[ARM] Support register switch in nommu mode
[linux-2.6/verdex.git] / drivers / net / via-rhine.c
blob2418715892833608e91147ffd169dde1a2f86566
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
30 Linux kernel version history:
32 LK1.1.0:
33 - Jeff Garzik: softnet 'n stuff
35 LK1.1.1:
36 - Justin Guyett: softnet and locking fixes
37 - Jeff Garzik: use PCI interface
39 LK1.1.2:
40 - Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions
42 LK1.1.3:
43 - Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
44 code) update "Theory of Operation" with
45 softnet/locking changes
46 - Dave Miller: PCI DMA and endian fixups
47 - Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation
49 LK1.1.4:
50 - Urban Widmark: fix gcc 2.95.2 problem and
51 remove writel's to fixed address 0x7c
53 LK1.1.5:
54 - Urban Widmark: mdio locking, bounce buffer changes
55 merges from Beckers 1.05 version
56 added netif_running_on/off support
58 LK1.1.6:
59 - Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
60 set netif_running_on/off on startup, del_timer_sync
62 LK1.1.7:
63 - Manfred Spraul: added reset into tx_timeout
65 LK1.1.9:
66 - Urban Widmark: merges from Beckers 1.10 version
67 (media selection + eeprom reload)
68 - David Vrabel: merges from D-Link "1.11" version
69 (disable WOL and PME on startup)
71 LK1.1.10:
72 - Manfred Spraul: use "singlecopy" for unaligned buffers
73 don't allocate bounce buffers for !ReqTxAlign cards
75 LK1.1.11:
76 - David Woodhouse: Set dev->base_addr before the first time we call
77 wait_for_reset(). It's a lot happier that way.
78 Free np->tx_bufs only if we actually allocated it.
80 LK1.1.12:
81 - Martin Eriksson: Allow Memory-Mapped IO to be enabled.
83 LK1.1.13 (jgarzik):
84 - Add ethtool support
85 - Replace some MII-related magic numbers with constants
87 LK1.1.14 (Ivan G.):
88 - fixes comments for Rhine-III
89 - removes W_MAX_TIMEOUT (unused)
90 - adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
91 is R-I and has Davicom chip, flag is referenced in kernel driver)
92 - sends chip_id as a parameter to wait_for_reset since np is not
93 initialized on first call
94 - changes mmio "else if (chip_id==VT6102)" to "else" so it will work
95 for Rhine-III's (documentation says same bit is correct)
96 - transmit frame queue message is off by one - fixed
97 - adds IntrNormalSummary to "Something Wicked" exclusion list
98 so normal interrupts will not trigger the message (src: Donald Becker)
99 (Roger Luethi)
100 - show confused chip where to continue after Tx error
101 - location of collision counter is chip specific
102 - allow selecting backoff algorithm (module parameter)
104 LK1.1.15 (jgarzik):
105 - Use new MII lib helper generic_mii_ioctl
107 LK1.1.16 (Roger Luethi)
108 - Etherleak fix
109 - Handle Tx buffer underrun
110 - Fix bugs in full duplex handling
111 - New reset code uses "force reset" cmd on Rhine-II
112 - Various clean ups
114 LK1.1.17 (Roger Luethi)
115 - Fix race in via_rhine_start_tx()
116 - On errors, wait for Tx engine to turn off before scavenging
117 - Handle Tx descriptor write-back race on Rhine-II
118 - Force flushing for PCI posted writes
119 - More reset code changes
121 LK1.1.18 (Roger Luethi)
122 - No filtering multicast in promisc mode (Edward Peng)
123 - Fix for Rhine-I Tx timeouts
125 LK1.1.19 (Roger Luethi)
126 - Increase Tx threshold for unspecified errors
128 LK1.2.0-2.6 (Roger Luethi)
129 - Massive clean-up
130 - Rewrite PHY, media handling (remove options, full_duplex, backoff)
131 - Fix Tx engine race for good
135 #define DRV_NAME "via-rhine"
136 #define DRV_VERSION "1.2.0-2.6"
137 #define DRV_RELDATE "June-10-2004"
140 /* A few user-configurable values.
141 These may be modified when a driver module is loaded. */
143 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
144 static int max_interrupt_work = 20;
146 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
147 Setting to > 1518 effectively disables this feature. */
148 static int rx_copybreak;
151 * In case you are looking for 'options[]' or 'full_duplex[]', they
152 * are gone. Use ethtool(8) instead.
155 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
156 The Rhine has a 64 element 8390-like hash table. */
157 static const int multicast_filter_limit = 32;
160 /* Operational parameters that are set at compile time. */
162 /* Keep the ring sizes a power of two for compile efficiency.
163 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
164 Making the Tx ring too large decreases the effectiveness of channel
165 bonding and packet priority.
166 There are no ill effects from too-large receive rings. */
167 #define TX_RING_SIZE 16
168 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
169 #define RX_RING_SIZE 16
172 /* Operational parameters that usually are not changed. */
174 /* Time in jiffies before concluding the transmitter is hung. */
175 #define TX_TIMEOUT (2*HZ)
177 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
179 #include <linux/module.h>
180 #include <linux/moduleparam.h>
181 #include <linux/kernel.h>
182 #include <linux/string.h>
183 #include <linux/timer.h>
184 #include <linux/errno.h>
185 #include <linux/ioport.h>
186 #include <linux/slab.h>
187 #include <linux/interrupt.h>
188 #include <linux/pci.h>
189 #include <linux/dma-mapping.h>
190 #include <linux/netdevice.h>
191 #include <linux/etherdevice.h>
192 #include <linux/skbuff.h>
193 #include <linux/init.h>
194 #include <linux/delay.h>
195 #include <linux/mii.h>
196 #include <linux/ethtool.h>
197 #include <linux/crc32.h>
198 #include <linux/bitops.h>
199 #include <asm/processor.h> /* Processor type for cache alignment. */
200 #include <asm/io.h>
201 #include <asm/irq.h>
202 #include <asm/uaccess.h>
204 /* These identify the driver base version and may not be removed. */
205 static char version[] __devinitdata =
206 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
208 /* This driver was written to use PCI memory space. Some early versions
209 of the Rhine may only work correctly with I/O space accesses. */
210 #ifdef CONFIG_VIA_RHINE_MMIO
211 #define USE_MMIO
212 #else
213 #endif
215 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
216 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
217 MODULE_LICENSE("GPL");
219 module_param(max_interrupt_work, int, 0);
220 module_param(debug, int, 0);
221 module_param(rx_copybreak, int, 0);
222 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
223 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
224 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
227 Theory of Operation
229 I. Board Compatibility
231 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
232 controller.
234 II. Board-specific settings
236 Boards with this chip are functional only in a bus-master PCI slot.
238 Many operational settings are loaded from the EEPROM to the Config word at
239 offset 0x78. For most of these settings, this driver assumes that they are
240 correct.
241 If this driver is compiled to use PCI memory space operations the EEPROM
242 must be configured to enable memory ops.
244 III. Driver operation
246 IIIa. Ring buffers
248 This driver uses two statically allocated fixed-size descriptor lists
249 formed into rings by a branch from the final descriptor to the beginning of
250 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
252 IIIb/c. Transmit/Receive Structure
254 This driver attempts to use a zero-copy receive and transmit scheme.
256 Alas, all data buffers are required to start on a 32 bit boundary, so
257 the driver must often copy transmit packets into bounce buffers.
