2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
38 #include <asm/uaccess.h>
40 #include <asm/abs_addr.h>
41 #include <asm/iseries/vio.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/it_lp_queue.h>
48 extern int piranha_simulator
;
51 * This is the structure layout for the Machine Facilites LPAR event
61 u64 state
; /* GetStateOut */
62 u64 ipl_type
; /* GetIplTypeOut, Function02SelectIplTypeIn */
63 u64 ipl_mode
; /* GetIplModeOut, Function02SelectIplModeIn */
64 u64 page
[4]; /* GetSrcHistoryIn */
65 u64 flag
; /* GetAutoIplWhenPrimaryIplsOut,
66 SetAutoIplWhenPrimaryIplsIn,
67 WhiteButtonPowerOffIn,
68 Function08FastPowerOffIn,
69 IsSpcnRackPowerIncompleteOut */
76 } kern
; /* SetKernelImageIn, GetKernelImageIn,
77 SetKernelCmdLineIn, GetKernelCmdLineIn */
78 u32 length_out
; /* GetKernelImageOut, GetKernelCmdLineOut */
84 struct completion com
;
85 struct vsp_cmd_data
*response
;
99 typedef void (*ce_msg_comp_hdlr
)(void *token
, struct ce_msg_data
*vsp_cmd_rsp
);
101 struct ce_msg_comp_data
{
102 ce_msg_comp_hdlr handler
;
109 struct ce_msg_comp_data
*completion
;
112 struct io_mf_lp_event
{
113 struct HvLpEvent hp_lp_event
;
114 u16 subtype_result_code
;
118 struct alloc_data alloc
;
119 struct ce_msg_data ce_msg
;
120 struct vsp_cmd_data vsp_cmd
;
124 #define subtype_data(a, b, c, d) \
125 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
128 * All outgoing event traffic is kept on a FIFO queue. The first
129 * pointer points to the one that is outstanding, and all new
130 * requests get stuck on the end. Also, we keep a certain number of
131 * preallocated pending events so that we can operate very early in
132 * the boot up sequence (before kmalloc is ready).
134 struct pending_event
{
135 struct pending_event
*next
;
136 struct io_mf_lp_event event
;
137 MFCompleteHandler hdlr
;
139 unsigned dma_data_length
;
140 unsigned remote_address
;
142 static spinlock_t pending_event_spinlock
;
143 static struct pending_event
*pending_event_head
;
144 static struct pending_event
*pending_event_tail
;
145 static struct pending_event
*pending_event_avail
;
146 static struct pending_event pending_event_prealloc
[16];
149 * Put a pending event onto the available queue, so it can get reused.
150 * Attention! You must have the pending_event_spinlock before calling!
152 static void free_pending_event(struct pending_event
*ev
)
155 ev
->next
= pending_event_avail
;
156 pending_event_avail
= ev
;
161 * Enqueue the outbound event onto the stack. If the queue was
162 * empty to begin with, we must also issue it via the Hypervisor
163 * interface. There is a section of code below that will touch
164 * the first stack pointer without the protection of the pending_event_spinlock.
165 * This is OK, because we know that nobody else will be modifying
166 * the first pointer when we do this.
168 static int signal_event(struct pending_event
*ev
)
173 struct pending_event
*ev1
;
176 /* enqueue the event */
179 spin_lock_irqsave(&pending_event_spinlock
, flags
);
180 if (pending_event_head
== NULL
)
181 pending_event_head
= ev
;
184 pending_event_tail
->next
= ev
;
186 pending_event_tail
= ev
;
187 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
194 /* any DMA data to send beforehand? */
195 if (pending_event_head
->dma_data_length
> 0)
196 HvCallEvent_dmaToSp(pending_event_head
->dma_data
,
197 pending_event_head
->remote_address
,
198 pending_event_head
->dma_data_length
,
199 HvLpDma_Direction_LocalToRemote
);
201 hv_rc
= HvCallEvent_signalLpEvent(
202 &pending_event_head
->event
.hp_lp_event
);
203 if (hv_rc
!= HvLpEvent_Rc_Good
) {
204 printk(KERN_ERR
"mf.c: HvCallEvent_signalLpEvent() "
205 "failed with %d\n", (int)hv_rc
);
207 spin_lock_irqsave(&pending_event_spinlock
, flags
);
208 ev1
= pending_event_head
;
209 pending_event_head
= pending_event_head
->next
;
210 if (pending_event_head
!= NULL
)
212 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
216 else if (ev1
->hdlr
!= NULL
)
217 (*ev1
->hdlr
)((void *)ev1
->event
.hp_lp_event
.xCorrelationToken
, -EIO
);
219 spin_lock_irqsave(&pending_event_spinlock
, flags
);
220 free_pending_event(ev1
);
221 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
229 * Allocate a new pending_event structure, and initialize it.
