[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / drivers / media / dvb / frontends / tda1004x.c
blobc63e9a5084eb7ffcb1c50b9efebee1a0f85b946c
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27 * or /lib/firmware (depending on configuration of firmware hotplug).
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/device.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
40 #include "dvb_frontend.h"
41 #include "tda1004x.h"
43 enum tda1004x_demod {
44 TDA1004X_DEMOD_TDA10045,
45 TDA1004X_DEMOD_TDA10046,
48 struct tda1004x_state {
49 struct i2c_adapter* i2c;
50 struct dvb_frontend_ops ops;
51 const struct tda1004x_config* config;
52 struct dvb_frontend frontend;
54 /* private demod data */
55 u8 initialised;
56 enum tda1004x_demod demod_type;
59 static int debug;
60 #define dprintk(args...) \
61 do { \
62 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
63 } while (0)
65 #define TDA1004X_CHIPID 0x00
66 #define TDA1004X_AUTO 0x01
67 #define TDA1004X_IN_CONF1 0x02
68 #define TDA1004X_IN_CONF2 0x03
69 #define TDA1004X_OUT_CONF1 0x04
70 #define TDA1004X_OUT_CONF2 0x05
71 #define TDA1004X_STATUS_CD 0x06
72 #define TDA1004X_CONFC4 0x07
73 #define TDA1004X_DSSPARE2 0x0C
74 #define TDA10045H_CODE_IN 0x0D
75 #define TDA10045H_FWPAGE 0x0E
76 #define TDA1004X_SCAN_CPT 0x10
77 #define TDA1004X_DSP_CMD 0x11
78 #define TDA1004X_DSP_ARG 0x12
79 #define TDA1004X_DSP_DATA1 0x13
80 #define TDA1004X_DSP_DATA2 0x14
81 #define TDA1004X_CONFADC1 0x15
82 #define TDA1004X_CONFC1 0x16
83 #define TDA10045H_S_AGC 0x1a
84 #define TDA10046H_AGC_TUN_LEVEL 0x1a
85 #define TDA1004X_SNR 0x1c
86 #define TDA1004X_CONF_TS1 0x1e
87 #define TDA1004X_CONF_TS2 0x1f
88 #define TDA1004X_CBER_RESET 0x20
89 #define TDA1004X_CBER_MSB 0x21
90 #define TDA1004X_CBER_LSB 0x22
91 #define TDA1004X_CVBER_LUT 0x23
92 #define TDA1004X_VBER_MSB 0x24
93 #define TDA1004X_VBER_MID 0x25
94 #define TDA1004X_VBER_LSB 0x26
95 #define TDA1004X_UNCOR 0x27
97 #define TDA10045H_CONFPLL_P 0x2D
98 #define TDA10045H_CONFPLL_M_MSB 0x2E
99 #define TDA10045H_CONFPLL_M_LSB 0x2F
100 #define TDA10045H_CONFPLL_N 0x30
102 #define TDA10046H_CONFPLL1 0x2D
103 #define TDA10046H_CONFPLL2 0x2F
104 #define TDA10046H_CONFPLL3 0x30
105 #define TDA10046H_TIME_WREF1 0x31
106 #define TDA10046H_TIME_WREF2 0x32
107 #define TDA10046H_TIME_WREF3 0x33
108 #define TDA10046H_TIME_WREF4 0x34
109 #define TDA10046H_TIME_WREF5 0x35
111 #define TDA10045H_UNSURW_MSB 0x31
112 #define TDA10045H_UNSURW_LSB 0x32
113 #define TDA10045H_WREF_MSB 0x33
114 #define TDA10045H_WREF_MID 0x34
115 #define TDA10045H_WREF_LSB 0x35
116 #define TDA10045H_MUXOUT 0x36
117 #define TDA1004X_CONFADC2 0x37
119 #define TDA10045H_IOFFSET 0x38
121 #define TDA10046H_CONF_TRISTATE1 0x3B
122 #define TDA10046H_CONF_TRISTATE2 0x3C
123 #define TDA10046H_CONF_POLARITY 0x3D
124 #define TDA10046H_FREQ_OFFSET 0x3E
125 #define TDA10046H_GPIO_OUT_SEL 0x41
126 #define TDA10046H_GPIO_SELECT 0x42
127 #define TDA10046H_AGC_CONF 0x43
128 #define TDA10046H_AGC_THR 0x44
129 #define TDA10046H_AGC_RENORM 0x45
130 #define TDA10046H_AGC_GAINS 0x46
131 #define TDA10046H_AGC_TUN_MIN 0x47
132 #define TDA10046H_AGC_TUN_MAX 0x48
133 #define TDA10046H_AGC_IF_MIN 0x49
134 #define TDA10046H_AGC_IF_MAX 0x4A
136 #define TDA10046H_FREQ_PHY2_MSB 0x4D
137 #define TDA10046H_FREQ_PHY2_LSB 0x4E
139 #define TDA10046H_CVBER_CTRL 0x4F
140 #define TDA10046H_AGC_IF_LEVEL 0x52
141 #define TDA10046H_CODE_CPT 0x57
142 #define TDA10046H_CODE_IN 0x58
145 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
147 int ret;
148 u8 buf[] = { reg, data };
149 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
151 dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
153 msg.addr = state->config->demod_address;
154 ret = i2c_transfer(state->i2c, &msg, 1);
156 if (ret != 1)
157 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
158 __FUNCTION__, reg, data, ret);
160 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
161 reg, data, ret);
162 return (ret != 1) ? -1 : 0;
165 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
167 int ret;
168 u8 b0[] = { reg };
169 u8 b1[] = { 0 };
170 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
171 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
173 dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
175 msg[0].addr = state->config->demod_address;
176 msg[1].addr = state->config->demod_address;
177 ret = i2c_transfer(state->i2c, msg, 2);
179 if (ret != 2) {
180 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
181 ret);
182 return -1;
185 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
186 reg, b1[0], ret);
187 return b1[0];
190 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
192 int val;
193 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
194 mask, data);
196 // read a byte and check
197 val = tda1004x_read_byte(state, reg);
198 if (val < 0)
199 return val;
201 // mask if off
202 val = val & ~mask;
203 val |= data & 0xff;