259 The driver allocates full frame size skbuffs for the Rx ring buffers at
260 open() time and passes the skb->data field to the chip as receive data
261 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
262 a fresh skbuff is allocated and the frame is copied to the new skbuff.
263 When the incoming frame is larger, the skbuff is passed directly up the
264 protocol stack. Buffers consumed this way are replaced by newly allocated
265 skbuffs in the last phase of rhine_rx().
267 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
268 using a full-sized skbuff for small frames vs. the copying costs of larger
269 frames. New boards are typically used in generously configured machines
270 and the underfilled buffers have negligible impact compared to the benefit of
271 a single allocation size, so the default value of zero results in never
272 copying packets. When copying is done, the cost is usually mitigated by using
273 a combined copy/checksum routine. Copying also preloads the cache, which is
274 most useful with small frames.
276 Since the VIA chips are only able to transfer data to buffers on 32 bit
277 boundaries, the IP header at offset 14 in an ethernet frame isn't
278 longword aligned for further processing. Copying these unaligned buffers
279 has the beneficial effect of 16-byte aligning the IP header.
281 IIId. Synchronization
283 The driver runs as two independent, single-threaded flows of control. One
284 is the send-packet routine, which enforces single-threaded use by the
285 dev->priv->lock spinlock. The other thread is the interrupt handler, which
286 is single threaded by the hardware and interrupt handling software.
288 The send packet thread has partial control over the Tx ring. It locks the
289 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
290 is not available it stops the transmit queue by calling netif_stop_queue.
292 The interrupt handler has exclusive control over the Rx ring and records stats
293 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
294 empty by incrementing the dirty_tx mark. If at least half of the entries in
295 the Rx ring are available the transmit queue is woken up if it was stopped.
297 IV. Notes
299 IVb. References
301 Preliminary VT86C100A manual from http://www.via.com.tw/
302 http://www.scyld.com/expert/100mbps.html
303 http://www.scyld.com/expert/NWay.html
304 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
305 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
308 IVc. Errata
310 The VT86C100A manual is not reliable information.
311 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
312 in significant performance degradation for bounce buffer copies on transmit
313 and unaligned IP headers on receive.
314 The chip does not pad to minimum transmit length.
319 /* This table drives the PCI probe routines. It's mostly boilerplate in all
320 of the drivers, and will likely be provided by some future kernel.
321 Note the matching code -- the first table entry matchs all 56** cards but
322 second only the 1234 card.
325 enum rhine_revs {
326 VT86C100A = 0x00,
327 VTunknown0 = 0x20,
328 VT6102 = 0x40,
329 VT8231 = 0x50, /* Integrated MAC */
330 VT8233 = 0x60, /* Integrated MAC */
331 VT8235 = 0x74, /* Integrated MAC */
332 VT8237 = 0x78, /* Integrated MAC */
333 VTunknown1 = 0x7C,
334 VT6105 = 0x80,
335 VT6105_B0 = 0x83,
336 VT6105L = 0x8A,
337 VT6107 = 0x8C,
338 VTunknown2 = 0x8E,
339 VT6105M = 0x90, /* Management adapter */
342 enum rhine_quirks {
343 rqWOL = 0x0001, /* Wake-On-LAN support */
344 rqForceReset = 0x0002,
345 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
346 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
347 rqRhineI = 0x0100, /* See comment below */
350 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
351 * MMIO as well as for the collision counter and the Tx FIFO underflow
352 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
355 /* Beware of PCI posted writes */
356 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
358 static struct pci_device_id rhine_pci_tbl[] =
360 {0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT86C100A */
361 {0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6102 */
362 {0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* 6105{,L,LOM} */
363 {0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6105M */
364 { } /* terminate list */
366 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
369 /* Offsets to the device registers. */
370 enum register_offsets {
371 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
372 ChipCmd1=0x09,
373 IntrStatus=0x0C, IntrEnable=0x0E,
374 MulticastFilter0=0x10, MulticastFilter1=0x14,
375 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
376 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
377 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
378 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
379 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
380 StickyHW=0x83, IntrStatus2=0x84,
381 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
382 WOLcrClr1=0xA6, WOLcgClr=0xA7,
383 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
386 /* Bits in ConfigD */
387 enum backoff_bits {
388 BackOptional=0x01, BackModify=0x02,
389 BackCaptureEffect=0x04, BackRandom=0x08
392 #ifdef USE_MMIO
393 /* Registers we check that mmio and reg are the same. */
394 static const int mmio_verify_registers[] = {
395 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
398 #endif
400 /* Bits in the interrupt status/mask registers. */
401 enum intr_status_bits {
402 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
403 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
404 IntrPCIErr=0x0040,
405 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
406 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
407 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
408 IntrRxWakeUp=0x8000,
409 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
410 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
411 IntrTxErrSummary=0x082218,
414 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
415 enum wol_bits {
416 WOLucast = 0x10,
417 WOLmagic = 0x20,
418 WOLbmcast = 0x30,
419 WOLlnkon = 0x40,
420 WOLlnkoff = 0x80,
423 /* The Rx and Tx buffer descriptors. */
424 struct rx_desc {
425 s32 rx_status;
426 u32 desc_length; /* Chain flag, Buffer/frame length */
427 u32 addr;
428 u32 next_desc;
430 struct tx_desc {
431 s32 tx_status;
432 u32 desc_length; /* Chain flag, Tx Config, Frame length */
433 u32 addr;
434 u32 next_desc;
437 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
438 #define TXDESC 0x00e08000
440 enum rx_status_bits {
441 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
444 /* Bits in *_desc.*_status */
445 enum desc_status_bits {
446 DescOwn=0x80000000
449 /* Bits in ChipCmd. */
450 enum chip_cmd_bits {
451 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
452 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
453 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
454 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
457 struct rhine_private {
458 /* Descriptor rings */
459 struct rx_desc *rx_ring;
460 struct tx_desc *tx_ring;
461 dma_addr_t rx_ring_dma;
462 dma_addr_t tx_ring_dma;
464 /* The addresses of receive-in-place skbuffs. */
465 struct sk_buff *rx_skbuff[RX_RING_SIZE];
466 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
468 /* The saved address of a sent-in-place packet/buffer, for later free(). */
469 struct sk_buff *tx_skbuff[TX_RING_SIZE];
470 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
472 /* Tx bounce buffers */
473 unsigned char *tx_buf[TX_RING_SIZE];
474 unsigned char *tx_bufs;
475 dma_addr_t tx_bufs_dma;
477 struct pci_dev *pdev;
478 long pioaddr;
479 struct net_device_stats stats;
480 spinlock_t lock;
482 /* Frequently used values: keep some adjacent for cache effect. */
483 u32 quirks;
484 struct rx_desc *rx_head_desc;
485 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
486 unsigned int cur_tx, dirty_tx;
487 unsigned int rx_buf_sz; /* Based on MTU+slack. */
488 u8 wolopts;
490 u8 tx_thresh, rx_thresh;
492 struct mii_if_info mii_if;
493 struct work_struct tx_timeout_task;
494 struct work_struct check_media_task;
495 void __iomem *base;
498 static int mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int rhine_open(struct net_device *dev);
501 static void rhine_tx_timeout(struct net_device *dev);
502 static void rhine_tx_timeout_task(struct net_device *dev);
503 static void rhine_check_media_task(struct net_device *dev);
504 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
505 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
506 static void rhine_tx(struct net_device *dev);
507 static void rhine_rx(struct net_device *dev);
508 static void rhine_error(struct net_device *dev, int intr_status);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
511 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
512 static struct ethtool_ops netdev_ethtool_ops;
513 static int rhine_close(struct net_device *dev);
514 static void rhine_shutdown (struct pci_dev *pdev);
516 #define RHINE_WAIT_FOR(condition) do { \
517 int i=1024; \
518 while (!(condition) && --i) \
520 if (debug > 1 && i < 512) \
521 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
522 DRV_NAME, 1024-i, __func__, __LINE__); \
523 } while(0)
525 static inline u32 get_intr_status(struct net_device *dev)
527 struct rhine_private *rp = netdev_priv(dev);
528 void __iomem *ioaddr = rp->base;
529 u32 intr_status;
531 intr_status = ioread16(ioaddr + IntrStatus);
532 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
533 if (rp->quirks & rqStatusWBRace)
534 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
535 return intr_status;
539 * Get power related registers into sane state.