231 static struct pending_event
*new_pending_event(void)
233 struct pending_event
*ev
= NULL
;
234 HvLpIndex primary_lp
= HvLpConfig_getPrimaryLpIndex();
236 struct HvLpEvent
*hev
;
238 spin_lock_irqsave(&pending_event_spinlock
, flags
);
239 if (pending_event_avail
!= NULL
) {
240 ev
= pending_event_avail
;
241 pending_event_avail
= pending_event_avail
->next
;
243 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
245 ev
= kmalloc(sizeof(struct pending_event
), GFP_ATOMIC
);
247 printk(KERN_ERR
"mf.c: unable to kmalloc %ld bytes\n",
248 sizeof(struct pending_event
));
252 memset(ev
, 0, sizeof(struct pending_event
));
253 hev
= &ev
->event
.hp_lp_event
;
254 hev
->flags
= HV_LP_EVENT_VALID
| HV_LP_EVENT_DO_ACK
| HV_LP_EVENT_INT
;
255 hev
->xType
= HvLpEvent_Type_MachineFac
;
256 hev
->xSourceLp
= HvLpConfig_getLpIndex();
257 hev
->xTargetLp
= primary_lp
;
258 hev
->xSizeMinus1
= sizeof(ev
->event
) - 1;
259 hev
->xRc
= HvLpEvent_Rc_Good
;
260 hev
->xSourceInstanceId
= HvCallEvent_getSourceLpInstanceId(primary_lp
,
261 HvLpEvent_Type_MachineFac
);
262 hev
->xTargetInstanceId
= HvCallEvent_getTargetLpInstanceId(primary_lp
,
263 HvLpEvent_Type_MachineFac
);
268 static int signal_vsp_instruction(struct vsp_cmd_data
*vsp_cmd
)
270 struct pending_event
*ev
= new_pending_event();
272 struct vsp_rsp_data response
;
277 init_completion(&response
.com
);
278 response
.response
= vsp_cmd
;
279 ev
->event
.hp_lp_event
.xSubtype
= 6;
280 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
281 subtype_data('M', 'F', 'V', 'I');
282 ev
->event
.data
.vsp_cmd
.token
= (u64
)&response
;
283 ev
->event
.data
.vsp_cmd
.cmd
= vsp_cmd
->cmd
;
284 ev
->event
.data
.vsp_cmd
.lp_index
= HvLpConfig_getLpIndex();
285 ev
->event
.data
.vsp_cmd
.result_code
= 0xFF;
286 ev
->event
.data
.vsp_cmd
.reserved
= 0;
287 memcpy(&(ev
->event
.data
.vsp_cmd
.sub_data
),
288 &(vsp_cmd
->sub_data
), sizeof(vsp_cmd
->sub_data
));
291 rc
= signal_event(ev
);
293 wait_for_completion(&response
.com
);
299 * Send a 12-byte CE message to the primary partition VSP object
301 static int signal_ce_msg(char *ce_msg
, struct ce_msg_comp_data
*completion
)
303 struct pending_event
*ev
= new_pending_event();
308 ev
->event
.hp_lp_event
.xSubtype
= 0;
309 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
310 subtype_data('M', 'F', 'C', 'E');
311 memcpy(ev
->event
.data
.ce_msg
.ce_msg
, ce_msg
, 12);
312 ev
->event
.data
.ce_msg
.completion
= completion
;
313 return signal_event(ev
);
317 * Send a 12-byte CE message (with no data) to the primary partition VSP object
319 static int signal_ce_msg_simple(u8 ce_op
, struct ce_msg_comp_data
*completion
)
323 memset(ce_msg
, 0, sizeof(ce_msg
));
325 return signal_ce_msg(ce_msg
, completion
);
329 * Send a 12-byte CE message and DMA data to the primary partition VSP object
331 static int dma_and_signal_ce_msg(char *ce_msg
