[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / drivers / net / skfp / drvfbi.c
blob5b475833f64562d23177c5f2393a9a94c6327956
1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
18 * FBI board dependent Driver for SMT and LLC
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include "h/skfbiinc.h"
27 #ifndef lint
28 static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
29 #endif
32 * PCM active state
34 #define PC8_ACTIVE 8
36 #define LED_Y_ON 0x11 /* Used for ring up/down indication */
37 #define LED_Y_OFF 0x10
40 #define MS2BCLK(x) ((x)*12500L)
43 * valid configuration values are:
45 #ifdef ISA
46 const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ;
47 const int opt_iops[] = {8,
48 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
49 const int opt_dmas[] = {4, 3, 5, 6, 7} ;
50 const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
51 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
52 #endif
53 #ifdef EISA
54 const int opt_ints[] = {5, 9, 10, 11} ;
55 const int opt_dmas[] = {0, 5, 6, 7} ;
56 const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
57 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
58 #endif
60 #ifdef MCA
61 int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */
62 int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
63 #endif /* MCA */
66 * xPOS_ID:xxxx
67 * | \ /
68 * | \/
69 * | --------------------- the patched POS_ID of the Adapter
70 * | xxxx = (Vendor ID low byte,
71 * | Vendor ID high byte,
72 * | Device ID low byte,
73 * | Device ID high byte)
74 * +------------------------------ the patched oem_id must be
75 * 'S' for SK or 'I' for IBM
76 * this is a short id for the driver.
78 #ifndef MULT_OEM
79 #ifndef OEM_CONCEPT
80 #ifndef MCA
81 const u_char oem_id[] = "xPOS_ID:xxxx" ;
82 #else
83 const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */
84 #endif
85 #else /* OEM_CONCEPT */
86 #ifndef MCA
87 const u_char oem_id[] = OEM_ID ;
88 #else
89 const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */
90 #endif /* MCA */
91 #endif /* OEM_CONCEPT */
92 #define ID_BYTE0 8
93 #define OEMID(smc,i) oem_id[ID_BYTE0 + i]
94 #else /* MULT_OEM */
95 const struct s_oem_ids oem_ids[] = {
96 #include "oemids.h"
97 {0}
99 #define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
100 #endif /* MULT_OEM */
102 /* Prototypes of external functions */
103 #ifdef AIX
104 extern int AIX_vpdReadByte() ;
105 #endif
108 /* Prototype of a local function. */
109 static void smt_stop_watchdog(struct s_smc *smc);
111 #ifdef MCA
112 static int read_card_id() ;
113 static void DisableSlotAccess() ;
114 static void EnableSlotAccess() ;
115 #ifdef AIX
116 extern int attach_POS_addr() ;
117 extern int detach_POS_addr() ;
118 extern u_char read_POS() ;
119 extern void write_POS() ;
120 extern int AIX_vpdReadByte() ;
121 #else
122 #define read_POS(smc,a1,a2) ((u_char) inp(a1))
123 #define write_POS(smc,a1,a2,a3) outp((a1),(a3))
124 #endif
125 #endif /* MCA */
129 * FDDI card reset
131 static void card_start(struct s_smc *smc)
133 int i ;
134 #ifdef PCI
135 u_char rev_id ;
136 u_short word;
137 #endif
139 smt_stop_watchdog(smc) ;
141 #ifdef ISA
142 outpw(CSR_A,0) ; /* reset for all chips */
143 for (i = 10 ; i ; i--) /* delay for PLC's */
144 (void)inpw(ISR_A) ;
145 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
146 /* counter 2, mode 2 */
147 OUT_82c54_TIMER(2,97) ; /* LSB */
148 OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */
149 outpw(CSR_A,CS_CRESET) ;
150 #endif
151 #ifdef EISA
152 outpw(CSR_A,0) ; /* reset for all chips */
153 for (i = 10 ; i ; i--) /* delay for PLC's */
154 (void)inpw(ISR_A) ;
155 outpw(CSR_A,CS_CRESET) ;
156 smc->hw.led = (2<<6) ;
157 outpw(CSR_A,CS_CRESET | smc->hw.led) ;
158 #endif
159 #ifdef MCA
160 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
161 for (i = 10 ; i ; i--) /* delay for PLC's */
162 (void)inpw(ISR_A) ;
163 outp(ADDR(CARD_EN),0) ;
164 /* first I/O after reset must not be a access to FORMAC or PLC */
167 * bus timeout (MCA)