540 * Notify user about past WOL event.
542 static void rhine_power_init(struct net_device *dev)
544 struct rhine_private *rp = netdev_priv(dev);
545 void __iomem *ioaddr = rp->base;
546 u16 wolstat;
548 if (rp->quirks & rqWOL) {
549 /* Make sure chip is in power state D0 */
550 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
552 /* Disable "force PME-enable" */
553 iowrite8(0x80, ioaddr + WOLcgClr);
555 /* Clear power-event config bits (WOL) */
556 iowrite8(0xFF, ioaddr + WOLcrClr);
557 /* More recent cards can manage two additional patterns */
558 if (rp->quirks & rq6patterns)
559 iowrite8(0x03, ioaddr + WOLcrClr1);
561 /* Save power-event status bits */
562 wolstat = ioread8(ioaddr + PwrcsrSet);
563 if (rp->quirks & rq6patterns)
564 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
566 /* Clear power-event status bits */
567 iowrite8(0xFF, ioaddr + PwrcsrClr);
568 if (rp->quirks & rq6patterns)
569 iowrite8(0x03, ioaddr + PwrcsrClr1);
571 if (wolstat) {
572 char *reason;
573 switch (wolstat) {
574 case WOLmagic:
575 reason = "Magic packet";
576 break;
577 case WOLlnkon:
578 reason = "Link went up";
579 break;
580 case WOLlnkoff:
581 reason = "Link went down";
582 break;
583 case WOLucast:
584 reason = "Unicast packet";
585 break;
586 case WOLbmcast:
587 reason = "Multicast/broadcast packet";
588 break;
589 default:
590 reason = "Unknown";
592 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
593 DRV_NAME, reason);
598 static void rhine_chip_reset(struct net_device *dev)
600 struct rhine_private *rp = netdev_priv(dev);
601 void __iomem *ioaddr = rp->base;
603 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
604 IOSYNC;
606 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
607 printk(KERN_INFO "%s: Reset not complete yet. "
608 "Trying harder.\n", DRV_NAME);
610 /* Force reset */
611 if (rp->quirks & rqForceReset)
612 iowrite8(0x40, ioaddr + MiscCmd);
614 /* Reset can take somewhat longer (rare) */
615 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
618 if (debug > 1)
619 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
620 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
621 "failed" : "succeeded");
624 #ifdef USE_MMIO
625 static void enable_mmio(long pioaddr, u32 quirks)
627 int n;
628 if (quirks & rqRhineI) {
629 /* More recent docs say that this bit is reserved ... */
630 n = inb(pioaddr + ConfigA) | 0x20;
631 outb(n, pioaddr + ConfigA);
632 } else {
633 n = inb(pioaddr + ConfigD) | 0x80;
634 outb(n, pioaddr + ConfigD);
637 #endif
640 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
641 * (plus 0x6C for Rhine-I/II)
643 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
645 struct rhine_private *rp = netdev_priv(dev);
646 void __iomem *ioaddr = rp->base;
648 outb(0x20, pioaddr + MACRegEEcsr);
649 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
651 #ifdef USE_MMIO
653 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
654 * MMIO. If reloading EEPROM was done first this could be avoided, but
655 * it is not known if that still works with the "win98-reboot" problem.
657 enable_mmio(pioaddr, rp->quirks);
658 #endif
660 /* Turn off EEPROM-controlled wake-up (magic packet) */
661 if (rp->quirks & rqWOL)
662 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
666 #ifdef CONFIG_NET_POLL_CONTROLLER
667 static void rhine_poll(struct net_device *dev)
669 disable_irq(dev->irq);
670 rhine_interrupt(dev->irq, (void *)dev, NULL);
671 enable_irq(dev->irq);
673 #endif
675 static void rhine_hw_init(struct net_device *dev, long pioaddr)
677 struct rhine_private *rp = netdev_priv(dev);
679 /* Reset the chip to erase previous misconfiguration. */
680 rhine_chip_reset(dev);
682 /* Rhine-I needs extra time to recuperate before EEPROM reload */
683 if (rp->quirks & rqRhineI)
684 msleep(5);
686 /* Reload EEPROM controlled bytes cleared by soft reset */
687 rhine_reload_eeprom(pioaddr, dev);
690 static int __devinit rhine_init_one(struct pci_dev *pdev,
691 const struct pci_device_id *ent)
693 struct net_device *dev;
694 struct rhine_private *rp;
695 int i, rc;
696 u8 pci_rev;
697 u32 quirks;
698 long pioaddr;
699 long memaddr;
700 void __iomem *ioaddr;
701 int io_size, phy_id;
702 const char *name;
703 #ifdef USE_MMIO
704 int bar = 1;
705 #else
706 int bar = 0;
707 #endif
709 /* when built into the kernel, we only print version if device is found */
710 #ifndef MODULE
711 static int printed_version;
712 if (!printed_version++)
713 printk(version);
714 #endif
716 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
718 io_size = 256;
719 phy_id = 0;
720 quirks = 0;
721 name = "Rhine";
722 if (pci_rev < VTunknown0) {
723 quirks = rqRhineI;
724 io_size = 128;
726 else if (pci_rev >= VT6102) {
727 quirks = rqWOL | rqForceReset;
728 if (pci_rev < VT6105) {
729 name = "Rhine II";
730 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
732 else {
733 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
734 if (pci_rev >= VT6105_B0)
735 quirks |= rq6patterns;
736 if (pci_rev < VT6105M)
737 name = "Rhine III";
738 else
739 name = "Rhine III (Management Adapter)";
743 rc = pci_enable_device(pdev);
744 if (rc)
745 goto err_out;
747 /* this should always be supported */
748 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
749 if (rc) {
750 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
751 "the card!?\n");
752 goto err_out;
755 /* sanity check */
756 if ((pci_resource_len(pdev, 0) < io_size) ||
757 (pci_resource_len(pdev, 1) < io_size)) {
758 rc = -EIO;
759 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
760 goto err_out;
763 pioaddr = pci_resource_start(pdev, 0);
764 memaddr = pci_resource_start(pdev, 1);
766 pci_set_master(pdev);
768 dev = alloc_etherdev(sizeof(struct rhine_private));
769 if (!dev) {
770 rc = -ENOMEM;
771 printk(KERN_ERR "alloc_etherdev failed\n");
772 goto err_out;
774 SET_MODULE_OWNER(dev);
775 SET_NETDEV_DEV(dev, &pdev->dev);
777 rp = netdev_priv(dev);
778 rp->quirks = quirks;
779 rp->pioaddr = pioaddr;
780 rp->pdev = pdev;
782 rc = pci_request_regions(pdev, DRV_NAME);
783 if (rc)
784 goto err_out_free_netdev;
786 ioaddr = pci_iomap(pdev, bar, io_size);
787 if (!ioaddr) {
788 rc = -EIO;
789 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
790 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
791 goto err_out_free_res;
794 #ifdef USE_MMIO
795 enable_mmio(pioaddr, quirks);
797 /* Check that selected MMIO registers match the PIO ones */
798 i = 0;
799 while (mmio_verify_registers[i]) {
800 int reg = mmio_verify_registers[i++];
801 unsigned char a = inb(pioaddr+reg);
802 unsigned char b = readb(ioaddr+reg);
803 if (a != b) {
804 rc = -EIO;
805 printk(KERN_ERR "MMIO do not match PIO [%02x] "
806 "(%02x != %02x)\n", reg, a, b);
807 goto err_out_unmap;
810 #endif /* USE_MMIO */
812 dev->base_addr = (unsigned long)ioaddr;
813 rp->base = ioaddr;
815 /* Get chip registers into a sane state */
816 rhine_power_init(dev);
817 rhine_hw_init(dev, pioaddr);
819 for (i = 0; i < 6; i++)
820 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
821 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
823 if (!is_valid_ether_addr(dev->perm_addr)) {
824 rc = -EIO;
825 printk(KERN_ERR "Invalid MAC address\n");
826 goto err_out_unmap;
829 /* For Rhine-I/II, phy_id is loaded from EEPROM */
830 if (!phy_id)
831 phy_id = ioread8(ioaddr + 0x6C);