,
332 struct ce_msg_comp_data
*completion
, void *dma_data
,
333 unsigned dma_data_length
, unsigned remote_address
)
335 struct pending_event
*ev
= new_pending_event();
340 ev
->event
.hp_lp_event
.xSubtype
= 0;
341 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
342 subtype_data('M', 'F', 'C', 'E');
343 memcpy(ev
->event
.data
.ce_msg
.ce_msg
, ce_msg
, 12);
344 ev
->event
.data
.ce_msg
.completion
= completion
;
345 memcpy(ev
->dma_data
, dma_data
, dma_data_length
);
346 ev
->dma_data_length
= dma_data_length
;
347 ev
->remote_address
= remote_address
;
348 return signal_event(ev
);
352 * Initiate a nice (hopefully) shutdown of Linux. We simply are
353 * going to try and send the init process a SIGINT signal. If
354 * this fails (why?), we'll simply force it off in a not-so-nice
357 static int shutdown(void)
359 int rc
= kill_proc(1, SIGINT
, 1);
362 printk(KERN_ALERT
"mf.c: SIGINT to init failed (%d), "
363 "hard shutdown commencing\n", rc
);
366 printk(KERN_INFO
"mf.c: init has been successfully notified "
367 "to proceed with shutdown\n");
372 * The primary partition VSP object is sending us a new
373 * event flow. Handle it...
375 static void handle_int(struct io_mf_lp_event
*event
)
377 struct ce_msg_data
*ce_msg_data
;
378 struct ce_msg_data
*pce_msg_data
;
380 struct pending_event
*pev
;
382 /* ack the interrupt */
383 event
->hp_lp_event
.xRc
= HvLpEvent_Rc_Good
;
384 HvCallEvent_ackLpEvent(&event
->hp_lp_event
);
386 /* process interrupt */
387 switch (event
->hp_lp_event
.xSubtype
) {
388 case 0: /* CE message */
389 ce_msg_data
= &event
->data
.ce_msg
;
390 switch (ce_msg_data
->ce_msg
[3]) {
391 case 0x5B: /* power control notification */
392 if ((ce_msg_data
->ce_msg
[5] & 0x20) != 0) {
393 printk(KERN_INFO
"mf.c: Commencing partition shutdown\n");
395 signal_ce_msg_simple(0xDB, NULL
);
398 case 0xC0: /* get time */
399 spin_lock_irqsave(&pending_event_spinlock
, flags
);
400 pev
= pending_event_head
;
402 pending_event_head
= pending_event_head
->next
;
403 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
406 pce_msg_data
= &pev
->event
.data
.ce_msg
;
407 if (pce_msg_data
->ce_msg
[3] != 0x40)
409 if (pce_msg_data
->completion
!= NULL
) {
410 ce_msg_comp_hdlr handler
=
411 pce_msg_data
->completion
->handler
;
412 void *token
= pce_msg_data
->completion
->token
;
415 (*handler
)(token
, ce_msg_data
);
417 spin_lock_irqsave(&pending_event_spinlock
, flags
);
418 free_pending_event(pev
);
419 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
420 /* send next waiting event */
421 if (pending_event_head
!= NULL
)
426 case 1: /* IT sys shutdown */
427 printk(KERN_INFO
"mf.c: Commencing system shutdown\n");
434 * The primary partition VSP object is acknowledging the receipt
435 * of a flow we sent to them. If there are other flows queued
436 * up, we must send another one now...