169 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
170 /* counter 2, mode 3 */
171 OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */
172 OUT_82c54_TIMER(2,0) ; /* MSB */
174 /* POS 102 indicated an activ Check Line or Buss Error monitoring */
175 if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
176 outp(ADDR(IRQ_CHCK_EN),0) ;
179 if (!((i = inpw(CSR_A)) & CS_SAS)) {
180 if (!(i & CS_BYSTAT)) {
181 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
184 outpw(LEDR_A,LED_1) ; /* yellow */
185 #endif /* MCA */
186 #ifdef PCI
188 * make sure no transfer activity is pending
190 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
191 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
192 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
194 * now reset everything
196 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
197 i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
198 SK_UNUSED(i) ; /* Make LINT happy. */
199 outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
202 * Reset all bits in the PCI STATUS register
204 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
205 word = inpw(PCI_C(PCI_STATUS)) ;
206 outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
207 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
210 * Release the reset of all the State machines
211 * Release Master_Reset
212 * Release HPI_SM_Reset
214 outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
217 * determine the adapter type
218 * Note: Do it here, because some drivers may call card_start() once
219 * at very first before any other initialization functions is
220 * executed.
222 rev_id = inp(PCI_C(PCI_REV_ID)) ;
223 if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
224 smc->hw.hw_is_64bit = TRUE ;
225 } else {
226 smc->hw.hw_is_64bit = FALSE ;
230 * Watermark initialization
232 if (!smc->hw.hw_is_64bit) {
233 outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
234 outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
235 outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
238 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
239 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
241 /* init the timer value for the watch dog 2,5 minutes */
242 outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
244 /* initialize the ISR mask */
245 smc->hw.is_imask = ISR_MASK ;
246 smc->hw.hw_state = STOPPED ;
247 #endif
248 GET_PAGE(0) ; /* necessary for BOOT */
251 void card_stop(struct s_smc *smc)
253 smt_stop_watchdog(smc) ;
254 smc->hw.mac_ring_is_up = 0 ; /* ring down */
255 #ifdef ISA
256 outpw(CSR_A,0) ; /* reset for all chips */
257 #endif
258 #ifdef EISA
259 outpw(CSR_A,0) ; /* reset for all chips */
260 #endif
261 #ifdef MCA
262 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
263 #endif
264 #ifdef PCI
266 * make sure no transfer activity is pending
268 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
269 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
270 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
272 * now reset everything
274 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
275 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
276 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
277 smc->hw.hw_state = STOPPED ;
278 #endif
280 /*--------------------------- ISR handling ----------------------------------*/
282 void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
284 int restart_tx = 0 ;
285 again:
286 #ifndef PCI
287 #ifndef ISA
289 * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
291 if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/
292 FM_SPCEPDA0 | /* parit/coding err. a.q.0 */
293 FM_SPCEPDA1 | /* parit/coding err. a.q.1 */
294 FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */
295 SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
297 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
298 FM_STBURA0 | /* tx buffer underrun a.q.0 */
299 FM_STBURA1 | /* tx buffer underrun a.q.1 */
300 FM_STBURA2)) { /* tx buffer underrun a.q.2 */