833 dev->irq = pdev->irq;
835 spin_lock_init(&rp->lock);
836 rp->mii_if.dev = dev;
837 rp->mii_if.mdio_read = mdio_read;
838 rp->mii_if.mdio_write = mdio_write;
839 rp->mii_if.phy_id_mask = 0x1f;
840 rp->mii_if.reg_num_mask = 0x1f;
842 /* The chip-specific entries in the device structure. */
843 dev->open = rhine_open;
844 dev->hard_start_xmit = rhine_start_tx;
845 dev->stop = rhine_close;
846 dev->get_stats = rhine_get_stats;
847 dev->set_multicast_list = rhine_set_rx_mode;
848 dev->do_ioctl = netdev_ioctl;
849 dev->ethtool_ops = &netdev_ethtool_ops;
850 dev->tx_timeout = rhine_tx_timeout;
851 dev->watchdog_timeo = TX_TIMEOUT;
852 #ifdef CONFIG_NET_POLL_CONTROLLER
853 dev->poll_controller = rhine_poll;
854 #endif
855 if (rp->quirks & rqRhineI)
856 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
858 INIT_WORK(&rp->tx_timeout_task,
859 (void (*)(void *))rhine_tx_timeout_task, dev);
861 INIT_WORK(&rp->check_media_task,
862 (void (*)(void *))rhine_check_media_task, dev);
864 /* dev->name not defined before register_netdev()! */
865 rc = register_netdev(dev);
866 if (rc)
867 goto err_out_unmap;
869 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
870 dev->name, name,
871 #ifdef USE_MMIO
872 memaddr
873 #else
874 (long)ioaddr
875 #endif
878 for (i = 0; i < 5; i++)
879 printk("%2.2x:", dev->dev_addr[i]);
880 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
882 pci_set_drvdata(pdev, dev);
885 u16 mii_cmd;
886 int mii_status = mdio_read(dev, phy_id, 1);
887 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
888 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
889 if (mii_status != 0xffff && mii_status != 0x0000) {
890 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
891 printk(KERN_INFO "%s: MII PHY found at address "
892 "%d, status 0x%4.4x advertising %4.4x "
893 "Link %4.4x.\n", dev->name, phy_id,
894 mii_status, rp->mii_if.advertising,
895 mdio_read(dev, phy_id, 5));
897 /* set IFF_RUNNING */
898 if (mii_status & BMSR_LSTATUS)
899 netif_carrier_on(dev);
900 else
901 netif_carrier_off(dev);
905 rp->mii_if.phy_id = phy_id;
907 return 0;
909 err_out_unmap:
910 pci_iounmap(pdev, ioaddr);
911 err_out_free_res:
912 pci_release_regions(pdev);
913 err_out_free_netdev:
914 free_netdev(dev);
915 err_out:
916 return rc;
919 static int alloc_ring(struct net_device* dev)
921 struct rhine_private *rp = netdev_priv(dev);
922 void *ring;
923 dma_addr_t ring_dma;
925 ring = pci_alloc_consistent(rp->pdev,
926 RX_RING_SIZE * sizeof(struct rx_desc) +
927 TX_RING_SIZE * sizeof(struct tx_desc),
928 &ring_dma);
929 if (!ring) {
930 printk(KERN_ERR "Could not allocate DMA memory.\n");
931 return -ENOMEM;
933 if (rp->quirks & rqRhineI) {
934 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
935 PKT_BUF_SZ * TX_RING_SIZE,
936 &rp->tx_bufs_dma);
937 if (rp->tx_bufs == NULL) {
938 pci_free_consistent(rp->pdev,
939 RX_RING_SIZE * sizeof(struct rx_desc) +
940 TX_RING_SIZE * sizeof(struct tx_desc),
941 ring, ring_dma);
942 return -ENOMEM;
946 rp->rx_ring = ring;
947 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
948 rp->rx_ring_dma = ring_dma;
949 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
951 return 0;
954 static void free_ring(struct net_device* dev)
956 struct rhine_private *rp = netdev_priv(dev);
958 pci_free_consistent(rp->pdev,
959 RX_RING_SIZE * sizeof(struct rx_desc) +
960 TX_RING_SIZE * sizeof(struct tx_desc),
961 rp->rx_ring, rp->rx_ring_dma);
962 rp->tx_ring = NULL;
964 if (rp->tx_bufs)
965 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
966 rp->tx_bufs, rp->tx_bufs_dma);
968 rp->tx_bufs = NULL;
972 static void alloc_rbufs(struct net_device *dev)
974 struct rhine_private *rp = netdev_priv(dev);
975 dma_addr_t next;
976 int i;
978 rp->dirty_rx = rp->cur_rx = 0;
980 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
981 rp->rx_head_desc = &rp->rx_ring[0];
982 next = rp->rx_ring_dma;
984 /* Init the ring entries */
985 for (i = 0; i < RX_RING_SIZE; i++) {
986 rp->rx_ring[i].rx_status = 0;
987 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
988 next += sizeof(struct rx_desc);
989 rp->rx_ring[i].next_desc = cpu_to_le32(next);
990 rp->rx_skbuff[i] = NULL;
992 /* Mark the last entry as wrapping the ring. */
993 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
995 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
996 for (i = 0; i < RX_RING_SIZE; i++) {
997 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
998 rp->rx_skbuff[i] = skb;
999 if (skb == NULL)
1000 break;
1001 skb->dev = dev; /* Mark as being used by this device. */
1003 rp->rx_skbuff_dma[i] =
1004 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1005 PCI_DMA_FROMDEVICE);
1007 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1008 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1010 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1013 static void free_rbufs(struct net_device* dev)
1015 struct rhine_private *rp = netdev_priv(dev);
1016 int i;
1018 /* Free all the skbuffs in the Rx queue. */
1019 for (i = 0; i < RX_RING_SIZE; i++) {
1020 rp->rx_ring[i].rx_status = 0;
1021 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1022 if (rp->rx_skbuff[i]) {
1023 pci_unmap_single(rp->pdev,
1024 rp->rx_skbuff_dma[i],
1025 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1026 dev_kfree_skb(rp->rx_skbuff[i]);
1028 rp->rx_skbuff[i] = NULL;
1032 static void alloc_tbufs(struct net_device* dev)
1034 struct rhine_private *rp = netdev_priv(dev);
1035 dma_addr_t next;
1036 int i;
1038 rp->dirty_tx = rp->cur_tx = 0;
1039 next = rp->tx_ring_dma;
1040 for (i = 0; i < TX_RING_SIZE; i++) {
1041 rp->tx_skbuff[i] = NULL;
1042 rp->tx_ring[i].tx_status = 0;
1043 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1044 next += sizeof(struct tx_desc);
1045 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1046 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1048 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1052 static void free_tbufs(struct net_device* dev)
1054 struct rhine_private *rp = netdev_priv(dev);
1055 int i;
1057 for (i = 0; i < TX_RING_SIZE; i++) {
1058 rp->tx_ring[i].tx_status = 0;
1059 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1060 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1061 if (rp->tx_skbuff[i]) {
1062 if (rp->tx_skbuff_dma[i]) {
1063 pci_unmap_single(rp->pdev,
1064 rp->tx_skbuff_dma[i],
1065 rp->tx_skbuff[i]->len,
1066 PCI_DMA_TODEVICE);
1068 dev_kfree_skb(rp->tx_skbuff[i]);
1070 rp->tx_skbuff[i] = NULL;
1071 rp->tx_buf[i] = NULL;
1075 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1077 struct rhine_private *rp = netdev_priv(dev);
1078 void __iomem *ioaddr = rp->base;
1080 mii_check_media(&rp->mii_if, debug, init_media);
1082 if (rp->mii_if.full_duplex)
1083 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1084 ioaddr + ChipCmd1);
1085 else
1086 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1087 ioaddr + ChipCmd1);
1090 static void rhine_check_media_task(struct net_device *dev)
1092 rhine_check_media(dev, 0);
1095 static void init_registers(struct net_device *dev)
1097 struct rhine_private *rp = netdev_priv(dev);
1098 void __iomem *ioaddr = rp->base;
1099 int i;
1101 for (i = 0; i < 6; i++)
1102 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1104 /* Initialize other registers. */