438 static void handle_ack(struct io_mf_lp_event
*event
)
441 struct pending_event
*two
= NULL
;
442 unsigned long free_it
= 0;
443 struct ce_msg_data
*ce_msg_data
;
444 struct ce_msg_data
*pce_msg_data
;
445 struct vsp_rsp_data
*rsp
;
447 /* handle current event */
448 if (pending_event_head
== NULL
) {
449 printk(KERN_ERR
"mf.c: stack empty for receiving ack\n");
453 switch (event
->hp_lp_event
.xSubtype
) {
455 ce_msg_data
= &event
->data
.ce_msg
;
456 if (ce_msg_data
->ce_msg
[3] != 0x40) {
460 if (ce_msg_data
->ce_msg
[2] == 0)
463 pce_msg_data
= &pending_event_head
->event
.data
.ce_msg
;
464 if (pce_msg_data
->completion
!= NULL
) {
465 ce_msg_comp_hdlr handler
=
466 pce_msg_data
->completion
->handler
;
467 void *token
= pce_msg_data
->completion
->token
;
470 (*handler
)(token
, ce_msg_data
);
473 case 4: /* allocate */
474 case 5: /* deallocate */
475 if (pending_event_head
->hdlr
!= NULL
)
476 (*pending_event_head
->hdlr
)((void *)event
->hp_lp_event
.xCorrelationToken
, event
->data
.alloc
.count
);
481 rsp
= (struct vsp_rsp_data
*)event
->data
.vsp_cmd
.token
;
483 printk(KERN_ERR
"mf.c: no rsp\n");
486 if (rsp
->response
!= NULL
)
487 memcpy(rsp
->response
, &event
->data
.vsp_cmd
,
488 sizeof(event
->data
.vsp_cmd
));
493 /* remove from queue */
494 spin_lock_irqsave(&pending_event_spinlock
, flags
);
495 if ((pending_event_head
!= NULL
) && (free_it
== 1)) {
496 struct pending_event
*oldHead
= pending_event_head
;
498 pending_event_head
= pending_event_head
->next
;
499 two
= pending_event_head
;
500 free_pending_event(oldHead
);
502 spin_unlock_irqrestore(&pending_event_spinlock
, flags
);
504 /* send next waiting event */
510 * This is the generic event handler we are registering with
511 * the Hypervisor. Ensure the flows are for us, and then
512 * parse it enough to know if it is an interrupt or an
515 static void hv_handler(struct HvLpEvent
*event
, struct pt_regs
*regs
)
517 if ((event
!= NULL
) && (event
->xType
== HvLpEvent_Type_MachineFac
)) {
518 if (hvlpevent_is_ack(event
))
519 handle_ack((struct io_mf_lp_event
*)event
);
521 handle_int((struct io_mf_lp_event
*)event
);
523 printk(KERN_ERR
"mf.c: alien event received\n");
527 * Global kernel interface to allocate and seed events into the
530 void mf_allocate_lp_events(HvLpIndex target_lp
, HvLpEvent_Type type
,
531 unsigned size
, unsigned count
, MFCompleteHandler hdlr
,
534 struct pending_event
*ev
= new_pending_event();
540 ev
->event
.hp_lp_event
.xSubtype
= 4;
541 ev
->event
.hp_lp_event
.xCorrelationToken
= (u64
)user_token
;
542 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
543 subtype_data('M', 'F', 'M', 'A');
544 ev
->event
.data
.alloc
.target_lp
= target_lp
;
545 ev
->event
.data
.alloc
.type
= type
;
546 ev
->event
.data
.alloc
.size
= size
;
547 ev
->event
.data
.alloc
.count
= count
;
549 rc
= signal_event(ev
);
551 if ((rc
!= 0) && (hdlr
!= NULL
))
552 (*hdlr
)(user_token
, rc
);
554 EXPORT_SYMBOL(mf_allocate_lp_events
);
557 * Global kernel interface to unseed and deallocate events already in
560 void mf_deallocate_lp_events(HvLpIndex target_lp
, HvLpEvent_Type type
,
561 unsigned count
, MFCompleteHandler hdlr
, void *user_token
)
563 struct pending_event
*ev
= new_pending_event();
569 ev
->event
.hp_lp_event
.xSubtype
= 5;
570 ev
->event
.hp_lp_event
.xCorrelationToken
= (u64
)user_token
;
571 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
572 subtype_data('M', 'F', 'M', 'D');
573 ev
->event
.data
.alloc
.target_lp
= target_lp
;
574 ev
->event
.data
.alloc
.type
= type
;
575 ev
->event
.data
.alloc
.count
= count
;
577 rc
= signal_event(ev
);
579 if ((rc
!= 0) && (hdlr
!= NULL
))
580 (*hdlr
)(user_token
, rc
);
582 EXPORT_SYMBOL(mf_deallocate_lp_events
);
585 * Global kernel interface to tell the VSP object in the primary
586 * partition to power this partition off.
