2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/irq.h>
37 #include <linux/random.h>
38 #include <linux/sysrq.h>
39 #include <linux/bitops.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
44 #include <asm/pgtable.h>
46 #include <asm/cache.h>
48 #include <asm/ptrace.h>
49 #include <asm/machdep.h>
52 #include <asm/firmware.h>
56 static unsigned char ras_log_buf
[RTAS_ERROR_LOG_MAX
];
57 static DEFINE_SPINLOCK(ras_log_buf_lock
);
59 char mce_data_buf
[RTAS_ERROR_LOG_MAX
];
61 static int ras_get_sensor_state_token
;
62 static int ras_check_exception_token
;
64 #define EPOW_SENSOR_TOKEN 9
65 #define EPOW_SENSOR_INDEX 0
66 #define RAS_VECTOR_OFFSET 0x500
68 static irqreturn_t
ras_epow_interrupt(int irq
, void *dev_id
,
69 struct pt_regs
* regs
);
70 static irqreturn_t
ras_error_interrupt(int irq
, void *dev_id
,
71 struct pt_regs
* regs
);
75 static void request_ras_irqs(struct device_node
*np
, char *propname
,
76 irqreturn_t (*handler
)(int, void *, struct pt_regs
*),
79 unsigned int *ireg
, len
, i
;
82 ireg
= (unsigned int *)get_property(np
, propname
, &len
);
85 n_intr
= prom_n_intr_cells(np
);
86 len
/= n_intr
* sizeof(*ireg
);
88 for (i
= 0; i
< len
; i
++) {
89 virq
= virt_irq_create_mapping(*ireg
);
91 printk(KERN_ERR
"Unable to allocate interrupt "
92 "number for %s\n", np
->full_name
);
95 if (request_irq(irq_offset_up(virq
), handler
, 0, name
, NULL
)) {
96 printk(KERN_ERR
"Unable to request interrupt %d for "
97 "%s\n", irq_offset_up(virq
), np
->full_name
);
105 * Initialize handlers for the set of interrupts caused by hardware errors
106 * and power system events.
108 static int __init
init_ras_IRQ(void)
110 struct device_node
*np
;
112 ras_get_sensor_state_token
= rtas_token("get-sensor-state");
113 ras_check_exception_token
= rtas_token("check-exception");
115 /* Internal Errors */
116 np
= of_find_node_by_path("/event-sources/internal-errors");
118 request_ras_irqs(np
, "open-pic-interrupt", ras_error_interrupt
,
120 request_ras_irqs(np
, "interrupts", ras_error_interrupt
,
126 np
= of_find_node_by_path("/event-sources/epow-events");
128 request_ras_irqs(np
, "open-pic-interrupt", ras_epow_interrupt
,
130 request_ras_irqs(np
, "interrupts", ras_epow_interrupt
,
137 __initcall(init_ras_IRQ
);
140 * Handle power subsystem events (EPOW).
142 * Presently we just log the event has occurred. This should be fixed
143 * to examine the type of power failure and take appropriate action where
144 * the time horizon permits something useful to be done.
147 ras_epow_interrupt(int irq
, void *dev_id
, struct pt_regs
* regs
)
149 int status
= 0xdeadbeef;
153 status
= rtas_call(ras_get_sensor_state_token
, 2, 2, &state
,
154 EPOW_SENSOR_TOKEN
, EPOW_SENSOR_INDEX
);
157 critical
= 1; /* Time Critical */
161 spin_lock(&ras_log_buf_lock
);
163 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
165 virt_irq_to_real(irq_offset_down(irq
)),
166 RTAS_EPOW_WARNING
| RTAS_POWERMGM_EVENTS
,
167 critical
, __pa(&ras_log_buf
),
168 rtas_get_error_log_max());
170 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
171 *((unsigned long *)&ras_log_buf
), status
, state
);
172 printk(KERN_WARNING
"EPOW <0x%lx 0x%x 0x%x>\n",
173 *((unsigned long *)&ras_log_buf
), status
, state
);
175 /* format and print the extended information */
176 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, 0);
178 spin_unlock(&ras_log_buf_lock
);
183 * Handle hardware error interrupts.
185 * RTAS check-exception is called to collect data on the exception. If
186 * the error is deemed recoverable, we log a warning and return.
187 * For nonrecoverable errors, an error is logged and we stop all processing
188 * as quickly as possible in order to prevent propagation of the failure.