1105 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1106 /* Configure initial FIFO thresholds. */
1107 iowrite8(0x20, ioaddr + TxConfig);
1108 rp->tx_thresh = 0x20;
1109 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1111 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1112 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1114 rhine_set_rx_mode(dev);
1116 /* Enable interrupts by setting the interrupt mask. */
1117 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1118 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1119 IntrTxDone | IntrTxError | IntrTxUnderrun |
1120 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1121 ioaddr + IntrEnable);
1123 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1124 ioaddr + ChipCmd);
1125 rhine_check_media(dev, 1);
1128 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1129 static void rhine_enable_linkmon(void __iomem *ioaddr)
1131 iowrite8(0, ioaddr + MIICmd);
1132 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1133 iowrite8(0x80, ioaddr + MIICmd);
1135 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1137 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1140 /* Disable MII link status auto-polling (required for MDIO access) */
1141 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1143 iowrite8(0, ioaddr + MIICmd);
1145 if (quirks & rqRhineI) {
1146 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1148 /* Do not call from ISR! */
1149 msleep(1);
1151 /* 0x80 must be set immediately before turning it off */
1152 iowrite8(0x80, ioaddr + MIICmd);
1154 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1156 /* Heh. Now clear 0x80 again. */
1157 iowrite8(0, ioaddr + MIICmd);
1159 else
1160 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1163 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1165 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1167 struct rhine_private *rp = netdev_priv(dev);
1168 void __iomem *ioaddr = rp->base;
1169 int result;
1171 rhine_disable_linkmon(ioaddr, rp->quirks);
1173 /* rhine_disable_linkmon already cleared MIICmd */
1174 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1175 iowrite8(regnum, ioaddr + MIIRegAddr);
1176 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1177 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1178 result = ioread16(ioaddr + MIIData);
1180 rhine_enable_linkmon(ioaddr);
1181 return result;
1184 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1186 struct rhine_private *rp = netdev_priv(dev);
1187 void __iomem *ioaddr = rp->base;
1189 rhine_disable_linkmon(ioaddr, rp->quirks);
1191 /* rhine_disable_linkmon already cleared MIICmd */
1192 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1193 iowrite8(regnum, ioaddr + MIIRegAddr);
1194 iowrite16(value, ioaddr + MIIData);
1195 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1196 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1198 rhine_enable_linkmon(ioaddr);
1201 static int rhine_open(struct net_device *dev)
1203 struct rhine_private *rp = netdev_priv(dev);
1204 void __iomem *ioaddr = rp->base;
1205 int rc;
1207 rc = request_irq(rp->pdev->irq, &rhine_interrupt, SA_SHIRQ, dev->name,
1208 dev);
1209 if (rc)
1210 return rc;
1212 if (debug > 1)
1213 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1214 dev->name, rp->pdev->irq);
1216 rc = alloc_ring(dev);
1217 if (rc) {
1218 free_irq(rp->pdev->irq, dev);
1219 return rc;
1221 alloc_rbufs(dev);
1222 alloc_tbufs(dev);
1223 rhine_chip_reset(dev);
1224 init_registers(dev);
1225 if (debug > 2)
1226 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1227 "MII status: %4.4x.\n",
1228 dev->name, ioread16(ioaddr + ChipCmd),
1229 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1231 netif_start_queue(dev);
1233 return 0;
1236 static void rhine_tx_timeout(struct net_device *dev)
1238 struct rhine_private *rp = netdev_priv(dev);
1241 * Move bulk of work outside of interrupt context
1243 schedule_work(&rp->tx_timeout_task);
1246 static void rhine_tx_timeout_task(struct net_device *dev)
1248 struct rhine_private *rp = netdev_priv(dev);
1249 void __iomem *ioaddr = rp->base;
1251 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1252 "%4.4x, resetting...\n",
1253 dev->name, ioread16(ioaddr + IntrStatus),
1254 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1256 /* protect against concurrent rx interrupts */
1257 disable_irq(rp->pdev->irq);
1259 spin_lock(&rp->lock);
1261 /* clear all descriptors */
1262 free_tbufs(dev);
1263 free_rbufs(dev);
1264 alloc_tbufs(dev);
1265 alloc_rbufs(dev);
1267 /* Reinitialize the hardware. */
1268 rhine_chip_reset(dev);
1269 init_registers(dev);
1271 spin_unlock(&rp->lock);
1272 enable_irq(rp->pdev->irq);
1274 dev->trans_start = jiffies;
1275 rp->stats.tx_errors++;
1276 netif_wake_queue(dev);
1279 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1281 struct rhine_private *rp = netdev_priv(dev);
1282 void __iomem *ioaddr = rp->base;
1283 unsigned entry;
1285 /* Caution: the write order is important here, set the field
1286 with the "ownership" bits last. */
1288 /* Calculate the next Tx descriptor entry. */
1289 entry = rp->cur_tx % TX_RING_SIZE;
1291 if (skb->len < ETH_ZLEN) {
1292 skb = skb_padto(skb, ETH_ZLEN);
1293 if (skb == NULL)
1294 return 0;
1297 rp->tx_skbuff[entry] = skb;
1299 if ((rp->quirks & rqRhineI) &&
1300 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_HW)) {
1301 /* Must use alignment buffer. */
1302 if (skb->len > PKT_BUF_SZ) {
1303 /* packet too long, drop it */
1304 dev_kfree_skb(skb);
1305 rp->tx_skbuff[entry] = NULL;
1306 rp->stats.tx_dropped++;
1307 return 0;
1309 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1310 rp->tx_skbuff_dma[entry] = 0;
1311 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1312 (rp->tx_buf[entry] -
1313 rp->tx_bufs));
1314 } else {
1315 rp->tx_skbuff_dma[entry] =
1316 pci_map_single(rp->pdev, skb->data, skb->len,
1317 PCI_DMA_TODEVICE);
1318 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1321 rp->tx_ring[entry].desc_length =
1322 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1324 /* lock eth irq */
1325 spin_lock_irq(&rp->lock);
1326 wmb();
1327 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1328 wmb();
1330 rp->cur_tx++;
1332 /* Non-x86 Todo: explicitly flush cache lines here. */
1334 /* Wake the potentially-idle transmit channel */
1335 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1336 ioaddr + ChipCmd1);
1337 IOSYNC;
1339 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1340 netif_stop_queue(dev);
1342 dev->trans_start = jiffies;
1344 spin_unlock_irq(&rp->lock);
1346 if (debug > 4) {
1347 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1348 dev->name, rp->cur_tx-1, entry);
1350 return 0;
1353 /* The interrupt handler does all of the Rx thread work and cleans up
1354 after the Tx thread. */
1355 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *rgs)
1357 struct net_device *dev = dev_instance;
1358 struct rhine_private *rp = netdev_priv(dev);
1359 void __iomem *ioaddr = rp->base;
1360 u32 intr_status;
1361 int boguscnt = max_interrupt_work;
1362 int handled = 0;
1364 while ((intr_status = get_intr_status(dev))) {
1365 handled = 1;
1367 /* Acknowledge all of the current interrupt sources ASAP. */
1368 if (intr_status & IntrTxDescRace)
1369 iowrite8(0x08, ioaddr + IntrStatus2);
1370 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1371 IOSYNC;
