msg;
456 if (ce_msg_data->ce_msg[3] != 0x40) {
457 free_it = 1;
458 break;
460 if (ce_msg_data->ce_msg[2] == 0)
461 break;
462 free_it = 1;
463 pce_msg_data = &pending_event_head->event.data.ce_msg;
464 if (pce_msg_data->completion != NULL) {
465 ce_msg_comp_hdlr handler =
466 pce_msg_data->completion->handler;
467 void *token = pce_msg_data->completion->token;
469 if (handler != NULL)
470 (*handler)(token, ce_msg_data);
472 break;
473 case 4: /* allocate */
474 case 5: /* deallocate */
475 if (pending_event_head->hdlr != NULL)
476 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
477 free_it = 1;
478 break;
479 case 6:
480 free_it = 1;
481 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
482 if (rsp == NULL) {
483 printk(KERN_ERR "mf.c: no rsp\n");
484 break;
486 if (rsp->response != NULL)
487 memcpy(rsp->response, &event->data.vsp_cmd,
488 sizeof(event->data.vsp_cmd));
489 complete(&rsp->com);
490 break;
493 /* remove from queue */
494 spin_lock_irqsave(&pending_event_spinlock, flags);
495 if ((pending_event_head != NULL) && (free_it == 1)) {
496 struct pending_event *oldHead = pending_event_head;
498 pending_event_head = pending_event_head->next;
499 two = pending_event_head;
500 free_pending_event(oldHead);
502 spin_unlock_irqrestore(&pending_event_spinlock, flags);
504 /* send next waiting event */
505 if (two != NULL)
506 signal_event(NULL);
510 * This is the generic event handler we are registering with
511 * the Hypervisor. Ensure the flows are for us, and then
512 * parse it enough to know if it is an interrupt or an
513 * acknowledge.
515 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
517 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
518 if (hvlpevent_is_ack(event))
519 handle_ack((struct io_mf_lp_event *)event);
520 else
521 handle_int((struct io_mf_lp_event *)event);
522 } else
523 printk(KERN_ERR "mf.c: alien event received\n");
527 * Global kernel interface to allocate and seed events into the
528 * Hypervisor.
530 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
531 unsigned size, unsigned count, MFCompleteHandler hdlr,
532 void *user_token)
534 struct pending_event *ev = new_pending_event();
535 int rc;
537 if (ev == NULL) {
538 rc = -ENOMEM;
539 } else {
540 ev->event.hp_lp_event.xSubtype = 4;
541 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
542 ev->event.hp_lp_event.x.xSubtypeData =
543 subtype_data('M', 'F', 'M', 'A');
544 ev->event.data.alloc.target_lp = target_lp;
545 ev->event.data.alloc.type = type;
546 ev->event.data.alloc.size = size;
547 ev->event.data.alloc.count = count;
548 ev->hdlr = hdlr;
549 rc = signal_event(ev);
551 if ((rc != 0) && (hdlr != NULL))
552 (*hdlr)(user_token, rc);
554 EXPORT_SYMBOL(mf_allocate_lp_events);
557 * Global kernel interface to unseed and deallocate events already in
558 * Hypervisor.
560 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
561 unsigned count, MFCompleteHandler hdlr, void *user_token)
563 struct pending_event *ev = new_pending_event();
564 int rc;
566 if (ev == NULL)
567 rc = -ENOMEM;
568 else {
569 ev->event.hp_lp_event.xSubtype = 5;
570 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
571 ev->event.hp_lp_event.x.xSubtypeData =
572 subtype_data('M', 'F', 'M', 'D');
573 ev->event.data.alloc.target_lp = target_lp;
574 ev->event.data.alloc.type = type;
575 ev->event.data.alloc.count = count;
576 ev->hdlr = hdlr;
577 rc = signal_event(ev);
579 if ((rc != 0) && (hdlr != NULL))
580 (*hdlr)(user_token, rc);
582 EXPORT_SYMBOL(mf_deallocate_lp_events);
585 * Global kernel interface to tell the VSP object in the primary
586 * partition to power this partition off.
588 void mf_power_off(void)
590 printk(KERN_INFO "mf.c: Down it goes...\n");
591 signal_ce_msg_simple(0x4d, NULL);
592 for (;;)
597 * Global kernel interface to tell the VSP object in the primary
598 * partition to reboot this partition.
600 void mf_reboot(void)
602 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
603 signal_ce_msg_simple(0x4e, NULL);
604 for (;;)
609 * Display a single word SRC onto the VSP control panel.