301 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
303 #endif
304 if ( (stu & (FM_SXMTABT | /* transmit abort */
305 #ifdef SYNC
306 FM_STXABRS | /* syn. tx abort */
307 #endif /* SYNC */
308 FM_STXABRA0)) || /* asyn. tx abort */
309 (stl & (FM_SQLCKS | /* lock for syn. q. */
310 FM_SQLCKA0)) ) { /* lock for asyn. q. */
311 formac_tx_restart(smc) ; /* init tx */
312 restart_tx = 1 ;
313 stu = inpw(FM_A(FM_ST1U)) ;
314 stl = inpw(FM_A(FM_ST1L)) ;
315 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
316 if (stu || stl)
317 goto again ;
320 #ifndef SYNC
321 if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
322 FM_STEFRMA0)) { /* end of frame asyn tx */
323 /* free tx_queue */
324 smc->hw.n_a_send = 0 ;
325 if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
326 start_next_send(smc);
328 restart_tx = 1 ;
330 #else /* SYNC */
331 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
332 FM_STEFRMS)) { /* end of sync tx */
333 restart_tx = 1 ;
335 #endif /* SYNC */
336 if (restart_tx)
337 llc_restart_tx(smc) ;
339 #else /* PCI */
342 * parity error: note encoding error is not possible in tag mode
344 if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
345 FM_SPCEPDA0 | /* parity err. a.q.0 */
346 FM_SPCEPDA1)) { /* parity err. a.q.1 */
347 SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
350 * buffer underrun: can only occur if a tx threshold is specified
352 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
353 FM_STBURA0 | /* tx buffer underrun a.q.0 */
354 FM_STBURA1)) { /* tx buffer underrun a.q.2 */
355 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
358 if ( (stu & (FM_SXMTABT | /* transmit abort */
359 FM_STXABRS | /* syn. tx abort */
360 FM_STXABRA0)) || /* asyn. tx abort */
361 (stl & (FM_SQLCKS | /* lock for syn. q. */
362 FM_SQLCKA0)) ) { /* lock for asyn. q. */
363 formac_tx_restart(smc) ; /* init tx */
364 restart_tx = 1 ;
365 stu = inpw(FM_A(FM_ST1U)) ;
366 stl = inpw(FM_A(FM_ST1L)) ;
367 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
368 if (stu || stl)
369 goto again ;
372 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
373 FM_STEFRMS)) { /* end of sync tx */
374 restart_tx = 1 ;
377 if (restart_tx)
378 llc_restart_tx(smc) ;
380 #endif /* PCI */
382 * interrupt source= plc1
383 * this function is called in nwfbisr.asm
385 void plc1_irq(struct s_smc *smc)
387 u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
389 #if (defined(ISA) || defined(EISA))
390 /* reset PLC Int. bits */
391 outpw(PLC1_I,inpw(PLC1_I)) ;
392 #endif
393 plc_irq(smc,PB,st) ;
397 * interrupt source= plc2
398 * this function is called in nwfbisr.asm
400 void plc2_irq(struct s_smc *smc)
402 u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
404 #if (defined(ISA) || defined(EISA))
405 /* reset PLC Int. bits */
406 outpw(PLC2_I,inpw(PLC2_I)) ;
407 #endif
408 plc_irq(smc,PA,st) ;
413 * interrupt source= timer
415 void timer_irq(struct s_smc *smc)
417 hwt_restart(smc);
418 smc->hw.t_stop = smc->hw.t_start;
419 smt_timer_done(smc) ;
423 * return S-port (PA or PB)
425 int pcm_get_s_port(struct s_smc *smc)
427 SK_UNUSED(smc) ;
428 return(PS) ;
432 * Station Label = "FDDI-XYZ" where
434 * X = connector type
435 * Y = PMD type
436 * Z = port type
438 #define STATION_LABEL_CONNECTOR_OFFSET 5
439 #define STATION_LABEL_PMD_OFFSET 6
440 #define STATION_LABEL_PORT_OFFSET 7
442 void read_address(struct s_smc *smc, u_char *mac_addr)
444 char ConnectorType ;
445 char PmdType ;
446 int i ;
448 extern const u_char canonical[256] ;
450 #if (defined(ISA) || defined(MCA))
451 for (i = 0; i < 4 ;i++) { /* read mac address from board */
452 smc->hw.fddi_phys_addr.a[i] =
453 canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ;
455 for (i = 4; i < 6; i++) {
456 smc->hw.fddi_phys_addr.a[i] =
457 canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ;
459 #endif
460 #ifdef EISA
462 * Note: We get trouble on an Alpha machine if we make a inpw()
463 * instead of inp()
465 for (i = 0; i < 4 ;i++) { /* read mac address from board */