1373 if (debug > 4)
1374 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1375 dev->name, intr_status);
1377 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1378 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf))
1379 rhine_rx(dev);
1381 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1382 if (intr_status & IntrTxErrSummary) {
1383 /* Avoid scavenging before Tx engine turned off */
1384 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1385 if (debug > 2 &&
1386 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1387 printk(KERN_WARNING "%s: "
1388 "rhine_interrupt() Tx engine"
1389 "still on.\n", dev->name);
1391 rhine_tx(dev);
1394 /* Abnormal error summary/uncommon events handlers. */
1395 if (intr_status & (IntrPCIErr | IntrLinkChange |
1396 IntrStatsMax | IntrTxError | IntrTxAborted |
1397 IntrTxUnderrun | IntrTxDescRace))
1398 rhine_error(dev, intr_status);
1400 if (--boguscnt < 0) {
1401 printk(KERN_WARNING "%s: Too much work at interrupt, "
1402 "status=%#8.8x.\n",
1403 dev->name, intr_status);
1404 break;
1408 if (debug > 3)
1409 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1410 dev->name, ioread16(ioaddr + IntrStatus));
1411 return IRQ_RETVAL(handled);
1414 /* This routine is logically part of the interrupt handler, but isolated
1415 for clarity. */
1416 static void rhine_tx(struct net_device *dev)
1418 struct rhine_private *rp = netdev_priv(dev);
1419 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1421 spin_lock(&rp->lock);
1423 /* find and cleanup dirty tx descriptors */
1424 while (rp->dirty_tx != rp->cur_tx) {
1425 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1426 if (debug > 6)
1427 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1428 entry, txstatus);
1429 if (txstatus & DescOwn)
1430 break;
1431 if (txstatus & 0x8000) {
1432 if (debug > 1)
1433 printk(KERN_DEBUG "%s: Transmit error, "
1434 "Tx status %8.8x.\n",
1435 dev->name, txstatus);
1436 rp->stats.tx_errors++;
1437 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1438 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1439 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1440 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1441 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1442 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1443 rp->stats.tx_fifo_errors++;
1444 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1445 break; /* Keep the skb - we try again */
1447 /* Transmitter restarted in 'abnormal' handler. */
1448 } else {
1449 if (rp->quirks & rqRhineI)
1450 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1451 else
1452 rp->stats.collisions += txstatus & 0x0F;
1453 if (debug > 6)
1454 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1455 (txstatus >> 3) & 0xF,
1456 txstatus & 0xF);
1457 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1458 rp->stats.tx_packets++;
1460 /* Free the original skb. */
1461 if (rp->tx_skbuff_dma[entry]) {
1462 pci_unmap_single(rp->pdev,
1463 rp->tx_skbuff_dma[entry],
1464 rp->tx_skbuff[entry]->len,
1465 PCI_DMA_TODEVICE);
1467 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1468 rp->tx_skbuff[entry] = NULL;
1469 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1471 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1472 netif_wake_queue(dev);
1474 spin_unlock(&rp->lock);
1477 /* This routine is logically part of the interrupt handler, but isolated
1478 for clarity and better register allocation. */
1479 static void rhine_rx(struct net_device *dev)
1481 struct rhine_private *rp = netdev_priv(dev);
1482 int entry = rp->cur_rx % RX_RING_SIZE;
1483 int boguscnt = rp->dirty_rx + RX_RING_SIZE - rp->cur_rx;
1485 if (debug > 4) {
1486 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1487 dev->name, entry,
1488 le32_to_cpu(rp->rx_head_desc->rx_status));
1491 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1492 while (!(rp->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) {
1493 struct rx_desc *desc = rp->rx_head_desc;
1494 u32 desc_status = le32_to_cpu(desc->rx_status);
1495 int data_size = desc_status >> 16;
1497 if (debug > 4)
1498 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1499 desc_status);
1500 if (--boguscnt < 0)
1501 break;
1502 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1503 if ((desc_status & RxWholePkt) != RxWholePkt) {
1504 printk(KERN_WARNING "%s: Oversized Ethernet "
1505 "frame spanned multiple buffers, entry "
1506 "%#x length %d status %8.8x!\n",
1507 dev->name, entry, data_size,
1508 desc_status);
1509 printk(KERN_WARNING "%s: Oversized Ethernet "
1510 "frame %p vs %p.\n", dev->name,
1511 rp->rx_head_desc, &rp->rx_ring[entry]);
1512 rp->stats.rx_length_errors++;
1513 } else if (desc_status & RxErr) {
1514 /* There was a error. */
1515 if (debug > 2)
1516 printk(KERN_DEBUG "rhine_rx() Rx "
1517 "error was %8.8x.\n",
1518 desc_status);
1519 rp->stats.rx_errors++;
1520 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1521 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1522 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1523 if (desc_status & 0x0002) {
1524 /* this can also be updated outside the interrupt handler */
1525 spin_lock(&rp->lock);
1526 rp->stats.rx_crc_errors++;
1527 spin_unlock(&rp->lock);
1530 } else {
1531 struct sk_buff *skb;
1532 /* Length should omit the CRC */
1533 int pkt_len = data_size - 4;
1535 /* Check if the packet is long enough to accept without
1536 copying to a minimally-sized skbuff. */
1537 if (pkt_len < rx_copybreak &&
1538 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1539 skb->dev = dev;
1540 skb_reserve(skb, 2); /* 16 byte align the IP header */
1541 pci_dma_sync_single_for_cpu(rp->pdev,
1542 rp->rx_skbuff_dma[entry],
1543 rp->rx_buf_sz,
1544 PCI_DMA_FROMDEVICE);
1546 eth_copy_and_sum(skb,
1547 rp->rx_skbuff[entry]->data,
1548 pkt_len, 0);
1549 skb_put(skb, pkt_len);
1550 pci_dma_sync_single_for_device(rp->pdev,
1551 rp->rx_skbuff_dma[entry],
1552 rp->rx_buf_sz,
1553 PCI_DMA_FROMDEVICE);
1554 } else {
1555 skb = rp->rx_skbuff[entry];
1556 if (skb == NULL) {
1557 printk(KERN_ERR "%s: Inconsistent Rx "
1558 "descriptor chain.\n",
1559 dev->name);
1560 break;
1562 rp->rx_skbuff[entry] = NULL;
1563 skb_put(skb, pkt_len);
1564 pci_unmap_single(rp->pdev,
1565 rp->rx_skbuff_dma[entry],
1566 rp->rx_buf_sz,
1567 PCI_DMA_FROMDEVICE);
1569 skb->protocol = eth_type_trans(skb, dev);
1570 netif_rx(skb);
1571 dev->last_rx = jiffies;
1572 rp->stats.rx_bytes += pkt_len;
1573 rp->stats.rx_packets++;
1575 entry = (++rp->cur_rx) % RX_RING_SIZE;
1576 rp->rx_head_desc = &rp->rx_ring[entry];
1579 /* Refill the Rx ring buffers. */
1580 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1581 struct sk_buff *skb;
1582 entry = rp->dirty_rx % RX_RING_SIZE;
1583 if (rp->rx_skbuff[entry] == NULL) {
1584 skb = dev_alloc_skb(rp->rx_buf_sz);
1585 rp->rx_skbuff[entry] = skb;
1586 if (skb == NULL)
1587 break; /* Better luck next round. */
1588 skb->dev = dev; /* Mark as being used by this device. */
1589 rp->rx_skbuff_dma[entry] =
1590 pci_map_single(rp->pdev, skb->data,
1591 rp->rx_buf_sz,
1592 PCI_DMA_FROMDEVICE);
1593 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1595 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1600 * Clears the "tally counters" for CRC errors and missed frames(?).