611 void mf_display_src(u32 word)
613 u8 ce[12];
615 memset(ce, 0, sizeof(ce));
616 ce[3] = 0x4a;
617 ce[7] = 0x01;
618 ce[8] = word >> 24;
619 ce[9] = word >> 16;
620 ce[10] = word >> 8;
621 ce[11] = word;
622 signal_ce_msg(ce, NULL);
626 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
628 void mf_display_progress(u16 value)
630 u8 ce[12];
631 u8 src[72];
633 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
634 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
635 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
636 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
637 "\x00\x00\x00\x00PROGxxxx ",
638 72);
639 src[6] = value >> 8;
640 src[7] = value & 255;
641 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
642 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
643 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
644 src[47] = "0123456789ABCDEF"[value & 15];
645 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
649 * Clear the VSP control panel. Used to "erase" an SRC that was
650 * previously displayed.
652 void mf_clear_src(void)
654 signal_ce_msg_simple(0x4b, NULL);
658 * Initialization code here.
660 void mf_init(void)
662 int i;
664 /* initialize */
665 spin_lock_init(&pending_event_spinlock);
666 for (i = 0;
667 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
668 ++i)
669 free_pending_event(&pending_event_prealloc[i]);
670 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
672 /* virtual continue ack */
673 signal_ce_msg_simple(0x57, NULL);
675 /* initialization complete */
676 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
677 "initialized\n");
680 struct rtc_time_data {
681 struct completion com;
682 struct ce_msg_data ce_msg;
683 int rc;
686 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
688 struct rtc_time_data *rtc = token;
690 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
691 rtc->rc = 0;
692 complete(&rtc->com);
695 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
697 tm->tm_wday = 0;
698 tm->tm_yday = 0;
699 tm->tm_isdst = 0;
700 if (rc) {
701 tm->tm_sec = 0;
702 tm->tm_min = 0;
703 tm->tm_hour = 0;
704 tm->tm_mday = 15;
705 tm->tm_mon = 5;
706 tm->tm_year = 52;
707 return rc;
710 if ((ce_msg[2] == 0xa9) ||
711 (ce_msg[2] == 0xaf)) {
712 /* TOD clock is not set */
713 tm->tm_sec = 1;
714 tm->tm_min = 1;
715 tm->tm_hour = 1;
716 tm->tm_mday = 10;
717 tm->tm_mon = 8;
718 tm->tm_year = 71;
719 mf_set_rtc(tm);
722 u8 year = ce_msg[5];
723 u8 sec = ce_msg[6];
724 u8 min = ce_msg[7];
725 u8 hour = ce_msg[8];
726 u8 day = ce_msg[10];
727 u8 mon = ce_msg[11];
729 BCD_TO_BIN(sec);
730 BCD_TO_BIN(min);
731 BCD_TO_BIN(hour);
732 BCD_TO_BIN(day);
733 BCD_TO_BIN(mon);
734 BCD_TO_BIN(year);
736 if (year <= 69)
737 year += 100;
739 tm->tm_sec = sec;
740 tm->tm_min = min;
741 tm->tm_hour = hour;
742 tm->tm_mday = day;
743 tm->tm_mon = mon;
744 tm->tm_year = year;
747 return 0;
750 int mf_get_rtc(struct rtc_time *tm)
752 struct ce_msg_comp_data ce_complete;
753 struct rtc_time_data rtc_data;
754 int rc;
756 memset(&ce_complete, 0, sizeof(ce_complete));
757 memset(&rtc_data, 0, sizeof(rtc_data));
758 init_completion(&rtc_data.com);
759 ce_complete.handler = &get_rtc_time_complete;
760 ce_complete.token = &rtc_data;
761 rc = signal_ce_msg_simple(0x40, &ce_complete);
762 if (rc)
763 return rc;
764 wait_for_completion(&rtc_data.com);
765 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
768 struct boot_rtc_time_data {
769 int busy;
770 struct ce_msg_data ce_msg;
771 int rc;
774 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
776 struct boot_rtc_time_data *rtc = token;
778 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
779 rtc->rc = 0;
780 rtc->busy = 0;
783 int mf_get_boot_rtc(struct rtc_time *tm)
785 struct ce_msg_comp_data ce_complete;
786 struct boot_rtc_time_data rtc_data;
787 int rc;
789 memset(&ce_complete, 0, sizeof(ce_complete));
790 memset(&rtc_data, 0, sizeof(rtc_data));
791 rtc_data.busy = 1;
792 ce_complete.handler = &get_boot_rtc_time_complete;