205 // write it out again
206 return tda1004x_write_byteI(state, reg, val);
209 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
211 int i;
212 int result;
214 dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
216 result = 0;
217 for (i = 0; i < len; i++) {
218 result = tda1004x_write_byteI(state, reg + i, buf[i]);
219 if (result != 0)
220 break;
223 return result;
226 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
228 int result;
229 dprintk("%s\n", __FUNCTION__);
231 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
232 msleep(1);
233 return result;
236 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
238 dprintk("%s\n", __FUNCTION__);
240 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
243 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
244 fe_bandwidth_t bandwidth)
246 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
247 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
248 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
250 switch (bandwidth) {
251 case BANDWIDTH_6_MHZ:
252 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
253 break;
255 case BANDWIDTH_7_MHZ:
256 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
257 break;
259 case BANDWIDTH_8_MHZ:
260 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
261 break;
263 default:
264 return -EINVAL;
267 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
269 return 0;
272 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
273 fe_bandwidth_t bandwidth)
275 static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
276 static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
277 static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
279 static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
280 static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
281 static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
282 int tda10046_clk53m;
284 if ((state->config->if_freq == TDA10046_FREQ_045) ||
285 (state->config->if_freq == TDA10046_FREQ_052))
286 tda10046_clk53m = 0;
287 else
288 tda10046_clk53m = 1;
289 switch (bandwidth) {
290 case BANDWIDTH_6_MHZ:
291 if (tda10046_clk53m)
292 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
293 sizeof(bandwidth_6mhz_53M));
294 else
295 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
296 sizeof(bandwidth_6mhz_48M));
297 if (state->config->if_freq == TDA10046_FREQ_045) {
298 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
299 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
301 break;
303 case BANDWIDTH_7_MHZ:
304 if (tda10046_clk53m)
305 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
306 sizeof(bandwidth_7mhz_53M));
307 else
308 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
309 sizeof(bandwidth_7mhz_48M));
310 if (state->config->if_freq == TDA10046_FREQ_045) {
311 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
312 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
314 break;
316 case BANDWIDTH_8_MHZ:
317 if (tda10046_clk53m)
318 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
319 sizeof(bandwidth_8mhz_53M));
320 else
321 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
322 sizeof(bandwidth_8mhz_48M));
323 if (state->config->if_freq == TDA10046_FREQ_045) {
324 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
325 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
327 break;
329 default:
330 return -EINVAL;
333 return 0;
336 static int tda1004x_do_upload(struct tda1004x_state *state,
337 unsigned char *mem, unsigned int len,
338 u8 dspCodeCounterReg, u8 dspCodeInReg)
340 u8 buf[65];
341 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
342 int tx_size;
343 int pos = 0;
345 /* clear code counter */
346 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
347 fw_msg.addr = state->config->demod_address;
349 buf[0] = dspCodeInReg;
350 while (pos != len) {
351 // work out how much to send this time
352 tx_size = len - pos;
353 if (tx_size > 0x10)
354 tx_size = 0x10;
356 // send the chunk
357 memcpy(buf + 1, mem + pos, tx_size);
358 fw_msg.len = tx_size + 1;
359 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
360 printk(KERN_ERR "tda1004x: Error during firmware upload\n");
361 return -EIO;
363 pos += tx_size;
365 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
367 // give the DSP a chance to settle 03/10/05 Hac
368 msleep(100);
370 return 0;
373 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
375 u8 data1, data2;
376 unsigned long timeout;
378 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
379 timeout = jiffies + 2 * HZ;
380 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
381 if (time_after(jiffies, timeout)) {
382 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
383 break;
385 msleep(1);
387 } else
388 msleep(100);
390 // check upload was OK
391 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
392 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