466 smc->hw.fddi_phys_addr.a[i] =
467 canonical[inp(PR_A(i+SA_MAC))] ;
469 for (i = 4; i < 6; i++) {
470 smc->hw.fddi_phys_addr.a[i] =
471 canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ;
473 #endif
474 #ifdef PCI
475 for (i = 0; i < 6; i++) { /* read mac address from board */
476 smc->hw.fddi_phys_addr.a[i] =
477 canonical[inp(ADDR(B2_MAC_0+i))] ;
479 #endif
480 #ifndef PCI
481 ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
482 PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
483 #else
484 ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
485 PmdType = inp(ADDR(B2_PMD_TYP)) ;
486 #endif
488 smc->y[PA].pmd_type[PMD_SK_CONN] =
489 smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
490 smc->y[PA].pmd_type[PMD_SK_PMD ] =
491 smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
493 if (mac_addr) {
494 for (i = 0; i < 6 ;i++) {
495 smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
496 smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ;
498 return ;
500 smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
502 for (i = 0; i < 6 ;i++) {
503 smc->hw.fddi_canon_addr.a[i] =
504 canonical[smc->hw.fddi_phys_addr.a[i]] ;
509 * FDDI card soft reset
511 void init_board(struct s_smc *smc, u_char *mac_addr)
513 card_start(smc) ;
514 read_address(smc,mac_addr) ;
516 #ifndef PCI
517 if (inpw(CSR_A) & CS_SAS)
518 #else
519 if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
520 #endif
521 smc->s.sas = SMT_SAS ; /* Single att. station */
522 else
523 smc->s.sas = SMT_DAS ; /* Dual att. station */
525 #ifndef PCI
526 if (inpw(CSR_A) & CS_BYSTAT)
527 #else
528 if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
529 #endif
530 smc->mib.fddiSMTBypassPresent = 0 ;
531 /* without opt. bypass */
532 else
533 smc->mib.fddiSMTBypassPresent = 1 ;
534 /* with opt. bypass */
538 * insert or deinsert optical bypass (called by ECM)
540 void sm_pm_bypass_req(struct s_smc *smc, int mode)
542 #if (defined(ISA) || defined(EISA))
543 int csra_v ;
544 #endif
546 DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
547 "BP_INSERT" : "BP_DEINSERT",0) ;
549 if (smc->s.sas != SMT_DAS)
550 return ;
552 #if (defined(ISA) || defined(EISA))
554 csra_v = inpw(CSR_A) & ~CS_BYPASS ;
555 #ifdef EISA
556 csra_v |= smc->hw.led ;
557 #endif
559 switch(mode) {
560 case BP_INSERT :
561 outpw(CSR_A,csra_v | CS_BYPASS) ;
562 break ;
563 case BP_DEINSERT :
564 outpw(CSR_A,csra_v) ;
565 break ;
567 #endif /* ISA / EISA */
568 #ifdef MCA
569 switch(mode) {
570 case BP_INSERT :
571 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
572 break ;
573 case BP_DEINSERT :
574 outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */
575 break ;
577 #endif
578 #ifdef PCI
579 switch(mode) {
580 case BP_INSERT :
581 outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
582 break ;
583 case BP_DEINSERT :
584 outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
585 break ;
587 #endif
591 * check if bypass connected
593 int sm_pm_bypass_present(struct s_smc *smc)
595 #ifndef PCI
596 return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
597 #else
598 return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
599 #endif
602 void plc_clear_irq(struct s_smc *smc, int p)
604 SK_UNUSED(p) ;
606 #if (defined(ISA) || defined(EISA))
607 switch (p) {
608 case PA :
609 /* reset PLC Int. bits */
610 outpw(PLC2_I,inpw(PLC2_I)) ;
611 break ;
612 case PB :
613 /* reset PLC Int. bits */
614 outpw(PLC1_I,inpw(PLC1_I)) ;
615 break ;
617 #else
618 SK_UNUSED(smc) ;
619 #endif
624 * led_indication called by rmt_indication() and
625 * pcm_state_change()
627 * Input:
628 * smc: SMT context
629 * led_event:
630 * 0 Only switch green LEDs according to their respective PCM state
631 * LED_Y_OFF just switch yellow LED off
632 * LED_Y_ON just switch yello LED on
634 static void led_indication(struct s_smc *smc, int led_event)
636 /* use smc->hw.mac_ring_is_up == TRUE
637 * as indication for Ring Operational
639 u_short led_state ;
640 struct s_phy *phy ;