1601 * It has been reported that some chips need a write of 0 to clear
1602 * these, for others the counters are set to 1 when written to and
1603 * instead cleared when read. So we clear them both ways ...
1605 static inline void clear_tally_counters(void __iomem *ioaddr)
1607 iowrite32(0, ioaddr + RxMissed);
1608 ioread16(ioaddr + RxCRCErrs);
1609 ioread16(ioaddr + RxMissed);
1612 static void rhine_restart_tx(struct net_device *dev) {
1613 struct rhine_private *rp = netdev_priv(dev);
1614 void __iomem *ioaddr = rp->base;
1615 int entry = rp->dirty_tx % TX_RING_SIZE;
1616 u32 intr_status;
1619 * If new errors occured, we need to sort them out before doing Tx.
1620 * In that case the ISR will be back here RSN anyway.
1622 intr_status = get_intr_status(dev);
1624 if ((intr_status & IntrTxErrSummary) == 0) {
1626 /* We know better than the chip where it should continue. */
1627 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1628 ioaddr + TxRingPtr);
1630 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1631 ioaddr + ChipCmd);
1632 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1633 ioaddr + ChipCmd1);
1634 IOSYNC;
1636 else {
1637 /* This should never happen */
1638 if (debug > 1)
1639 printk(KERN_WARNING "%s: rhine_restart_tx() "
1640 "Another error occured %8.8x.\n",
1641 dev->name, intr_status);
1646 static void rhine_error(struct net_device *dev, int intr_status)
1648 struct rhine_private *rp = netdev_priv(dev);
1649 void __iomem *ioaddr = rp->base;
1651 spin_lock(&rp->lock);
1653 if (intr_status & IntrLinkChange)
1654 schedule_work(&rp->check_media_task);
1655 if (intr_status & IntrStatsMax) {
1656 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1657 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1658 clear_tally_counters(ioaddr);
1660 if (intr_status & IntrTxAborted) {
1661 if (debug > 1)
1662 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1663 dev->name, intr_status);
1665 if (intr_status & IntrTxUnderrun) {
1666 if (rp->tx_thresh < 0xE0)
1667 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1668 if (debug > 1)
1669 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1670 "threshold now %2.2x.\n",
1671 dev->name, rp->tx_thresh);
1673 if (intr_status & IntrTxDescRace) {
1674 if (debug > 2)
1675 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1676 dev->name);
1678 if ((intr_status & IntrTxError) &&
1679 (intr_status & (IntrTxAborted |
1680 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1681 if (rp->tx_thresh < 0xE0) {
1682 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1684 if (debug > 1)
1685 printk(KERN_INFO "%s: Unspecified error. Tx "
1686 "threshold now %2.2x.\n",
1687 dev->name, rp->tx_thresh);
1689 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1690 IntrTxError))
1691 rhine_restart_tx(dev);
1693 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1694 IntrTxError | IntrTxAborted | IntrNormalSummary |
1695 IntrTxDescRace)) {
1696 if (debug > 1)
1697 printk(KERN_ERR "%s: Something Wicked happened! "
1698 "%8.8x.\n", dev->name, intr_status);
1701 spin_unlock(&rp->lock);
1704 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1706 struct rhine_private *rp = netdev_priv(dev);
1707 void __iomem *ioaddr = rp->base;
1708 unsigned long flags;
1710 spin_lock_irqsave(&rp->lock, flags);
1711 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1712 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1713 clear_tally_counters(ioaddr);
1714 spin_unlock_irqrestore(&rp->lock, flags);
1716 return &rp->stats;
1719 static void rhine_set_rx_mode(struct net_device *dev)
1721 struct rhine_private *rp = netdev_priv(dev);
1722 void __iomem *ioaddr = rp->base;
1723 u32 mc_filter[2]; /* Multicast hash filter */
1724 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1726 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1727 /* Unconditionally log net taps. */
1728 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
1729 dev->name);
1730 rx_mode = 0x1C;
1731 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1732 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1733 } else if ((dev->mc_count > multicast_filter_limit)
1734 || (dev->flags & IFF_ALLMULTI)) {
1735 /* Too many to match, or accept all multicasts. */
1736 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1737 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1738 rx_mode = 0x0C;
1739 } else {
1740 struct dev_mc_list *mclist;
1741 int i;
1742 memset(mc_filter, 0, sizeof(mc_filter));
1743 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1744 i++, mclist = mclist->next) {
1745 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1747 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1749 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1750 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1751 rx_mode = 0x0C;
1753 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1756 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1758 struct rhine_private *rp = netdev_priv(dev);
1760 strcpy(info->driver, DRV_NAME);
1761 strcpy(info->version, DRV_VERSION);
1762 strcpy(info->bus_info, pci_name(rp->pdev));
1765 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1767 struct rhine_private *rp = netdev_priv(dev);
1768 int rc;
1770 spin_lock_irq(&rp->lock);
1771 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1772 spin_unlock_irq(&rp->lock);
1774 return rc;
1777 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1779 struct rhine_private *rp = netdev_priv(dev);
1780 int rc;
1782 spin_lock_irq(&rp->lock);
1783 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1784 spin_unlock_irq(&rp->lock);
1786 return rc;
1789 static int netdev_nway_reset(struct net_device *dev)
1791 struct rhine_private *rp = netdev_priv(dev);
1793 return mii_nway_restart(&rp->mii_if);
1796 static u32 netdev_get_link(struct net_device *dev)
1798 struct rhine_private *rp = netdev_priv(dev);
1800 return mii_link_ok(&rp->mii_if);
1803 static u32 netdev_get_msglevel(struct net_device *dev)
1805 return debug;
1808 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1810 debug = value;
1813 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1815 struct rhine_private *rp = netdev_priv(dev);