793 ce_complete.token = &rtc_data;
794 rc = signal_ce_msg_simple(0x40, &ce_complete);
795 if (rc)
796 return rc;
797 /* We need to poll here as we are not yet taking interrupts */
798 while (rtc_data.busy) {
799 if (hvlpevent_is_pending())
800 process_hvlpevents(NULL);
802 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
805 int mf_set_rtc(struct rtc_time *tm)
807 char ce_time[12];
808 u8 day, mon, hour, min, sec, y1, y2;
809 unsigned year;
811 year = 1900 + tm->tm_year;
812 y1 = year / 100;
813 y2 = year % 100;
815 sec = tm->tm_sec;
816 min = tm->tm_min;
817 hour = tm->tm_hour;
818 day = tm->tm_mday;
819 mon = tm->tm_mon + 1;
821 BIN_TO_BCD(sec);
822 BIN_TO_BCD(min);
823 BIN_TO_BCD(hour);
824 BIN_TO_BCD(mon);
825 BIN_TO_BCD(day);
826 BIN_TO_BCD(y1);
827 BIN_TO_BCD(y2);
829 memset(ce_time, 0, sizeof(ce_time));
830 ce_time[3] = 0x41;
831 ce_time[4] = y1;
832 ce_time[5] = y2;
833 ce_time[6] = sec;
834 ce_time[7] = min;
835 ce_time[8] = hour;
836 ce_time[10] = day;
837 ce_time[11] = mon;
839 return signal_ce_msg(ce_time, NULL);
842 #ifdef CONFIG_PROC_FS
844 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
845 int count, int *eof, void *data)
847 int len;
848 char *p;
849 struct vsp_cmd_data vsp_cmd;
850 int rc;
851 dma_addr_t dma_addr;
853 /* The HV appears to return no more than 256 bytes of command line */
854 if (off >= 256)
855 return 0;
856 if ((off + count) > 256)
857 count = 256 - off;
859 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
860 DMA_FROM_DEVICE);
861 if (dma_mapping_error(dma_addr))
862 return -ENOMEM;
863 memset(page, 0, off + count);
864 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
865 vsp_cmd.cmd = 33;
866 vsp_cmd.sub_data.kern.token = dma_addr;
867 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
868 vsp_cmd.sub_data.kern.side = (u64)data;
869 vsp_cmd.sub_data.kern.length = off + count;
870 mb();
871 rc = signal_vsp_instruction(&vsp_cmd);
872 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
873 DMA_FROM_DEVICE);
874 if (rc)
875 return rc;
876 if (vsp_cmd.result_code != 0)
877 return -ENOMEM;
878 p = page;
879 len = 0;
880 while (len < (off + count)) {
881 if ((*p == '\0') || (*p == '\n')) {
882 if (*p == '\0')
883 *p = '\n';
884 p++;
885 len++;
886 *eof = 1;
887 break;
889 p++;
890 len++;
893 if (len < off) {
894 *eof = 1;
895 len = 0;
897 return len;
900 #if 0
901 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
903 struct vsp_cmd_data vsp_cmd;
904 int rc;
905 int len = *size;
906 dma_addr_t dma_addr;
908 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
909 DMA_FROM_DEVICE);
910 memset(buffer, 0, len);
911 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
912 vsp_cmd.cmd = 32;
913 vsp_cmd.sub_data.kern.token = dma_addr;
914 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
915 vsp_cmd.sub_data.kern.side = side;
916 vsp_cmd.sub_data.kern.offset = offset;
917 vsp_cmd.sub_data.kern.length = len;
918 mb();
919 rc = signal_vsp_instruction(&vsp_cmd);
920 if (rc == 0) {
921 if (vsp_cmd.result_code == 0)
922 *size = vsp_cmd.sub_data.length_out;
923 else
924 rc = -ENOMEM;
927 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
929 return rc;
932 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
933 int count, int *eof, void *data)
935 int sizeToGet = count;
937 if (!capable(CAP_SYS_ADMIN))
938 return -EACCES;
940 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
941 if (sizeToGet != 0) {
942 *start = page + off;
943 return sizeToGet;
945 *eof = 1;
946 return 0;
948 *eof = 1;
949 return 0;
951 #endif
953 static int proc_mf_dump_side(char *page, char **start, off_t off,
954 int count, int *eof, void *data)
956 int len;
957 char mf_current_side = ' ';
958 struct vsp_cmd_data vsp_cmd;
960 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
961 vsp_cmd.cmd = 2;
962 vsp_cmd.sub_data.ipl_type = 0;
963 mb();
965 if (signal_vsp_instruction(&vsp_cmd) == 0) {
966 if (vsp_cmd.result_code == 0) {
967 switch (vsp_cmd.sub_data.ipl_type) {
968 case 0: mf_current_side = 'A';