641 struct fddi_mib_p *mib_a ;
642 struct fddi_mib_p *mib_b ;
644 phy = &smc->y[PA] ;
645 mib_a = phy->mib ;
646 phy = &smc->y[PB] ;
647 mib_b = phy->mib ;
649 #ifdef EISA
650 /* Ring up = yellow led OFF*/
651 if (led_event == LED_Y_ON) {
652 smc->hw.led |= CS_LED_1 ;
654 else if (led_event == LED_Y_OFF) {
655 smc->hw.led &= ~CS_LED_1 ;
657 else {
658 /* Link at Port A or B = green led ON */
659 if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
660 mib_b->fddiPORTPCMState == PC8_ACTIVE) {
661 smc->hw.led |= CS_LED_0 ;
663 else {
664 smc->hw.led &= ~CS_LED_0 ;
667 #endif
668 #ifdef MCA
669 led_state = inpw(LEDR_A) ;
671 /* Ring up = yellow led OFF*/
672 if (led_event == LED_Y_ON) {
673 led_state |= LED_1 ;
675 else if (led_event == LED_Y_OFF) {
676 led_state &= ~LED_1 ;
678 else {
679 led_state &= ~(LED_2|LED_0) ;
681 /* Link at Port A = green led A ON */
682 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
683 led_state |= LED_2 ;
686 /* Link at Port B/S = green led B ON */
687 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
688 led_state |= LED_0 ;
692 outpw(LEDR_A, led_state) ;
693 #endif /* MCA */
694 #ifdef PCI
695 led_state = 0 ;
697 /* Ring up = yellow led OFF*/
698 if (led_event == LED_Y_ON) {
699 led_state |= LED_MY_ON ;
701 else if (led_event == LED_Y_OFF) {
702 led_state |= LED_MY_OFF ;
704 else { /* PCM state changed */
705 /* Link at Port A/S = green led A ON */
706 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
707 led_state |= LED_GA_ON ;
709 else {
710 led_state |= LED_GA_OFF ;
713 /* Link at Port B = green led B ON */
714 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
715 led_state |= LED_GB_ON ;
717 else {
718 led_state |= LED_GB_OFF ;
722 outp(ADDR(B0_LED), led_state) ;
723 #endif /* PCI */
728 void pcm_state_change(struct s_smc *smc, int plc, int p_state)
731 * the current implementation of pcm_state_change() in the driver
732 * parts must be renamed to drv_pcm_state_change() which will be called
733 * now after led_indication.
735 DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
737 led_indication(smc,0) ;
741 void rmt_indication(struct s_smc *smc, int i)
743 /* Call a driver special function if defined */
744 DRV_RMT_INDICATION(smc,i) ;
746 led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
751 * llc_recover_tx called by init_tx (fplus.c)
753 void llc_recover_tx(struct s_smc *smc)
755 #ifdef LOAD_GEN
756 extern int load_gen_flag ;
758 load_gen_flag = 0 ;
759 #endif
760 #ifndef SYNC
761 smc->hw.n_a_send= 0 ;
762 #else
763 SK_UNUSED(smc) ;
764 #endif
767 #ifdef MULT_OEM
768 static int is_equal_num(char comp1[], char comp2[], int num)
770 int i ;
772 for (i = 0 ; i < num ; i++) {
773 if (comp1[i] != comp2[i])
774 return (0) ;
776 return (1) ;
777 } /* is_equal_num */
781 * set the OEM ID defaults, and test the contents of the OEM data base
782 * The default OEM is the first ACTIVE entry in the OEM data base
784 * returns: 0 success
785 * 1 error in data base
786 * 2 data base empty
787 * 3 no active entry
789 int set_oi_id_def(struct s_smc *smc)
791 int sel_id ;
792 int i ;
793 int act_entries ;
795 i = 0 ;
796 sel_id = -1 ;
797 act_entries = FALSE ;
798 smc->hw.oem_id = 0 ;
799 smc->hw.oem_min_status = OI_STAT_ACTIVE ;
801 /* check OEM data base */
802 while (oem_ids[i].oi_status) {
803 switch (oem_ids[i].oi_status) {
804 case OI_STAT_ACTIVE:
805 act_entries = TRUE ; /* we have active IDs */
806 if (sel_id == -1)
807 sel_id = i ; /* save the first active ID */
808 case OI_STAT_VALID:
809 case OI_STAT_PRESENT:
810 i++ ;
811 break ; /* entry ok */
812 default:
813 return (1) ; /* invalid oi_status */
817 if (i == 0)
818 return (2) ;
819 if (!act_entries)
820 return (3) ;
822 /* ok, we have a valid OEM data base with an active entry */
823 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
824 return (0) ;
826 #endif /* MULT_OEM */
829 #ifdef MCA
830 /************************
832 * BEGIN_MANUAL_ENTRY()
834 * exist_board
836 * Check if an MCA board is present in the specified slot.