588 void mf_power_off(void)
590 printk(KERN_INFO
"mf.c: Down it goes...\n");
591 signal_ce_msg_simple(0x4d, NULL
);
597 * Global kernel interface to tell the VSP object in the primary
598 * partition to reboot this partition.
602 printk(KERN_INFO
"mf.c: Preparing to bounce...\n");
603 signal_ce_msg_simple(0x4e, NULL
);
609 * Display a single word SRC onto the VSP control panel.
611 void mf_display_src(u32 word
)
615 memset(ce
, 0, sizeof(ce
));
622 signal_ce_msg(ce
, NULL
);
626 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
628 void mf_display_progress(u16 value
)
633 memcpy(ce
, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
634 memcpy(src
, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
635 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
636 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
637 "\x00\x00\x00\x00PROGxxxx ",
640 src
[7] = value
& 255;
641 src
[44] = "0123456789ABCDEF"[(value
>> 12) & 15];
642 src
[45] = "0123456789ABCDEF"[(value
>> 8) & 15];
643 src
[46] = "0123456789ABCDEF"[(value
>> 4) & 15];
644 src
[47] = "0123456789ABCDEF"[value
& 15];
645 dma_and_signal_ce_msg(ce
, NULL
, src
, sizeof(src
), 9 * 64 * 1024);
649 * Clear the VSP control panel. Used to "erase" an SRC that was
650 * previously displayed.
652 void mf_clear_src(void)
654 signal_ce_msg_simple(0x4b, NULL
);
658 * Initialization code here.
665 spin_lock_init(&pending_event_spinlock
);
667 i
< sizeof(pending_event_prealloc
) / sizeof(*pending_event_prealloc
);
669 free_pending_event(&pending_event_prealloc
[i
]);
670 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac
, &hv_handler
);
672 /* virtual continue ack */
673 signal_ce_msg_simple(0x57, NULL
);
675 /* initialization complete */
676 printk(KERN_NOTICE
"mf.c: iSeries Linux LPAR Machine Facilities "
680 struct rtc_time_data
{
681 struct completion com
;
682 struct ce_msg_data ce_msg
;
686 static void get_rtc_time_complete(void *token
, struct ce_msg_data
*ce_msg
)
688 struct rtc_time_data
*rtc
= token
;
690 memcpy(&rtc
->ce_msg
, ce_msg
, sizeof(rtc
->ce_msg
));
695 static int rtc_set_tm(int rc
, u8
*ce_msg
, struct rtc_time
*tm
)
710 if ((ce_msg
[2] == 0xa9) ||
711 (ce_msg
[2] == 0xaf)) {
712 /* TOD clock is not set */
750 int mf_get_rtc(struct rtc_time
*tm
)
752 struct ce_msg_comp_data ce_complete
;
753 struct rtc_time_data rtc_data
;
756 memset(&ce_complete
, 0, sizeof(ce_complete
));
757 memset(&rtc_data
, 0, sizeof(rtc_data
));
758 init_completion(&rtc_data
.com
);
759 ce_complete
.handler
= &get_rtc_time_complete
;
760 ce_complete
.token
= &rtc_data
;
761 rc
= signal_ce_msg_simple(0x40, &ce_complete
);
764 wait_for_completion(&rtc_data
.com
);
765 return rtc_set_tm(rtc_data
.rc
, rtc_data
.ce_msg
.ce_msg
, tm
);
768 struct boot_rtc_time_data
{
770 struct ce_msg_data ce_msg
;
774 static void get_boot_rtc_time_complete(void *token
, struct ce_msg_data
*ce_msg
)
776 struct boot_rtc_time_data
*rtc
= token
;
778 memcpy(&rtc
->ce_msg
, ce_msg
, sizeof(rtc
->ce_msg
));
783 int mf_get_boot_rtc(struct rtc_time
*tm
)
785 struct ce_msg_comp_data ce_complete
;
786 struct boot_rtc_time_data rtc_data
;
789 memset(&ce_complete