969 break;
970 case 1: mf_current_side = 'B';
971 break;
972 case 2: mf_current_side = 'C';
973 break;
974 default: mf_current_side = 'D';
975 break;
980 len = sprintf(page, "%c\n", mf_current_side);
982 if (len <= (off + count))
983 *eof = 1;
984 *start = page + off;
985 len -= off;
986 if (len > count)
987 len = count;
988 if (len < 0)
989 len = 0;
990 return len;
993 static int proc_mf_change_side(struct file *file, const char __user *buffer,
994 unsigned long count, void *data)
996 char side;
997 u64 newSide;
998 struct vsp_cmd_data vsp_cmd;
1000 if (!capable(CAP_SYS_ADMIN))
1001 return -EACCES;
1003 if (count == 0)
1004 return 0;
1006 if (get_user(side, buffer))
1007 return -EFAULT;
1009 switch (side) {
1010 case 'A': newSide = 0;
1011 break;
1012 case 'B': newSide = 1;
1013 break;
1014 case 'C': newSide = 2;
1015 break;
1016 case 'D': newSide = 3;
1017 break;
1018 default:
1019 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1020 return -EINVAL;
1023 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1024 vsp_cmd.sub_data.ipl_type = newSide;
1025 vsp_cmd.cmd = 10;
1027 (void)signal_vsp_instruction(&vsp_cmd);
1029 return count;
1032 #if 0
1033 static void mf_getSrcHistory(char *buffer, int size)
1035 struct IplTypeReturnStuff return_stuff;
1036 struct pending_event *ev = new_pending_event();
1037 int rc = 0;
1038 char *pages[4];
1040 pages[0] = kmalloc(4096, GFP_ATOMIC);
1041 pages[1] = kmalloc(4096, GFP_ATOMIC);
1042 pages[2] = kmalloc(4096, GFP_ATOMIC);
1043 pages[3] = kmalloc(4096, GFP_ATOMIC);
1044 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1045 || (pages[2] == NULL) || (pages[3] == NULL))
1046 return -ENOMEM;
1048 return_stuff.xType = 0;
1049 return_stuff.xRc = 0;
1050 return_stuff.xDone = 0;
1051 ev->event.hp_lp_event.xSubtype = 6;
1052 ev->event.hp_lp_event.x.xSubtypeData =
1053 subtype_data('M', 'F', 'V', 'I');
1054 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1055 ev->event.data.vsp_cmd.cmd = 4;
1056 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1057 ev->event.data.vsp_cmd.result_code = 0xFF;
1058 ev->event.data.vsp_cmd.reserved = 0;
1059 ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1060 ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1061 ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1062 ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1063 mb();
1064 if (signal_event(ev) != 0)
1065 return;
1067 while (return_stuff.xDone != 1)
1068 udelay(10);
1069 if (return_stuff.xRc == 0)
1070 memcpy(buffer, pages[0], size);
1071 kfree(pages[0]);
1072 kfree(pages[1]);
1073 kfree(pages[2]);
1074 kfree(pages[3]);
1076 #endif
1078 static int proc_mf_dump_src(char *page, char **start, off_t off,
1079 int count, int *eof, void *data)
1081 #if 0
1082 int len;
1084 mf_getSrcHistory(page, count);
1085 len = count;
1086 len -= off;
1087 if (len < count) {
1088 *eof = 1;
1089 if (len <= 0)
1090 return 0;
1091 } else
1092 len = count;
1093 *start = page + off;
1094 return len;
1095 #else
1096 return 0;
1097 #endif
1100 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1101 unsigned long count, void *data)
1103 char stkbuf[10];
1105 if (!capable(CAP_SYS_ADMIN))
1106 return -EACCES;
1108 if ((count < 4) && (count != 1)) {
1109 printk(KERN_ERR "mf_proc: invalid src\n");
1110 return -EINVAL;
1113 if (count > (sizeof(stkbuf) - 1))
1114 count = sizeof(stkbuf) - 1;
1115 if (copy_from_user(stkbuf, buffer, count))
1116 return -EFAULT;
1118 if ((count == 1) && (*stkbuf == '\0'))
1119 mf_clear_src();
1120 else
1121 mf_display_src(*(u32 *)stkbuf);
1123 return count;
1126 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1127 unsigned long count, void *data)
1129 struct vsp_cmd_data vsp_cmd;
1130 dma_addr_t dma_addr;
1131 char *page;
1132 int ret = -EACCES;
1134 if (!capable(CAP_SYS_ADMIN))
1135 goto out;
1137 dma_addr = 0;
1138 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1139 GFP_ATOMIC);
1140 ret = -ENOMEM;
1141 if (page == NULL)
1142 goto out;
1144 ret = -EFAULT;