394 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
395 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
396 if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
397 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
398 return -EIO;
400 printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
401 return 0;
404 static int tda10045_fwupload(struct dvb_frontend* fe)
406 struct tda1004x_state* state = fe->demodulator_priv;
407 int ret;
408 const struct firmware *fw;
410 /* don't re-upload unless necessary */
411 if (tda1004x_check_upload_ok(state) == 0)
412 return 0;
414 /* request the firmware, this will block until someone uploads it */
415 printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
416 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
417 if (ret) {
418 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
419 return ret;
422 /* reset chip */
423 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
424 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
425 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
426 msleep(10);
428 /* set parameters */
429 tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
431 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
432 release_firmware(fw);
433 if (ret)
434 return ret;
435 printk(KERN_INFO "tda1004x: firmware upload complete\n");
437 /* wait for DSP to initialise */
438 /* DSPREADY doesn't seem to work on the TDA10045H */
439 msleep(100);
441 return tda1004x_check_upload_ok(state);
444 static void tda10046_init_plls(struct dvb_frontend* fe)
446 struct tda1004x_state* state = fe->demodulator_priv;
447 int tda10046_clk53m;
449 if ((state->config->if_freq == TDA10046_FREQ_045) ||
450 (state->config->if_freq == TDA10046_FREQ_052))
451 tda10046_clk53m = 0;
452 else
453 tda10046_clk53m = 1;
455 tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
456 if(tda10046_clk53m) {
457 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
458 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
459 } else {
460 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
461 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
463 if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
464 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
465 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
466 } else {
467 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
468 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
470 if(tda10046_clk53m)
471 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
472 else
473 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
474 /* Note clock frequency is handled implicitly */
475 switch (state->config->if_freq) {
476 case TDA10046_FREQ_045:
477 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
478 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
479 break;
480 case TDA10046_FREQ_052:
481 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
482 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
483 break;
484 case TDA10046_FREQ_3617:
485 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
486 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
487 break;
488 case TDA10046_FREQ_3613:
489 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
490 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
491 break;
493 tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
494 /* let the PLLs settle */
495 msleep(120);
498 static int tda10046_fwupload(struct dvb_frontend* fe)
500 struct tda1004x_state* state = fe->demodulator_priv;
501 int ret;
502 const struct firmware *fw;
504 /* reset + wake up chip */
505 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
506 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
507 /* let the clocks recover from sleep */
508 msleep(5);
510 /* The PLLs need to be reprogrammed after sleep */
511 tda10046_init_plls(fe);
513 /* don't re-upload unless necessary */
514 if (tda1004x_check_upload_ok(state) == 0)
515 return 0;
517 if (state->config->request_firmware != NULL) {
518 /* request the firmware, this will block until someone uploads it */
519 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
520 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
521 if (ret) {
522 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
523 return ret;
525 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
526 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
527 release_firmware(fw);
528 if (ret)
529 return ret;
530 } else {
531 /* boot from firmware eeprom */
532 printk(KERN_INFO "tda1004x: booting from eeprom\n");
533 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
534 msleep(300);
536 return tda1004x_check_upload_ok(state);
539 static int tda1004x_encode_fec(int fec)
541 // convert known FEC values
542 switch (fec) {
543 case FEC_1_2:
544 return 0;
545 case FEC_2_3:
546 return 1;
547 case FEC_3_4:
548 return 2;
549 case FEC_5_6:
550 return 3;
551 case FEC_7_8:
552 return 4;
555 // unsupported
556 return -EINVAL;
559 static int tda1004x_decode_fec(int tdafec)
561 // convert known FEC values
562 switch (tdafec) {
563 case 0:
564 return FEC_1_2;
565 case 1:
566 return FEC_2_3;
567 case 2:
568 return FEC_3_4;
569 case 3:
570 return FEC_5_6;
571 case 4:
572 return FEC_7_8;
575 // unsupported
576 return -1;
579 int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
581 struct tda1004x_state* state = fe->demodulator_priv;
583 return tda1004x_write_byteI(state, reg, data);
586 static int tda10045_init(struct dvb_frontend* fe)
588 struct tda1004x_state* state = fe->demodulator_priv;
590 dprintk("%s\n", __FUNCTION__);
592 if (state->initialised)
593 return 0;
595 if (tda10045_fwupload(fe)) {
596 printk("tda1004x: firmware upload failed\n");
597 return -EIO;
600 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
602 // Init the PLL
603 if (state->config->pll_init) {
604 tda1004x_enable_tuner_i2c(state);
605 state->config->pll_init(fe);
606 tda1004x_disable_tuner_i2c(state);
609 // tda setup
610 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
611 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
612 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
613 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
614 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
615 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
616 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
617 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
618 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
619 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
620 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
622 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
624 state->initialised = 1;
625 return 0;
628 static int tda10046_init(struct dvb_frontend* fe)
630 struct tda1004x_state* state = fe->demodulator_priv;
631 dprintk("%s\n", __FUNCTION__);
633 if (state->initialised)
634 return 0;
636 if (tda10046_fwupload(fe)) {
637 printk("tda1004x: firmware upload failed\n");
638 return -EIO;
641 // Init the tuner PLL
642 if (state->config->pll_init) {
643 tda1004x_enable_tuner_i2c(state);
644 if (state->config->pll_init(fe)) {
645 printk(KERN_ERR "tda1004x: pll init failed\n");
646 return -EIO;
648 tda1004x_disable_tuner_i2c(state);
651 // tda setup
652 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
653 tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
654 tda1004x_write_byteI(state, TDA1004X_CONFC1, 8); // disable pulse killer
656 switch (state->config->agc_config) {
657 case TDA10046_AGC_DEFAULT:
658 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
659 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
660 break;
661 case TDA10046_AGC_IFO_AUTO_NEG:
662 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
663 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
664 break;
665 case TDA10046_AGC_IFO_AUTO_POS:
666 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
667 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
668 break;
669 case TDA10046_AGC_TDA827X:
670 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
671 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
672 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
673 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities
674 break;
676 tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
677 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
678 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
679 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
680 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
681 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
682 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
683 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
684 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
685 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
686 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
688 state->initialised = 1;
689 return 0;
692 static int tda1004x_set_fe(struct dvb_frontend* fe,
693 struct dvb_frontend_parameters *fe_params)
695 struct tda1004x_state* state = fe->demodulator_priv;
696 int tmp;
697 int inversion;
699 dprintk("%s\n", __FUNCTION__);
701 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
702 // setup auto offset
703 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
704 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
705 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
707 // disable agc_conf[2]
708 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
711 // set frequency
712 tda1004x_enable_tuner_i2c(state);
713 if (state->config->pll_set(fe, fe_params)) {
714 printk(KERN_ERR "tda1004x: pll set failed\n");
715 return -EIO;
717 tda1004x_disable_tuner_i2c(state);
719 // Hardcoded to use auto as much as possible on the TDA10045 as it
720 // is very unreliable if AUTO mode is _not_ used.