838 * int exist_board(
839 * struct s_smc *smc,
840 * int slot) ;
841 * In
842 * smc - A pointer to the SMT Context struct.
844 * slot - The number of the slot to inspect.
845 * Out
846 * 0 = No adapter present.
847 * 1 = Found FM1 adapter.
849 * Pseudo
850 * Read MCA ID
851 * for all valid OEM_IDs
852 * compare with ID read
853 * if equal, return 1
854 * return(0
856 * Note
857 * The smc pointer must be valid now.
859 * END_MANUAL_ENTRY()
861 ************************/
862 #define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff))
863 int exist_board(struct s_smc *smc, int slot)
865 #ifdef MULT_OEM
866 SK_LOC_DECL(u_char,id[2]) ;
867 int idi ;
868 #endif /* MULT_OEM */
870 /* No longer valid. */
871 if (smc == NULL)
872 return(0) ;
874 #ifndef MULT_OEM
875 if (read_card_id(smc, slot)
876 == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
877 return (1) ; /* Found FM adapter. */
879 #else /* MULT_OEM */
880 idi = read_card_id(smc, slot) ;
881 id[0] = idi & 0xff ;
882 id[1] = idi >> 8 ;
884 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
885 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
886 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
887 continue ;
889 if (is_equal_num(&id[0],&OEMID(smc,0),2))
890 return (1) ;
892 #endif /* MULT_OEM */
893 return (0) ; /* No adapter found. */
896 /************************
898 * read_card_id
900 * Read the MCA card id from the specified slot.
901 * In
902 * smc - A pointer to the SMT Context struct.
903 * CAVEAT: This pointer may be NULL and *must not* be used within this
904 * function. It's only purpose is for drivers that need some information
905 * for the inp() and outp() macros.
907 * slot - The number of the slot for which the card id is returned.
908 * Out
909 * Returns the card id read from the specified slot. If an illegal slot
910 * number is specified, the function returns zero.
912 ************************/
913 static int read_card_id(struct s_smc *smc, int slot)
914 /* struct s_smc *smc ; Do not use. */
916 int card_id ;
918 SK_UNUSED(smc) ; /* Make LINT happy. */
919 if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */
920 return (0) ; /* Illegal slot number specified. */
922 EnableSlotAccess(smc, slot) ;
924 card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
925 (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
927 DisableSlotAccess(smc) ;
929 return (card_id) ;
932 /************************
934 * BEGIN_MANUAL_ENTRY()
936 * get_board_para
938 * Get adapter configuration information. Fill all board specific
939 * parameters within the 'smc' structure.
941 * int get_board_para(
942 * struct s_smc *smc,
943 * int slot) ;
944 * In
945 * smc - A pointer to the SMT Context struct, to which this function will
946 * write some adapter configuration data.
948 * slot - The number of the slot, in which the adapter is installed.
949 * Out
950 * 0 = No adapter present.
951 * 1 = Ok.
952 * 2 = Adapter present, but card enable bit not set.
