[CONNECTOR]: Use netlink_has_listeners() to avoind unnecessary allocations.
[linux-2.6/verdex.git] / arch / ia64 / kernel / efi.c
blob9990320b6f9a7ee7edad9c41f988a4681c7e2018
1 /*
2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
29 #include <asm/io.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/mca.h>
36 #define EFI_DEBUG 0
38 extern efi_status_t efi_call_phys (void *, ...);
40 struct efi efi;
41 EXPORT_SYMBOL(efi);
42 static efi_runtime_services_t *runtime;
43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
45 #define efi_call_virt(f, args...) (*(f))(args)
47 #define STUB_GET_TIME(prefix, adjust_arg) \
48 static efi_status_t \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
50 { \
51 struct ia64_fpreg fr[6]; \
52 efi_time_cap_t *atc = NULL; \
53 efi_status_t ret; \
55 if (tc) \
56 atc = adjust_arg(tc); \
57 ia64_save_scratch_fpregs(fr); \
58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59 ia64_load_scratch_fpregs(fr); \
60 return ret; \
63 #define STUB_SET_TIME(prefix, adjust_arg) \
64 static efi_status_t \
65 prefix##_set_time (efi_time_t *tm) \
66 { \
67 struct ia64_fpreg fr[6]; \
68 efi_status_t ret; \
70 ia64_save_scratch_fpregs(fr); \
71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
72 ia64_load_scratch_fpregs(fr); \
73 return ret; \
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
77 static efi_status_t \
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
79 { \
80 struct ia64_fpreg fr[6]; \
81 efi_status_t ret; \
83 ia64_save_scratch_fpregs(fr); \
84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
86 ia64_load_scratch_fpregs(fr); \
87 return ret; \
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
91 static efi_status_t \
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
93 { \
94 struct ia64_fpreg fr[6]; \
95 efi_time_t *atm = NULL; \
96 efi_status_t ret; \
98 if (tm) \
99 atm = adjust_arg(tm); \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
102 enabled, atm); \
103 ia64_load_scratch_fpregs(fr); \
104 return ret; \
107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
108 static efi_status_t \
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
110 unsigned long *data_size, void *data) \
112 struct ia64_fpreg fr[6]; \
113 u32 *aattr = NULL; \
114 efi_status_t ret; \
116 if (attr) \
117 aattr = adjust_arg(attr); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
120 adjust_arg(name), adjust_arg(vendor), aattr, \
121 adjust_arg(data_size), adjust_arg(data)); \
122 ia64_load_scratch_fpregs(fr); \
123 return ret; \
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
130 struct ia64_fpreg fr[6]; \
131 efi_status_t ret; \
133 ia64_save_scratch_fpregs(fr); \
134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
136 ia64_load_scratch_fpregs(fr); \
137 return ret; \
140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
141 static efi_status_t \
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
143 unsigned long data_size, void *data) \
145 struct ia64_fpreg fr[6]; \
146 efi_status_t ret; \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
151 adjust_arg(data)); \
152 ia64_load_scratch_fpregs(fr); \
153 return ret; \
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
157 static efi_status_t \
158 prefix##_get_next_high_mono_count (u32 *count) \
160 struct ia64_fpreg fr[6]; \
161 efi_status_t ret; \
163 ia64_save_scratch_fpregs(fr); \
164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
166 ia64_load_scratch_fpregs(fr); \
167 return ret; \
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
171 static void \
172 prefix##_reset_system (int reset_type, efi_status_t status, \
173 unsigned long data_size, efi_char16_t *data) \
175 struct ia64_fpreg fr[6]; \
176 efi_char16_t *adata = NULL; \
178 if (data) \
179 adata = adjust_arg(data); \
181 ia64_save_scratch_fpregs(fr); \
182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
183 reset_type, status, data_size, adata); \
184 /* should not return, but just in case... */ \
185 ia64_load_scratch_fpregs(fr); \
188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
190 STUB_GET_TIME(phys, phys_ptr)
191 STUB_SET_TIME(phys, phys_ptr)
192 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