1817 if (!(rp->quirks & rqWOL))
1818 return;
1820 spin_lock_irq(&rp->lock);
1821 wol->supported = WAKE_PHY | WAKE_MAGIC |
1822 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1823 wol->wolopts = rp->wolopts;
1824 spin_unlock_irq(&rp->lock);
1827 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1829 struct rhine_private *rp = netdev_priv(dev);
1830 u32 support = WAKE_PHY | WAKE_MAGIC |
1831 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1833 if (!(rp->quirks & rqWOL))
1834 return -EINVAL;
1836 if (wol->wolopts & ~support)
1837 return -EINVAL;
1839 spin_lock_irq(&rp->lock);
1840 rp->wolopts = wol->wolopts;
1841 spin_unlock_irq(&rp->lock);
1843 return 0;
1846 static struct ethtool_ops netdev_ethtool_ops = {
1847 .get_drvinfo = netdev_get_drvinfo,
1848 .get_settings = netdev_get_settings,
1849 .set_settings = netdev_set_settings,
1850 .nway_reset = netdev_nway_reset,
1851 .get_link = netdev_get_link,
1852 .get_msglevel = netdev_get_msglevel,
1853 .set_msglevel = netdev_set_msglevel,
1854 .get_wol = rhine_get_wol,
1855 .set_wol = rhine_set_wol,
1856 .get_sg = ethtool_op_get_sg,
1857 .get_tx_csum = ethtool_op_get_tx_csum,
1858 .get_perm_addr = ethtool_op_get_perm_addr,
1861 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1863 struct rhine_private *rp = netdev_priv(dev);
1864 int rc;
1866 if (!netif_running(dev))
1867 return -EINVAL;
1869 spin_lock_irq(&rp->lock);
1870 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1871 spin_unlock_irq(&rp->lock);
1873 return rc;
1876 static int rhine_close(struct net_device *dev)
1878 struct rhine_private *rp = netdev_priv(dev);
1879 void __iomem *ioaddr = rp->base;
1881 spin_lock_irq(&rp->lock);
1883 netif_stop_queue(dev);
1885 if (debug > 1)
1886 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1887 "status was %4.4x.\n",
1888 dev->name, ioread16(ioaddr + ChipCmd));
1890 /* Switch to loopback mode to avoid hardware races. */
1891 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1893 /* Disable interrupts by clearing the interrupt mask. */
1894 iowrite16(0x0000, ioaddr + IntrEnable);
1896 /* Stop the chip's Tx and Rx processes. */
1897 iowrite16(CmdStop, ioaddr + ChipCmd);
1899 spin_unlock_irq(&rp->lock);
1901 free_irq(rp->pdev->irq, dev);
1903 flush_scheduled_work();
1905 free_rbufs(dev);
1906 free_tbufs(dev);
1907 free_ring(dev);
1909 return 0;
1913 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1915 struct net_device *dev = pci_get_drvdata(pdev);
1916 struct rhine_private *rp = netdev_priv(dev);
1918 unregister_netdev(dev);
1920 pci_iounmap(pdev, rp->base);
1921 pci_release_regions(pdev);
1923 free_netdev(dev);
1924 pci_disable_device(pdev);
1925 pci_set_drvdata(pdev, NULL);
1928 static void rhine_shutdown (struct pci_dev *pdev)
1930 struct net_device *dev = pci_get_drvdata(pdev);
1931 struct rhine_private *rp = netdev_priv(dev);
1932 void __iomem *ioaddr = rp->base;
1934 if (!(rp->quirks & rqWOL))
1935 return; /* Nothing to do for non-WOL adapters */
1937 rhine_power_init(dev);
1939 /* Make sure we use pattern 0, 1 and not 4, 5 */
1940 if (rp->quirks & rq6patterns)
1941 iowrite8(0x04, ioaddr + 0xA7);
1943 if (rp->wolopts & WAKE_MAGIC) {
1944 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1946 * Turn EEPROM-controlled wake-up back on -- some hardware may
1947 * not cooperate otherwise.
1949 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1952 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1953 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1955 if (rp->wolopts & WAKE_PHY)
1956 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1958 if (rp->wolopts & WAKE_UCAST)
1959 iowrite8(WOLucast, ioaddr + WOLcrSet);
1961 if (rp->wolopts) {
1962 /* Enable legacy WOL (for old motherboards) */
1963 iowrite8(0x01, ioaddr + PwcfgSet);
1964 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1967 /* Hit power state D3 (sleep) */
1968 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1970 /* TODO: Check use of pci_enable_wake() */
1974 #ifdef CONFIG_PM
1975 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1977 struct net_device *dev = pci_get_drvdata(pdev);
1978 struct rhine_private *rp = netdev_priv(dev);
1979 unsigned long flags;
1981 if (!netif_running(dev))
1982 return 0;
1984 netif_device_detach(dev);
1985 pci_save_state(pdev);
1987 spin_lock_irqsave(&rp->lock, flags);
1988 rhine_shutdown(pdev);
1989 spin_unlock_irqrestore(&rp->lock, flags);
1991 free_irq(dev->irq, dev);
1992 return 0;
1995 static int rhine_resume(struct pci_dev *pdev)
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998 struct rhine_private *rp = netdev_priv(dev);
1999 unsigned long flags;
2000 int ret;
2002 if (!netif_running(dev))
2003 return 0;
2005 if (request_irq(dev->irq, rhine_interrupt, SA_SHIRQ, dev->name, dev))
2006 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
2008 ret = pci_set_power_state(pdev, PCI_D0);
2009 if (debug > 1)
2010 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
2011 dev->name, ret ? "failed" : "succeeded", ret);
2013 pci_restore_state(pdev);
2015 spin_lock_irqsave(&rp->lock, flags);
2016 #ifdef USE_MMIO
2017 enable_mmio(rp->pioaddr, rp->quirks);
2018 #endif
2019 rhine_power_init(dev);
2020 free_tbufs(dev);
2021 free_rbufs(dev);
2022 alloc_tbufs(dev);
2023 alloc_rbufs(dev);
2024 init_registers(dev);
2025 spin_unlock_irqrestore(&rp->lock, flags);
2027 netif_device_attach(dev);
2029 return 0;
2031 #endif /* CONFIG_PM */
2033 static struct pci_driver rhine_driver = {
2034 .name = DRV_NAME,
2035 .id_table = rhine_pci_tbl,
2036 .probe = rhine_init_one,
2037 .remove = __devexit_p(rhine_remove_one),
2038 #ifdef CONFIG_PM
2039 .suspend = rhine_suspend,
2040 .resume = rhine_resume,
2041 #endif /* CONFIG_PM */
2042 .shutdown = rhine_shutdown,
2046 static int __init rhine_init(void)
2048 /* when a module, this is printed whether or not devices are found in probe */
2049 #ifdef MODULE
2050 printk(version);
2051 #endif
2052 return pci_module_init(&rhine_driver);
2056 static void __exit rhine_cleanup(void)
2058 pci_unregister_driver(&rhine_driver);
2062 module_init(rhine_init);
2063 module_exit(rhine_cleanup);