954 * END_MANUAL_ENTRY()
956 ************************/
957 int get_board_para(struct s_smc *smc, int slot)
959 int val ;
960 int i ;
962 /* Check if adapter present & get type of adapter. */
963 switch (exist_board(smc, slot)) {
964 case 0: /* Adapter not present. */
965 return (0) ;
966 case 1: /* FM Rev. 1 */
967 smc->hw.rev = FM1_REV ;
968 smc->hw.VFullRead = 0x0a ;
969 smc->hw.VFullWrite = 0x05 ;
970 smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */
971 break ;
973 smc->hw.slot = slot ;
975 EnableSlotAccess(smc, slot) ;
977 if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
978 DisableSlotAccess(smc) ;
979 return (2) ; /* Card enable bit not set. */
982 val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */
984 #ifndef MEM_MAPPED_IO /* is defined by the operating system */
985 i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */
986 smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
987 #endif
988 i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */
989 smc->hw.irq = opt_ints[i] ;
991 /* FPROM base addr. */
992 i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
993 smc->hw.eprom = opt_eproms[i] ;
995 DisableSlotAccess(smc) ;
997 /* before this, the smc->hw.iop must be set !!! */
998 smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
1000 return (1) ;
1003 /* Enable access to specified MCA slot. */
1004 static void EnableSlotAccess(struct s_smc *smc, int slot)
1006 SK_UNUSED(slot) ;
1008 #ifndef AIX
1009 SK_UNUSED(smc) ;
1011 /* System mode. */
1012 outp(POS_SYS_SETUP, POS_SYSTEM) ;
1014 /* Select slot. */
1015 outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
1016 #else
1017 attach_POS_addr (smc) ;
1018 #endif
1021 /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
1022 static void DisableSlotAccess(struct s_smc *smc)
1024 #ifndef AIX
1025 SK_UNUSED(smc) ;
1027 outp(POS_CHANNEL_POS, 0) ;
1028 #else
1029 detach_POS_addr (smc) ;
1030 #endif
1032 #endif /* MCA */
1034 #ifdef EISA
1035 #ifndef MEM_MAPPED_IO
1036 #define SADDR(slot) (((slot)<<12)&0xf000)
1037 #else /* MEM_MAPPED_IO */
1038 #define SADDR(slot) (smc->hw.iop)
1039 #endif /* MEM_MAPPED_IO */
1041 /************************
1043 * BEGIN_MANUAL_ENTRY()
1045 * exist_board
1047 * Check if an EISA board is present in the specified slot.
1049 * int exist_board(
1050 * struct s_smc *smc,
1051 * int slot) ;
1052 * In
1053 * smc - A pointer to the SMT Context struct.
1055 * slot - The number of the slot to inspect.
1056 * Out
1057 * 0 = No adapter present.
1058 * 1 = Found adapter.
1060 * Pseudo
1061 * Read EISA ID
1062 * for all valid OEM_IDs
1063 * compare with ID read
1064 * if equal, return 1
1065 * return(0
1067 * Note
1068 * The smc pointer must be valid now.
1070 ************************/
1071 int exist_board(struct s_smc *smc, int slot)
1073 int i ;
1074 #ifdef MULT_OEM
1075 SK_LOC_DECL(u_char,id[4]) ;
1076 #endif /* MULT_OEM */
1078 /* No longer valid. */
1079 if (smc == NULL)
1080 return(0);
1082 SK_UNUSED(slot) ;
1084 #ifndef MULT_OEM
1085 for (i = 0 ; i < 4 ; i++) {
1086 if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
1087 return(0) ;
1089 return(1) ;
1090 #else /* MULT_OEM */
1091 for (i = 0 ; i < 4 ; i++)
1092 id[i] = inp(SADDR(slot)+PRA(i)) ;
1094 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1096 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1097 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1098 continue ;
1100 if (is_equal_num(&id[0],&OEMID(smc,0),4))
1101 return (1) ;
1103 return (0) ; /* No adapter found. */
1104 #endif /* MULT_OEM */
1108 int get_board_para(struct s_smc *smc, int slot)
1110 int i ;
1112 if (!exist_board(smc,slot))
1113 return(0) ;
1115 smc->hw.slot = slot ;
1116 #ifndef MEM_MAPPED_IO /* if defined by the operating system */
1117 smc->hw.iop = SADDR(slot) ;
1118 #endif
1120 if (!(inp(C0_A(0))&CFG_CARD_EN)) {
1121 return(2) ; /* CFG_CARD_EN bit not set! */
1124 smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
1125 smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
1127 if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
1128 smc->hw.eprom = opt_eproms[i] ;
1129 else
1130 smc->hw.eprom = 0 ;