193 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_GET_VARIABLE(phys, phys_ptr)
195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
196 STUB_SET_VARIABLE(phys, phys_ptr)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
198 STUB_RESET_SYSTEM(phys, phys_ptr)
200 #define id(arg) arg
202 STUB_GET_TIME(virt, id)
203 STUB_SET_TIME(virt, id)
204 STUB_GET_WAKEUP_TIME(virt, id)
205 STUB_SET_WAKEUP_TIME(virt, id)
206 STUB_GET_VARIABLE(virt, id)
207 STUB_GET_NEXT_VARIABLE(virt, id)
208 STUB_SET_VARIABLE(virt, id)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
210 STUB_RESET_SYSTEM(virt, id)
212 void
213 efi_gettimeofday (struct timespec *ts)
215 efi_time_t tm;
217 memset(ts, 0, sizeof(ts));
218 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
219 return;
221 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
222 ts->tv_nsec = tm.nanosecond;
225 static int
226 is_available_memory (efi_memory_desc_t *md)
228 if (!(md->attribute & EFI_MEMORY_WB))
229 return 0;
231 switch (md->type) {
232 case EFI_LOADER_CODE:
233 case EFI_LOADER_DATA:
234 case EFI_BOOT_SERVICES_CODE:
235 case EFI_BOOT_SERVICES_DATA:
236 case EFI_CONVENTIONAL_MEMORY:
237 return 1;
239 return 0;
242 typedef struct kern_memdesc {
243 u64 attribute;
244 u64 start;
245 u64 num_pages;
246 } kern_memdesc_t;
248 static kern_memdesc_t *kern_memmap;
250 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
252 static inline u64
253 kmd_end(kern_memdesc_t *kmd)
255 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
258 static inline u64
259 efi_md_end(efi_memory_desc_t *md)
261 return (md->phys_addr + efi_md_size(md));
264 static inline int
265 efi_wb(efi_memory_desc_t *md)
267 return (md->attribute & EFI_MEMORY_WB);
270 static inline int
271 efi_uc(efi_memory_desc_t *md)
273 return (md->attribute & EFI_MEMORY_UC);
276 static void
277 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
279 kern_memdesc_t *k;
280 u64 start, end, voff;
282 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
283 for (k = kern_memmap; k->start != ~0UL; k++) {
284 if (k->attribute != attr)
285 continue;
286 start = PAGE_ALIGN(k->start);
287 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
288 if (start < end)
289 if ((*callback)(start + voff, end + voff, arg) < 0)
290 return;
295 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
296 * has memory that is available for OS use.
298 void
299 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
301 walk(callback, arg, EFI_MEMORY_WB);
305 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
306 * has memory that is available for uncached allocator.
308 void
309 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
311 walk(callback, arg, EFI_MEMORY_UC);
315 * Look for the PAL_CODE region reported by EFI and maps it using an
316 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
317 * Abstraction Layer chapter 11 in ADAG
320 void *
321 efi_get_pal_addr (void)
323 void *efi_map_start, *efi_map_end, *p;
324 efi_memory_desc_t *md;
325 u64 efi_desc_size;
326 int pal_code_count = 0;
327 u64 vaddr, mask;
329 efi_map_start = __va(ia64_boot_param->efi_memmap);
330 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
331 efi_desc_size = ia64_boot_param->efi_memdesc_size;
333 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
334 md = p;
335 if (md->type != EFI_PAL_CODE)
336 continue;
338 if (++pal_code_count > 1) {
339 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
340 md->phys_addr);
341 continue;
344 * The only ITLB entry in region 7 that is used is the one installed by
345 * __start(). That entry covers a 64MB range.
347 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
348 vaddr = PAGE_OFFSET + md->phys_addr;
351 * We must check that the PAL mapping won't overlap with the kernel
352 * mapping.
354 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
355 * 256KB and that only one ITR is needed to map it. This implies that the
356 * PAL code is always aligned on its size, i.e., the closest matching page
357 * size supported by the TLB. Therefore PAL code is guaranteed never to
358 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
359 * now the following test is enough to determine whether or not we need a
360 * dedicated ITR for the PAL code.