, 0, sizeof(ce_complete
));
790 memset(&rtc_data
, 0, sizeof(rtc_data
));
792 ce_complete
.handler
= &get_boot_rtc_time_complete
;
793 ce_complete
.token
= &rtc_data
;
794 rc
= signal_ce_msg_simple(0x40, &ce_complete
);
797 /* We need to poll here as we are not yet taking interrupts */
798 while (rtc_data
.busy
) {
799 if (hvlpevent_is_pending())
800 process_hvlpevents(NULL
);
802 return rtc_set_tm(rtc_data
.rc
, rtc_data
.ce_msg
.ce_msg
, tm
);
805 int mf_set_rtc(struct rtc_time
*tm
)
808 u8 day
, mon
, hour
, min
, sec
, y1
, y2
;
811 year
= 1900 + tm
->tm_year
;
819 mon
= tm
->tm_mon
+ 1;
829 memset(ce_time
, 0, sizeof(ce_time
));
839 return signal_ce_msg(ce_time
, NULL
);
842 #ifdef CONFIG_PROC_FS
844 static int proc_mf_dump_cmdline(char *page
, char **start
, off_t off
,
845 int count
, int *eof
, void *data
)
849 struct vsp_cmd_data vsp_cmd
;
853 /* The HV appears to return no more than 256 bytes of command line */
856 if ((off
+ count
) > 256)
859 dma_addr
= dma_map_single(iSeries_vio_dev
, page
, off
+ count
,
861 if (dma_mapping_error(dma_addr
))
863 memset(page
, 0, off
+ count
);
864 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
866 vsp_cmd
.sub_data
.kern
.token
= dma_addr
;
867 vsp_cmd
.sub_data
.kern
.address_type
= HvLpDma_AddressType_TceIndex
;
868 vsp_cmd
.sub_data
.kern
.side
= (u64
)data
;
869 vsp_cmd
.sub_data
.kern
.length
= off
+ count
;
871 rc
= signal_vsp_instruction(&vsp_cmd
);
872 dma_unmap_single(iSeries_vio_dev
, dma_addr
, off
+ count
,
876 if (vsp_cmd
.result_code
!= 0)
880 while (len
< (off
+ count
)) {
881 if ((*p
== '\0') || (*p
== '\n')) {
901 static int mf_getVmlinuxChunk(char *buffer
, int *size
, int offset
, u64 side
)
903 struct vsp_cmd_data vsp_cmd
;
908 dma_addr
= dma_map_single(iSeries_vio_dev
, buffer
, len
,
910 memset(buffer
, 0, len
);
911 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
913 vsp_cmd
.sub_data
.kern
.token
= dma_addr
;
914 vsp_cmd
.sub_data
.kern
.address_type
= HvLpDma_AddressType_TceIndex
;
915 vsp_cmd
.sub_data
.kern
.side
= side
;
916 vsp_cmd
.sub_data
.kern
.offset
= offset
;
917 vsp_cmd
.sub_data
.kern
.length
= len
;
919 rc
= signal_vsp_instruction(&vsp_cmd
);
921 if (vsp_cmd
.result_code
== 0)
922 *size
= vsp_cmd
.sub_data
.length_out
;
927 dma_unmap_single(iSeries_vio_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
932 static int proc_mf_dump_vmlinux(char *page
, char **start
, off_t off
,
933 int count
, int *eof
, void *data
)
935 int sizeToGet
= count
;
937 if (!capable(CAP_SYS_ADMIN
))
940 if (mf_getVmlinuxChunk(page
, &sizeToGet
, off
, (u64
)data
) == 0) {
941 if (sizeToGet
!= 0) {
953 static int proc_mf_dump_side(char *page
, char **start
, off_t off
,
954 int count
, int *eof
, void *data
)
957 char mf_current_side
= ' ';
958 struct vsp_cmd_data vsp_cmd
;
960 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
962 vsp_cmd
.sub_data
.ipl_type
= 0;
965 if (signal_vsp_instruction(&vsp_cmd
) == 0) {
966 if (vsp_cmd
.result_code
== 0) {
967 switch (vsp_cmd
.sub_data
.ipl_type
) {
968 case 0: mf_current_side
= 'A';
970 case 1: mf_current_side
= 'B';
972 case 2: mf_current_side