1145 if (copy_from_user(page, buffer, count))
1146 goto out_free;
1148 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1149 vsp_cmd.cmd = 31;
1150 vsp_cmd.sub_data.kern.token = dma_addr;
1151 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1152 vsp_cmd.sub_data.kern.side = (u64)data;
1153 vsp_cmd.sub_data.kern.length = count;
1154 mb();
1155 (void)signal_vsp_instruction(&vsp_cmd);
1156 ret = count;
1158 out_free:
1159 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1160 out:
1161 return ret;
1164 static ssize_t proc_mf_change_vmlinux(struct file *file,
1165 const char __user *buf,
1166 size_t count, loff_t *ppos)
1168 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1169 ssize_t rc;
1170 dma_addr_t dma_addr;
1171 char *page;
1172 struct vsp_cmd_data vsp_cmd;
1174 rc = -EACCES;
1175 if (!capable(CAP_SYS_ADMIN))
1176 goto out;
1178 dma_addr = 0;
1179 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1180 GFP_ATOMIC);
1181 rc = -ENOMEM;
1182 if (page == NULL) {
1183 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1184 goto out;
1186 rc = -EFAULT;
1187 if (copy_from_user(page, buf, count))
1188 goto out_free;
1190 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1191 vsp_cmd.cmd = 30;
1192 vsp_cmd.sub_data.kern.token = dma_addr;
1193 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1194 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1195 vsp_cmd.sub_data.kern.offset = *ppos;
1196 vsp_cmd.sub_data.kern.length = count;
1197 mb();
1198 rc = signal_vsp_instruction(&vsp_cmd);
1199 if (rc)
1200 goto out_free;
1201 rc = -ENOMEM;
1202 if (vsp_cmd.result_code != 0)
1203 goto out_free;
1205 *ppos += count;
1206 rc = count;
1207 out_free:
1208 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1209 out:
1210 return rc;
1213 static struct file_operations proc_vmlinux_operations = {
1214 .write = proc_mf_change_vmlinux,
1217 static int __init mf_proc_init(void)
1219 struct proc_dir_entry *mf_proc_root;
1220 struct proc_dir_entry *ent;
1221 struct proc_dir_entry *mf;
1222 char name[2];
1223 int i;
1225 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1226 if (!mf_proc_root)
1227 return 1;
1229 name[1] = '\0';
1230 for (i = 0; i < 4; i++) {
1231 name[0] = 'A' + i;
1232 mf = proc_mkdir(name, mf_proc_root);
1233 if (!mf)
1234 return 1;
1236 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1237 if (!ent)
1238 return 1;
1239 ent->nlink = 1;
1240 ent->data = (void *)(long)i;
1241 ent->read_proc = proc_mf_dump_cmdline;
1242 ent->write_proc = proc_mf_change_cmdline;
1244 if (i == 3) /* no vmlinux entry for 'D' */
1245 continue;
1247 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1248 if (!ent)
1249 return 1;
1250 ent->nlink = 1;
1251 ent->data = (void *)(long)i;
1252 ent->proc_fops = &proc_vmlinux_operations;
1255 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1256 if (!ent)
1257 return 1;
1258 ent->nlink = 1;
1259 ent->data = (void *)0;
1260 ent->read_proc = proc_mf_dump_side;
1261 ent->write_proc = proc_mf_change_side;
1263 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1264 if (!ent)
1265 return 1;
1266 ent->nlink = 1;
1267 ent->data = (void *)0;
1268 ent->read_proc = proc_mf_dump_src;
1269 ent->write_proc = proc_mf_change_src;
1271 return 0;
1274 __initcall(mf_proc_init);
1276 #endif /* CONFIG_PROC_FS */
1279 * Get the RTC from the virtual service processor
1280 * This requires flowing LpEvents to the primary partition
1282 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1284 if (piranha_simulator)
1285 return;
1287 mf_get_rtc(rtc_tm);
1288 rtc_tm->tm_mon--;
1292 * Set the RTC in the virtual service processor
1293 * This requires flowing LpEvents to the primary partition
1295 int iSeries_set_rtc_time(struct rtc_time *tm)
1297 mf_set_rtc(tm);
1298 return 0;
1301 unsigned long iSeries_get_boot_time(void)
1303 struct rtc_time tm;
1305 if (piranha_simulator)
1306 return 0;
1308 mf_get_boot_rtc(&tm);
1309 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1310 tm.tm_hour, tm.tm_min, tm.tm_sec);