721 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
722 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
723 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
724 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
727 // Set standard params.. or put them to auto
728 if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
729 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
730 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
731 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
732 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
733 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
734 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
735 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
736 } else {
737 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
739 // set HP FEC
740 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
741 if (tmp < 0)
742 return tmp;
743 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
745 // set LP FEC
746 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
747 if (tmp < 0)
748 return tmp;
749 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
751 // set constellation
752 switch (fe_params->u.ofdm.constellation) {
753 case QPSK:
754 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
755 break;
757 case QAM_16:
758 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
759 break;
761 case QAM_64:
762 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
763 break;
765 default:
766 return -EINVAL;
769 // set hierarchy
770 switch (fe_params->u.ofdm.hierarchy_information) {
771 case HIERARCHY_NONE:
772 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
773 break;
775 case HIERARCHY_1:
776 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
777 break;
779 case HIERARCHY_2:
780 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
781 break;
783 case HIERARCHY_4:
784 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
785 break;
787 default:
788 return -EINVAL;
792 // set bandwidth
793 switch (state->demod_type) {
794 case TDA1004X_DEMOD_TDA10045:
795 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
796 break;
798 case TDA1004X_DEMOD_TDA10046:
799 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
800 break;
803 // set inversion
804 inversion = fe_params->inversion;
805 if (state->config->invert)
806 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
807 switch (inversion) {
808 case INVERSION_OFF:
809 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
810 break;
812 case INVERSION_ON:
813 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
814 break;
816 default:
817 return -EINVAL;
820 // set guard interval
821 switch (fe_params->u.ofdm.guard_interval) {
822 case GUARD_INTERVAL_1_32:
823 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
824 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
825 break;
827 case GUARD_INTERVAL_1_16:
828 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
829 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
830 break;
832 case GUARD_INTERVAL_1_8:
833 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
834 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
835 break;
837 case GUARD_INTERVAL_1_4:
838 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
839 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
840 break;
842 case GUARD_INTERVAL_AUTO:
843 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
844 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
845 break;
847 default:
848 return -EINVAL;
851 // set transmission mode
852 switch (fe_params->u.ofdm.transmission_mode) {
853 case TRANSMISSION_MODE_2K:
854 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
855 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
856 break;
858 case TRANSMISSION_MODE_8K:
859 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
860 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
861 break;
863 case TRANSMISSION_MODE_AUTO:
864 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
865 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
866 break;
868 default:
869 return -EINVAL;
872 // start the lock
873 switch (state->demod_type) {
874 case TDA1004X_DEMOD_TDA10045:
875 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
876 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
877 break;
879 case TDA1004X_DEMOD_TDA10046:
880 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
881 msleep(1);
882 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
883 break;
886 msleep(10);
888 return 0;
891 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
893 struct tda1004x_state* state = fe->demodulator_priv;
895 dprintk("%s\n", __FUNCTION__);
897 // inversion status
898 fe_params->inversion = INVERSION_OFF;
899 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
900 fe_params->inversion = INVERSION_ON;
901 if (state->config->invert)
902 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
904 // bandwidth
905 switch (state->demod_type) {
906 case TDA1004X_DEMOD_TDA10045:
907 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
908 case 0x14:
909 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
910 break;
911 case 0xdb:
912 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
913 break;
914 case 0x4f:
915 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
916 break;
918 break;
919 case TDA1004X_DEMOD_TDA10046:
920 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
921 case 0x5c:
922 case 0x54:
923 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
924 break;
925 case 0x6a:
926 case 0x60:
927 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
928 break;
929 case 0x7b:
930 case 0x70:
931 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
932 break;
934 break;
937 // FEC
938 fe_params->u.ofdm.code_rate_HP =
939 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
940 fe_params->u.ofdm.code_rate_LP =
941 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
943 // constellation
944 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
945 case 0:
946 fe_params->u.ofdm.constellation = QPSK;
947 break;
948 case 1:
949 fe_params->u.ofdm.constellation = QAM_16;
950 break;
951 case 2:
952 fe_params->u.ofdm.constellation = QAM_64;
953 break;
956 // transmission mode
957 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
958 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
959 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
961 // guard interval
962 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
963 case 0:
964 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
965 break;
966 case 1:
967 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
968 break;
969 case 2:
970 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
971 break;
972 case 3:
973 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
974 break;
977 // hierarchy
978 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
979 case 0:
980 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
981 break;
982 case 1:
983 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
984 break;
985 case 2:
986 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
987 break;
988 case 3:
989 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
990 break;
993 return 0;
996 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
998 struct tda1004x_state* state = fe->demodulator_priv;
999 int status;
1000 int cber;
1001 int vber;
1003 dprintk("%s\n", __FUNCTION__);
1005 // read status
1006 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1007 if (status == -1)
1008 return -EIO;
1010 // decode
1011 *fe_status = 0;
1012 if (status & 4)
1013 *fe_status |= FE_HAS_SIGNAL;
1014 if (status & 2)
1015 *fe_status |= FE_HAS_CARRIER;
1016 if (status & 8)
1017 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1019 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1020 // is getting anything valid
1021 if (!(*fe_status & FE_HAS_VITERBI)) {
1022 // read the CBER
1023 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1024 if (cber == -1)
1025 return -EIO;
1026 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1027 if (status == -1)
1028 return -EIO;
1029 cber |= (status << 8);
1030 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1032 if (cber != 65535)
1033 *fe_status |= FE_HAS_VITERBI;
1036 // if we DO have some valid VITERBI output, but don't already have SYNC
1037 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1038 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1039 // read the VBER
1040 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1041 if (vber == -1)
1042 return -EIO;
1043 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1044 if (status == -1)
1045 return -EIO;
1046 vber |= (status << 8);
1047 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1048 if (status == -1)
1049 return -EIO;
1050 vber |= ((status << 16) & 0x0f);
1051 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1053 // if RS has passed some valid TS packets, then we must be
1054 // getting some SYNC bytes
1055 if (vber < 16632)
1056 *fe_status |= FE_HAS_SYNC;
1059 // success
1060 dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1061 return 0;
1064 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1066 struct tda1004x_state* state = fe->demodulator_priv;
1067 int tmp;
1068 int reg = 0;
1070 dprintk("%s\n", __FUNCTION__);
1072 // determine the register to use
1073 switch (state->demod_type) {
1074 case TDA1004X_DEMOD_TDA10045:
1075 reg = TDA10045H_S_AGC;
1076 break;
1078 case TDA1004X_DEMOD_TDA10046:
1079 reg = TDA10046H_AGC_IF_LEVEL;
1080 break;
1083 // read it
1084 tmp = tda1004x_read_byte(state, reg);
1085 if (tmp < 0)
1086 return -EIO;
1088 *signal = (tmp << 8) | tmp;
1089 dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1090 return 0;
1093 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1095 struct tda1004x_state* state = fe->demodulator_priv;
1096 int tmp;
1098 dprintk("%s\n", __FUNCTION__);
1100 // read it
1101 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1102 if (tmp < 0)
1103 return -EIO;
1104 tmp = 255 - tmp;
1106 *snr = ((tmp << 8) | tmp);
1107 dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1108 return 0;
1111 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1113 struct tda1004x_state* state = fe->demodulator_priv;
1114 int tmp;
1115 int tmp2;
1116 int counter;
1118 dprintk("%s\n", __FUNCTION__);
1120 // read the UCBLOCKS and reset
1121 counter = 0;
1122 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1123 if (tmp < 0)
1124 return -EIO;
1125 tmp &= 0x7f;
1126 while (counter++ < 5) {
1127 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1128 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1129 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1131 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1132 if (tmp2 < 0)
1133 return -EIO;
1134 tmp2 &= 0x7f;
1135 if ((tmp2 < tmp) || (tmp2 == 0))
1136 break;
1139 if (tmp != 0x7f)
1140 *ucblocks = tmp;