362 if ((vaddr & mask) == (KERNEL_START & mask)) {
363 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
364 __FUNCTION__);
365 continue;
368 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
369 panic("Woah! PAL code size bigger than a granule!");
371 #if EFI_DEBUG
372 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
374 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
375 smp_processor_id(), md->phys_addr,
376 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
377 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
378 #endif
379 return __va(md->phys_addr);
381 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
382 __FUNCTION__);
383 return NULL;
386 void
387 efi_map_pal_code (void)
389 void *pal_vaddr = efi_get_pal_addr ();
390 u64 psr;
392 if (!pal_vaddr)
393 return;
396 * Cannot write to CRx with PSR.ic=1
398 psr = ia64_clear_ic();
399 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
400 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
401 IA64_GRANULE_SHIFT);
402 ia64_set_psr(psr); /* restore psr */
403 ia64_srlz_i();
406 void __init
407 efi_init (void)
409 void *efi_map_start, *efi_map_end;
410 efi_config_table_t *config_tables;
411 efi_char16_t *c16;
412 u64 efi_desc_size;
413 char *cp, vendor[100] = "unknown";
414 extern char saved_command_line[];
415 int i;
417 /* it's too early to be able to use the standard kernel command line support... */
418 for (cp = saved_command_line; *cp; ) {
419 if (memcmp(cp, "mem=", 4) == 0) {
420 mem_limit = memparse(cp + 4, &cp);
421 } else if (memcmp(cp, "max_addr=", 9) == 0) {
422 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
423 } else {
424 while (*cp != ' ' && *cp)
425 ++cp;
426 while (*cp == ' ')
427 ++cp;
430 if (max_addr != ~0UL)
431 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
433 efi.systab = __va(ia64_boot_param->efi_systab);
436 * Verify the EFI Table
438 if (efi.systab == NULL)
439 panic("Woah! Can't find EFI system table.\n");
440 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
441 panic("Woah! EFI system table signature incorrect\n");
442 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
443 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
444 "got %d.%02d, expected %d.%02d\n",
445 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
446 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
448 config_tables = __va(efi.systab->tables);
450 /* Show what we know for posterity */
451 c16 = __va(efi.systab->fw_vendor);
452 if (c16) {
453 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
454 vendor[i] = *c16++;
455 vendor[i] = '\0';
458 printk(KERN_INFO "EFI v%u.%.02u by %s:",
459 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
461 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
462 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
463 efi.mps = __va(config_tables[i].table);
464 printk(" MPS=0x%lx", config_tables[i].table);
465 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
466 efi.acpi20 = __va(config_tables[i].table);
467 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
468 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
469 efi.acpi = __va(config_tables[i].table);
470 printk(" ACPI=0x%lx", config_tables[i].table);
471 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
472 efi.smbios = __va(config_tables[i].table);
473 printk(" SMBIOS=0x%lx", config_tables[i].table);
474 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
475 efi.sal_systab = __va(config_tables[i].table);
476 printk(" SALsystab=0x%lx", config_tables[i].table);
477 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
478 efi.hcdp = __va(config_tables[i].table);
479 printk(" HCDP=0x%lx", config_tables[i].table);
482 printk("\n");
484 runtime = __va(efi.systab->runtime);
485 efi.get_time = phys_get_time;
486 efi.set_time = phys_set_time;
487 efi.get_wakeup_time = phys_get_wakeup_time;
488 efi.set_wakeup_time = phys_set_wakeup_time;
489 efi.get_variable = phys_get_variable;
490 efi.get_next_variable = phys_get_next_variable;
491 efi.set_variable = phys_set_variable;
492 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
493 efi.reset_system = phys_reset_system;
495 efi_map_start = __va(ia64_boot_param->efi_memmap);
496 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
497 efi_desc_size = ia64_boot_param->efi_memdesc_size;
499 #if EFI_DEBUG
500 /* print EFI memory map: */
502 efi_memory_desc_t *md;
503 void *p;
505 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
506 md = p;
507 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
508 i, md->type, md->attribute, md->phys_addr,
509 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
510 md->num_pages >> (20 - EFI_PAGE_SHIFT));
513 #endif
515 efi_map_pal_code();
516 efi_enter_virtual_mode();
519 void
520 efi_enter_virtual_mode (void)
522 void *efi_map_start, *efi_map_end, *p;
523 efi_memory_desc_t *md;
524 efi_status_t status;
525 u64 efi_desc_size;
527 efi_map_start = __va(ia64_boot_param->efi_memmap);
528 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
529 efi_desc_size = ia64_boot_param->efi_memdesc_size;
531 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
532 md = p;
533 if (md->attribute & EFI_MEMORY_RUNTIME) {
535 * Some descriptors have multiple bits set, so the order of
536 * the tests is relevant.