191 ras_error_interrupt(int irq
, void *dev_id
, struct pt_regs
* regs
)
193 struct rtas_error_log
*rtas_elog
;
194 int status
= 0xdeadbeef;
197 spin_lock(&ras_log_buf_lock
);
199 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
201 virt_irq_to_real(irq_offset_down(irq
)),
202 RTAS_INTERNAL_ERROR
, 1 /*Time Critical */,
204 rtas_get_error_log_max());
206 rtas_elog
= (struct rtas_error_log
*)ras_log_buf
;
208 if ((status
== 0) && (rtas_elog
->severity
>= RTAS_SEVERITY_ERROR_SYNC
))
213 /* format and print the extended information */
214 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, fatal
);
217 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
218 *((unsigned long *)&ras_log_buf
), status
);
219 printk(KERN_EMERG
"Error: Fatal hardware error <0x%lx 0x%x>\n",
220 *((unsigned long *)&ras_log_buf
), status
);
223 /* Don't actually power off when debugging so we can test
224 * without actually failing while injecting errors.
225 * Error data will not be logged to syslog.
230 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
231 *((unsigned long *)&ras_log_buf
), status
);
233 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
234 *((unsigned long *)&ras_log_buf
), status
);
237 spin_unlock(&ras_log_buf_lock
);
241 /* Get the error information for errors coming through the
242 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
243 * the actual r3 if possible, and a ptr to the error log entry
244 * will be returned if found.
246 * The mce_data_buf does not have any locks or protection around it,
247 * if a second machine check comes in, or a system reset is done
248 * before we have logged the error, then we will get corruption in the
249 * error log. This is preferable over holding off on calling
250 * ibm,nmi-interlock which would result in us checkstopping if a
251 * second machine check did come in.
253 static struct rtas_error_log
*fwnmi_get_errinfo(struct pt_regs
*regs
)
255 unsigned long errdata
= regs
->gpr
[3];
256 struct rtas_error_log
*errhdr
= NULL
;
257 unsigned long *savep
;
259 if ((errdata
>= 0x7000 && errdata
< 0x7fff0) ||
260 (errdata
>= rtas
.base
&& errdata
< rtas
.base
+ rtas
.size
- 16)) {
261 savep
= __va(errdata
);
262 regs
->gpr
[3] = savep
[0]; /* restore original r3 */
263 memset(mce_data_buf
, 0, RTAS_ERROR_LOG_MAX
);
264 memcpy(mce_data_buf
, (char *)(savep
+ 1), RTAS_ERROR_LOG_MAX
);
265 errhdr
= (struct rtas_error_log
*)mce_data_buf
;
267 printk("FWNMI: corrupt r3\n");
272 /* Call this when done with the data returned by FWNMI_get_errinfo.
273 * It will release the saved data area for other CPUs in the
274 * partition to receive FWNMI errors.
276 static void fwnmi_release_errinfo(void)
278 int ret
= rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL
);
280 printk("FWNMI: nmi-interlock failed: %d\n", ret
);
283 int pSeries_system_reset_exception(struct pt_regs
*regs
)
286 struct rtas_error_log
*errhdr
= fwnmi_get_errinfo(regs
);
288 /* XXX Should look at FWNMI information */
290 fwnmi_release_errinfo();
292 return 0; /* need to perform reset */
296 * See if we can recover from a machine check exception.
297 * This is only called on power4 (or above) and only via
298 * the Firmware Non-Maskable Interrupts (fwnmi) handler
299 * which provides the error analysis for us.
301 * Return 1 if corrected (or delivered a signal).
302 * Return 0 if there is nothing we can do.
304 static int recover_mce(struct pt_regs
*regs
, struct rtas_error_log
* err
)
308 if (err
->disposition
== RTAS_DISP_FULLY_RECOVERED
) {
309 /* Platform corrected itself */
311 } else if ((regs
->msr
& MSR_RI
) &&
313 err
->severity
== RTAS_SEVERITY_ERROR_SYNC
&&
314 err
->disposition
== RTAS_DISP_NOT_RECOVERED
&&
315 err
->target
== RTAS_TARGET_MEMORY
&&
316 err
->type
== RTAS_TYPE_ECC_UNCORR
&&
317 !(current
->pid
== 0 || current
->pid
== 1)) {
318 /* Kill off a user process with an ECC error */
319 printk(KERN_ERR
"MCE: uncorrectable ecc error for pid %d\n",
321 /* XXX something better for ECC error? */
322 _exception(SIGBUS
, regs
, BUS_ADRERR
, regs
->nip
);
326 log_error((char *)err
, ERR_TYPE_RTAS_LOG
, !nonfatal
);
332 * Handle a machine check.
334 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
335 * should be present. If so the handler which called us tells us if the
336 * error was recovered (never true if RI=0).
338 * On hardware prior to Power 4 these exceptions were asynchronous which
339 * means we can't tell exactly where it occurred and so we can't recover.
341 int pSeries_machine_check_exception(struct pt_regs
*regs
)
343 struct rtas_error_log
*errp
;
346 errp
= fwnmi_get_errinfo(regs
);
347 fwnmi_release_errinfo();
348 if (errp
&& recover_mce(regs
, errp
))