1132 smc->hw.DmaWriteExtraBytes = 8 ;
1134 return(1) ;
1136 #endif /* EISA */
1138 #ifdef ISA
1139 #ifndef MULT_OEM
1140 const u_char sklogo[6] = SKLOGO_STR ;
1141 #define SIZE_SKLOGO(smc) sizeof(sklogo)
1142 #define SKLOGO(smc,i) sklogo[i]
1143 #else /* MULT_OEM */
1144 #define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len
1145 #define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i]
1146 #endif /* MULT_OEM */
1149 int exist_board(struct s_smc *smc, HW_PTR port)
1151 int i ;
1152 #ifdef MULT_OEM
1153 int bytes_read ;
1154 u_char board_logo[15] ;
1155 SK_LOC_DECL(u_char,id[4]) ;
1156 #endif /* MULT_OEM */
1158 /* No longer valid. */
1159 if (smc == NULL)
1160 return(0);
1162 SK_UNUSED(smc) ;
1163 #ifndef MULT_OEM
1164 for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
1165 if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
1166 return(0) ;
1170 /* check MAC address (S&K or other) */
1171 for (i = 0 ; i < 3 ; i++) {
1172 if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
1173 return(0) ;
1175 return(1) ;
1176 #else /* MULT_OEM */
1177 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1178 board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
1179 bytes_read = 1 ;
1181 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1182 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1183 continue ;
1185 /* Test all read bytes with current OEM_entry */
1186 /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
1187 for (i = 0; i < bytes_read; i++) {
1188 if (board_logo[i] != SKLOGO(smc,i))
1189 break ;
1192 /* If mismatch, switch to next OEM entry */
1193 if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
1194 continue ;
1196 --i ;
1197 while (bytes_read < SIZE_SKLOGO(smc)) {
1198 // inpw next byte SK_Logo
1199 i++ ;
1200 board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
1201 bytes_read++ ;
1202 if (board_logo[i] != SKLOGO(smc,i))
1203 break ;
1206 for (i = 0 ; i < 3 ; i++)
1207 id[i] = (u_char)inpw((PRA(i)+port)) ;
1209 if ((board_logo[i] == SKLOGO(smc,i))
1210 && (bytes_read == SIZE_SKLOGO(smc))) {
1212 if (is_equal_num(&id[0],&OEMID(smc,0),3))
1213 return(1);
1215 } /* for */
1216 return(0) ;
1217 #endif /* MULT_OEM */
1220 int get_board_para(struct s_smc *smc, int slot)
1222 SK_UNUSED(smc) ;
1223 SK_UNUSED(slot) ;
1224 return(0) ; /* for ISA not supported */
1226 #endif /* ISA */
1228 #ifdef PCI
1229 #ifdef USE_BIOS_FUN
1230 int exist_board(struct s_smc *smc, int slot)
1232 u_short dev_id ;
1233 u_short ven_id ;
1234 int found ;
1235 int i ;
1237 found = FALSE ; /* make sure we returned with adatper not found*/
1238 /* if an empty oemids.h was included */
1240 #ifdef MULT_OEM
1241 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1242 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1243 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1244 continue ;
1245 #endif
1246 ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
1247 dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
1248 for (i = 0; i < slot; i++) {
1249 if (pci_find_device(i,&smc->hw.pci_handle,
1250 dev_id,ven_id) != 0) {
1252 found = FALSE ;
1253 } else {
1254 found = TRUE ;
1257 if (found) {
1258 return(1) ; /* adapter was found */
1260 #ifdef MULT_OEM
1262 #endif
1263 return(0) ; /* adapter was not found */
1265 #endif /* PCI */
1266 #endif /* USE_BIOS_FUNC */
1268 void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
1270 int i ;
1272 extern const u_char canonical[256] ;
1274 for (i = 0 ; i < 6 ; i++) {
1275 bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ;
1279 void smt_start_watchdog(struct s_smc *smc)
1281 SK_UNUSED(smc) ; /* Make LINT happy. */
1283 #ifndef DEBUG
1285 #ifdef PCI
1286 if (smc->hw.wdog_used) {
1287 outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
1289 #endif
1291 #endif /* DEBUG */
1294 static void smt_stop_watchdog(struct s_smc *smc)
1296 SK_UNUSED(smc) ; /* Make LINT happy. */
1297 #ifndef DEBUG
1299 #ifdef PCI
1300 if (smc->hw.wdog_used) {
1301 outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
1303 #endif
1305 #endif /* DEBUG */
1308 #ifdef PCI
1310 void mac_do_pci_fix(struct s_smc *smc)
1312 SK_UNUSED(smc) ;
1314 #endif /* PCI */