538 if (md->attribute & EFI_MEMORY_WB) {
539 md->virt_addr = (u64) __va(md->phys_addr);
540 } else if (md->attribute & EFI_MEMORY_UC) {
541 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
542 } else if (md->attribute & EFI_MEMORY_WC) {
543 #if 0
544 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
545 | _PAGE_D
546 | _PAGE_MA_WC
547 | _PAGE_PL_0
548 | _PAGE_AR_RW));
549 #else
550 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
551 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
552 #endif
553 } else if (md->attribute & EFI_MEMORY_WT) {
554 #if 0
555 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
556 | _PAGE_D | _PAGE_MA_WT
557 | _PAGE_PL_0
558 | _PAGE_AR_RW));
559 #else
560 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
561 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
562 #endif
567 status = efi_call_phys(__va(runtime->set_virtual_address_map),
568 ia64_boot_param->efi_memmap_size,
569 efi_desc_size, ia64_boot_param->efi_memdesc_version,
570 ia64_boot_param->efi_memmap);
571 if (status != EFI_SUCCESS) {
572 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
573 "(status=%lu)\n", status);
574 return;
578 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
580 efi.get_time = virt_get_time;
581 efi.set_time = virt_set_time;
582 efi.get_wakeup_time = virt_get_wakeup_time;
583 efi.set_wakeup_time = virt_set_wakeup_time;
584 efi.get_variable = virt_get_variable;
585 efi.get_next_variable = virt_get_next_variable;
586 efi.set_variable = virt_set_variable;
587 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
588 efi.reset_system = virt_reset_system;
592 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
593 * this type, other I/O port ranges should be described via ACPI.
596 efi_get_iobase (void)
598 void *efi_map_start, *efi_map_end, *p;
599 efi_memory_desc_t *md;
600 u64 efi_desc_size;
602 efi_map_start = __va(ia64_boot_param->efi_memmap);
603 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
604 efi_desc_size = ia64_boot_param->efi_memdesc_size;
606 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
607 md = p;
608 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
609 if (md->attribute & EFI_MEMORY_UC)
610 return md->phys_addr;
613 return 0;
616 static efi_memory_desc_t *
617 efi_memory_descriptor (unsigned long phys_addr)
619 void *efi_map_start, *efi_map_end, *p;
620 efi_memory_desc_t *md;
621 u64 efi_desc_size;
623 efi_map_start = __va(ia64_boot_param->efi_memmap);
624 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
625 efi_desc_size = ia64_boot_param->efi_memdesc_size;
627 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
628 md = p;
630 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
631 return md;
633 return 0;
636 static int
637 efi_memmap_has_mmio (void)
639 void *efi_map_start, *efi_map_end, *p;
640 efi_memory_desc_t *md;
641 u64 efi_desc_size;
643 efi_map_start = __va(ia64_boot_param->efi_memmap);
644 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
645 efi_desc_size = ia64_boot_param->efi_memdesc_size;
647 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
648 md = p;
650 if (md->type == EFI_MEMORY_MAPPED_IO)
651 return 1;
653 return 0;
657 efi_mem_type (unsigned long phys_addr)
659 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
661 if (md)
662 return md->type;
663 return 0;
667 efi_mem_attributes (unsigned long phys_addr)
669 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
671 if (md)
672 return md->attribute;
673 return 0;
675 EXPORT_SYMBOL(efi_mem_attributes);
678 * Determines whether the memory at phys_addr supports the desired
679 * attribute (WB, UC, etc). If this returns 1, the caller can safely
680 * access *size bytes at phys_addr with the specified attribute.
682 static int
683 efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr)
685 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
686 unsigned long md_end;
688 if (!md || (md->attribute & attr) != attr)
689 return 0;
691 do {
692 md_end = efi_md_end(md);
693 if (phys_addr + *size <= md_end)
694 return 1;
696 md = efi_memory_descriptor(md_end);
697 if (!md || (md->attribute & attr) != attr) {
698 *size = md_end - phys_addr;
699 return 1;
701 } while (md);
702 return 0;
706 * For /dev/mem, we only allow read & write system calls to access
707 * write-back memory, because read & write don't allow the user to
708 * control access size.
711 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
713 return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
717 * We allow mmap of anything in the EFI memory map that supports
718 * either write-back or uncacheable access. For uncacheable regions,
719 * the supported access sizes are system-dependent, and the user is
720 * responsible for using the correct size.