= 'C';
974 default: mf_current_side
= 'D';
980 len
= sprintf(page
, "%c\n", mf_current_side
);
982 if (len
<= (off
+ count
))
993 static int proc_mf_change_side(struct file
*file
, const char __user
*buffer
,
994 unsigned long count
, void *data
)
998 struct vsp_cmd_data vsp_cmd
;
1000 if (!capable(CAP_SYS_ADMIN
))
1006 if (get_user(side
, buffer
))
1010 case 'A': newSide
= 0;
1012 case 'B': newSide
= 1;
1014 case 'C': newSide
= 2;
1016 case 'D': newSide
= 3;
1019 printk(KERN_ERR
"mf_proc.c: proc_mf_change_side: invalid side\n");
1023 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
1024 vsp_cmd
.sub_data
.ipl_type
= newSide
;
1027 (void)signal_vsp_instruction(&vsp_cmd
);
1033 static void mf_getSrcHistory(char *buffer
, int size
)
1035 struct IplTypeReturnStuff return_stuff
;
1036 struct pending_event
*ev
= new_pending_event();
1040 pages
[0] = kmalloc(4096, GFP_ATOMIC
);
1041 pages
[1] = kmalloc(4096, GFP_ATOMIC
);
1042 pages
[2] = kmalloc(4096, GFP_ATOMIC
);
1043 pages
[3] = kmalloc(4096, GFP_ATOMIC
);
1044 if ((ev
== NULL
) || (pages
[0] == NULL
) || (pages
[1] == NULL
)
1045 || (pages
[2] == NULL
) || (pages
[3] == NULL
))
1048 return_stuff
.xType
= 0;
1049 return_stuff
.xRc
= 0;
1050 return_stuff
.xDone
= 0;
1051 ev
->event
.hp_lp_event
.xSubtype
= 6;
1052 ev
->event
.hp_lp_event
.x
.xSubtypeData
=
1053 subtype_data('M', 'F', 'V', 'I');
1054 ev
->event
.data
.vsp_cmd
.xEvent
= &return_stuff
;
1055 ev
->event
.data
.vsp_cmd
.cmd
= 4;
1056 ev
->event
.data
.vsp_cmd
.lp_index
= HvLpConfig_getLpIndex();
1057 ev
->event
.data
.vsp_cmd
.result_code
= 0xFF;
1058 ev
->event
.data
.vsp_cmd
.reserved
= 0;
1059 ev
->event
.data
.vsp_cmd
.sub_data
.page
[0] = iseries_hv_addr(pages
[0]);
1060 ev
->event
.data
.vsp_cmd
.sub_data
.page
[1] = iseries_hv_addr(pages
[1]);
1061 ev
->event
.data
.vsp_cmd
.sub_data
.page
[2] = iseries_hv_addr(pages
[2]);
1062 ev
->event
.data
.vsp_cmd
.sub_data
.page
[3] = iseries_hv_addr(pages
[3]);
1064 if (signal_event(ev
) != 0)
1067 while (return_stuff
.xDone
!= 1)
1069 if (return_stuff
.xRc
== 0)
1070 memcpy(buffer
, pages
[0], size
);
1078 static int proc_mf_dump_src(char *page
, char **start
, off_t off
,
1079 int count
, int *eof
, void *data
)
1084 mf_getSrcHistory(page
, count
);
1093 *start
= page
+ off
;
1100 static int proc_mf_change_src(struct file
*file
, const char __user
*buffer
,
1101 unsigned long count
, void *data
)
1105 if (!capable(CAP_SYS_ADMIN
))
1108 if ((count
< 4) && (count
!= 1)) {
1109 printk(KERN_ERR
"mf_proc: invalid src\n");
1113 if (count
> (sizeof(stkbuf
) - 1))
1114 count
= sizeof(stkbuf
) - 1;
1115 if (copy_from_user(stkbuf
, buffer
, count
))
1118 if ((count
== 1) && (*stkbuf
== '\0'))
1121 mf_display_src(*(u32
*)stkbuf
);
1126 static int proc_mf_change_cmdline(struct file
*file
, const char __user
*buffer
,
1127 unsigned long count
, void *data
)
1129 struct vsp_cmd_data vsp_cmd
;
1130 dma_addr_t dma_addr
;
1134 if (!capable(CAP_SYS_ADMIN
))
1138 page
= dma_alloc_coherent(iSeries_vio_dev
, count
, &dma_addr
,
1145 if (copy_from_user(page
, buffer
, count
))
1148 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