1141 else
1142 *ucblocks = 0xffffffff;
1144 dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1145 return 0;
1148 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1150 struct tda1004x_state* state = fe->demodulator_priv;
1151 int tmp;
1153 dprintk("%s\n", __FUNCTION__);
1155 // read it in
1156 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1157 if (tmp < 0)
1158 return -EIO;
1159 *ber = tmp << 1;
1160 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1161 if (tmp < 0)
1162 return -EIO;
1163 *ber |= (tmp << 9);
1164 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1166 dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1167 return 0;
1170 static int tda1004x_sleep(struct dvb_frontend* fe)
1172 struct tda1004x_state* state = fe->demodulator_priv;
1174 switch (state->demod_type) {
1175 case TDA1004X_DEMOD_TDA10045:
1176 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1177 break;
1179 case TDA1004X_DEMOD_TDA10046:
1180 if (state->config->pll_sleep != NULL) {
1181 tda1004x_enable_tuner_i2c(state);
1182 state->config->pll_sleep(fe);
1183 if (state->config->if_freq != TDA10046_FREQ_052) {
1184 /* special hack for Philips EUROPA Based boards:
1185 * keep the I2c bridge open for tuner access in analog mode
1187 tda1004x_disable_tuner_i2c(state);
1190 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1191 break;
1193 state->initialised = 0;
1195 return 0;
1198 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1200 fesettings->min_delay_ms = 800;
1201 /* Drift compensation makes no sense for DVB-T */
1202 fesettings->step_size = 0;
1203 fesettings->max_drift = 0;
1204 return 0;
1207 static void tda1004x_release(struct dvb_frontend* fe)
1209 struct tda1004x_state *state = fe->demodulator_priv;
1210 kfree(state);
1213 static struct dvb_frontend_ops tda10045_ops = {
1214 .info = {
1215 .name = "Philips TDA10045H DVB-T",
1216 .type = FE_OFDM,
1217 .frequency_min = 51000000,
1218 .frequency_max = 858000000,
1219 .frequency_stepsize = 166667,
1220 .caps =
1221 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1222 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1223 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1224 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1227 .release = tda1004x_release,
1229 .init = tda10045_init,
1230 .sleep = tda1004x_sleep,
1232 .set_frontend = tda1004x_set_fe,
1233 .get_frontend = tda1004x_get_fe,
1234 .get_tune_settings = tda1004x_get_tune_settings,
1236 .read_status = tda1004x_read_status,
1237 .read_ber = tda1004x_read_ber,
1238 .read_signal_strength = tda1004x_read_signal_strength,
1239 .read_snr = tda1004x_read_snr,
1240 .read_ucblocks = tda1004x_read_ucblocks,
1243 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1244 struct i2c_adapter* i2c)
1246 struct tda1004x_state *state;
1248 /* allocate memory for the internal state */
1249 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1250 if (!state)
1251 return NULL;
1253 /* setup the state */
1254 state->config = config;
1255 state->i2c = i2c;
1256 memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1257 state->initialised = 0;
1258 state->demod_type = TDA1004X_DEMOD_TDA10045;
1260 /* check if the demod is there */
1261 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1262 kfree(state);
1263 return NULL;
1266 /* create dvb_frontend */
1267 state->frontend.ops = &state->ops;
1268 state->frontend.demodulator_priv = state;
1269 return &state->frontend;
1272 static struct dvb_frontend_ops tda10046_ops = {
1273 .info = {
1274 .name = "Philips TDA10046H DVB-T",
1275 .type = FE_OFDM,
1276 .frequency_min = 51000000,
1277 .frequency_max = 858000000,
1278 .frequency_stepsize = 166667,
1279 .caps =
1280 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1281 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1282 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1283 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1286 .release = tda1004x_release,
1288 .init = tda10046_init,
1289 .sleep = tda1004x_sleep,
1291 .set_frontend = tda1004x_set_fe,
1292 .get_frontend = tda1004x_get_fe,
1293 .get_tune_settings = tda1004x_get_tune_settings,
1295 .read_status = tda1004x_read_status,
1296 .read_ber = tda1004x_read_ber,
1297 .read_signal_strength = tda1004x_read_signal_strength,
1298 .read_snr = tda1004x_read_snr,
1299 .read_ucblocks = tda1004x_read_ucblocks,
1302 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1303 struct i2c_adapter* i2c)
1305 struct tda1004x_state *state;
1307 /* allocate memory for the internal state */
1308 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1309 if (!state)
1310 return NULL;
1312 /* setup the state */
1313 state->config = config;
1314 state->i2c = i2c;
1315 memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1316 state->initialised = 0;
1317 state->demod_type = TDA1004X_DEMOD_TDA10046;
1319 /* check if the demod is there */
1320 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1321 kfree(state);
1322 return NULL;
1325 /* create dvb_frontend */
1326 state->frontend.ops = &state->ops;
1327 state->frontend.demodulator_priv = state;
1328 return &state->frontend;
1331 module_param(debug, int, 0644);
1332 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1334 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1335 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1336 MODULE_LICENSE("GPL");
1338 EXPORT_SYMBOL(tda10045_attach);
1339 EXPORT_SYMBOL(tda10046_attach);
1340 EXPORT_SYMBOL(tda1004x_write_byte);