722 * Note that this doesn't currently allow access to hot-added memory,
723 * because that doesn't appear in the boot-time EFI memory map.
726 valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size)
728 if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
729 return 1;
731 if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
732 return 1;
735 * Some firmware doesn't report MMIO regions in the EFI memory map.
736 * The Intel BigSur (a.k.a. HP i2000) has this problem. In this
737 * case, we can't use the EFI memory map to validate mmap requests.
739 if (!efi_memmap_has_mmio())
740 return 1;
742 return 0;
745 int __init
746 efi_uart_console_only(void)
748 efi_status_t status;
749 char *s, name[] = "ConOut";
750 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
751 efi_char16_t *utf16, name_utf16[32];
752 unsigned char data[1024];
753 unsigned long size = sizeof(data);
754 struct efi_generic_dev_path *hdr, *end_addr;
755 int uart = 0;
757 /* Convert to UTF-16 */
758 utf16 = name_utf16;
759 s = name;
760 while (*s)
761 *utf16++ = *s++ & 0x7f;
762 *utf16 = 0;
764 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
765 if (status != EFI_SUCCESS) {
766 printk(KERN_ERR "No EFI %s variable?\n", name);
767 return 0;
770 hdr = (struct efi_generic_dev_path *) data;
771 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
772 while (hdr < end_addr) {
773 if (hdr->type == EFI_DEV_MSG &&
774 hdr->sub_type == EFI_DEV_MSG_UART)
775 uart = 1;
776 else if (hdr->type == EFI_DEV_END_PATH ||
777 hdr->type == EFI_DEV_END_PATH2) {
778 if (!uart)
779 return 0;
780 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
781 return 1;
782 uart = 0;
784 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
786 printk(KERN_ERR "Malformed %s value\n", name);
787 return 0;
791 * Look for the first granule aligned memory descriptor memory
792 * that is big enough to hold EFI memory map. Make sure this
793 * descriptor is atleast granule sized so it does not get trimmed
795 struct kern_memdesc *
796 find_memmap_space (void)
798 u64 contig_low=0, contig_high=0;
799 u64 as = 0, ae;
800 void *efi_map_start, *efi_map_end, *p, *q;
801 efi_memory_desc_t *md, *pmd = NULL, *check_md;
802 u64 space_needed, efi_desc_size;
803 unsigned long total_mem = 0;
805 efi_map_start = __va(ia64_boot_param->efi_memmap);
806 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
807 efi_desc_size = ia64_boot_param->efi_memdesc_size;
810 * Worst case: we need 3 kernel descriptors for each efi descriptor
811 * (if every entry has a WB part in the middle, and UC head and tail),
812 * plus one for the end marker.
814 space_needed = sizeof(kern_memdesc_t) *
815 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
817 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
818 md = p;
819 if (!efi_wb(md)) {
820 continue;
822 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
823 contig_low = GRANULEROUNDUP(md->phys_addr);
824 contig_high = efi_md_end(md);
825 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
826 check_md = q;
827 if (!efi_wb(check_md))
828 break;
829 if (contig_high != check_md->phys_addr)
830 break;
831 contig_high = efi_md_end(check_md);
833 contig_high = GRANULEROUNDDOWN(contig_high);
835 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
836 continue;
838 /* Round ends inward to granule boundaries */
839 as = max(contig_low, md->phys_addr);
840 ae = min(contig_high, efi_md_end(md));
842 /* keep within max_addr= command line arg */
843 ae = min(ae, max_addr);
844 if (ae <= as)
845 continue;
847 /* avoid going over mem= command line arg */
848 if (total_mem + (ae - as) > mem_limit)
849 ae -= total_mem + (ae - as) - mem_limit;
851 if (ae <= as)
852 continue;
854 if (ae - as > space_needed)
855 break;
857 if (p >= efi_map_end)
858 panic("Can't allocate space for kernel memory descriptors");
860 return __va(as);
864 * Walk the EFI memory map and gather all memory available for kernel
865 * to use. We can allocate partial granules only if the unavailable
866 * parts exist, and are WB.