1150 vsp_cmd
.sub_data
.kern
.token
= dma_addr
;
1151 vsp_cmd
.sub_data
.kern
.address_type
= HvLpDma_AddressType_TceIndex
;
1152 vsp_cmd
.sub_data
.kern
.side
= (u64
)data
;
1153 vsp_cmd
.sub_data
.kern
.length
= count
;
1155 (void)signal_vsp_instruction(&vsp_cmd
);
1159 dma_free_coherent(iSeries_vio_dev
, count
, page
, dma_addr
);
1164 static ssize_t
proc_mf_change_vmlinux(struct file
*file
,
1165 const char __user
*buf
,
1166 size_t count
, loff_t
*ppos
)
1168 struct proc_dir_entry
*dp
= PDE(file
->f_dentry
->d_inode
);
1170 dma_addr_t dma_addr
;
1172 struct vsp_cmd_data vsp_cmd
;
1175 if (!capable(CAP_SYS_ADMIN
))
1179 page
= dma_alloc_coherent(iSeries_vio_dev
, count
, &dma_addr
,
1183 printk(KERN_ERR
"mf.c: couldn't allocate memory to set vmlinux chunk\n");
1187 if (copy_from_user(page
, buf
, count
))
1190 memset(&vsp_cmd
, 0, sizeof(vsp_cmd
));
1192 vsp_cmd
.sub_data
.kern
.token
= dma_addr
;
1193 vsp_cmd
.sub_data
.kern
.address_type
= HvLpDma_AddressType_TceIndex
;
1194 vsp_cmd
.sub_data
.kern
.side
= (u64
)dp
->data
;
1195 vsp_cmd
.sub_data
.kern
.offset
= *ppos
;
1196 vsp_cmd
.sub_data
.kern
.length
= count
;
1198 rc
= signal_vsp_instruction(&vsp_cmd
);
1202 if (vsp_cmd
.result_code
!= 0)
1208 dma_free_coherent(iSeries_vio_dev
, count
, page
, dma_addr
);
1213 static struct file_operations proc_vmlinux_operations
= {
1214 .write
= proc_mf_change_vmlinux
,
1217 static int __init
mf_proc_init(void)
1219 struct proc_dir_entry
*mf_proc_root
;
1220 struct proc_dir_entry
*ent
;
1221 struct proc_dir_entry
*mf
;
1225 mf_proc_root
= proc_mkdir("iSeries/mf", NULL
);
1230 for (i
= 0; i
< 4; i
++) {
1232 mf
= proc_mkdir(name
, mf_proc_root
);
1236 ent
= create_proc_entry("cmdline", S_IFREG
|S_IRUSR
|S_IWUSR
, mf
);
1240 ent
->data
= (void *)(long)i
;
1241 ent
->read_proc
= proc_mf_dump_cmdline
;
1242 ent
->write_proc
= proc_mf_change_cmdline
;
1244 if (i
== 3) /* no vmlinux entry for 'D' */
1247 ent
= create_proc_entry("vmlinux", S_IFREG
|S_IWUSR
, mf
);
1251 ent
->data
= (void *)(long)i
;
1252 ent
->proc_fops
= &proc_vmlinux_operations
;
1255 ent
= create_proc_entry("side", S_IFREG
|S_IRUSR
|S_IWUSR
, mf_proc_root
);
1259 ent
->data
= (void *)0;
1260 ent
->read_proc
= proc_mf_dump_side
;
1261 ent
->write_proc
= proc_mf_change_side
;
1263 ent
= create_proc_entry("src", S_IFREG
|S_IRUSR
|S_IWUSR
, mf_proc_root
);
1267 ent
->data
= (void *)0;
1268 ent
->read_proc
= proc_mf_dump_src
;
1269 ent
->write_proc
= proc_mf_change_src
;
1274 __initcall(mf_proc_init
);
1276 #endif /* CONFIG_PROC_FS */
1279 * Get the RTC from the virtual service processor
1280 * This requires flowing LpEvents to the primary partition
1282 void iSeries_get_rtc_time(struct rtc_time
*rtc_tm
)
1284 if (piranha_simulator
)
1292 * Set the RTC in the virtual service processor
1293 * This requires flowing LpEvents to the primary partition
1295 int iSeries_set_rtc_time(struct rtc_time
*tm
)
1301 unsigned long iSeries_get_boot_time(void)
1305 if (piranha_simulator
)
1308 mf_get_boot_rtc(&tm
);
1309 return mktime(tm
.tm_year
+ 1900, tm
.tm_mon
, tm
.tm_mday
,
1310 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);