868 void
869 efi_memmap_init(unsigned long *s, unsigned long *e)
871 struct kern_memdesc *k, *prev = 0;
872 u64 contig_low=0, contig_high=0;
873 u64 as, ae, lim;
874 void *efi_map_start, *efi_map_end, *p, *q;
875 efi_memory_desc_t *md, *pmd = NULL, *check_md;
876 u64 efi_desc_size;
877 unsigned long total_mem = 0;
879 k = kern_memmap = find_memmap_space();
881 efi_map_start = __va(ia64_boot_param->efi_memmap);
882 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
883 efi_desc_size = ia64_boot_param->efi_memdesc_size;
885 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
886 md = p;
887 if (!efi_wb(md)) {
888 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
889 md->type == EFI_BOOT_SERVICES_DATA)) {
890 k->attribute = EFI_MEMORY_UC;
891 k->start = md->phys_addr;
892 k->num_pages = md->num_pages;
893 k++;
895 continue;
897 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
898 contig_low = GRANULEROUNDUP(md->phys_addr);
899 contig_high = efi_md_end(md);
900 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
901 check_md = q;
902 if (!efi_wb(check_md))
903 break;
904 if (contig_high != check_md->phys_addr)
905 break;
906 contig_high = efi_md_end(check_md);
908 contig_high = GRANULEROUNDDOWN(contig_high);
910 if (!is_available_memory(md))
911 continue;
914 * Round ends inward to granule boundaries
915 * Give trimmings to uncached allocator
917 if (md->phys_addr < contig_low) {
918 lim = min(efi_md_end(md), contig_low);
919 if (efi_uc(md)) {
920 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
921 kmd_end(k-1) == md->phys_addr) {
922 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
923 } else {
924 k->attribute = EFI_MEMORY_UC;
925 k->start = md->phys_addr;
926 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
927 k++;
930 as = contig_low;
931 } else
932 as = md->phys_addr;
934 if (efi_md_end(md) > contig_high) {
935 lim = max(md->phys_addr, contig_high);
936 if (efi_uc(md)) {
937 if (lim == md->phys_addr && k > kern_memmap &&
938 (k-1)->attribute == EFI_MEMORY_UC &&
939 kmd_end(k-1) == md->phys_addr) {
940 (k-1)->num_pages += md->num_pages;
941 } else {
942 k->attribute = EFI_MEMORY_UC;
943 k->start = lim;
944 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
945 k++;
948 ae = contig_high;
949 } else
950 ae = efi_md_end(md);
952 /* keep within max_addr= command line arg */
953 ae = min(ae, max_addr);
954 if (ae <= as)
955 continue;
957 /* avoid going over mem= command line arg */
958 if (total_mem + (ae - as) > mem_limit)
959 ae -= total_mem + (ae - as) - mem_limit;
961 if (ae <= as)
962 continue;
963 if (prev && kmd_end(prev) == md->phys_addr) {
964 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
965 total_mem += ae - as;
966 continue;
968 k->attribute = EFI_MEMORY_WB;
969 k->start = as;
970 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
971 total_mem += ae - as;
972 prev = k++;
974 k->start = ~0L; /* end-marker */
976 /* reserve the memory we are using for kern_memmap */
977 *s = (u64)kern_memmap;
978 *e = (u64)++k;
981 void
982 efi_initialize_iomem_resources(struct resource *code_resource,
983 struct resource *data_resource)
985 struct resource *res;
986 void *efi_map_start, *efi_map_end, *p;
987 efi_memory_desc_t *md;
988 u64 efi_desc_size;
989 char *name;
990 unsigned long flags;
992 efi_map_start = __va(ia64_boot_param->efi_memmap);
993 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
994 efi_desc_size = ia64_boot_param->efi_memdesc_size;
996 res = NULL;
998 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
999 md = p;
1001 if (md->num_pages == 0) /* should not happen */
1002 continue;
1004 flags = IORESOURCE_MEM;
1005 switch (md->type) {
1007 case EFI_MEMORY_MAPPED_IO:
1008 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1009 continue;
1011 case EFI_LOADER_CODE:
1012 case EFI_LOADER_DATA:
1013 case EFI_BOOT_SERVICES_DATA:
1014 case EFI_BOOT_SERVICES_CODE:
1015 case EFI_CONVENTIONAL_MEMORY:
1016 if (md->attribute & EFI_MEMORY_WP) {
1017 name = "System ROM";
1018 flags |= IORESOURCE_READONLY;
1019 } else {
1020 name = "System RAM";
1022 break;
1024 case EFI_ACPI_MEMORY_NVS:
1025 name = "ACPI Non-volatile Storage";
1026 flags |= IORESOURCE_BUSY;
1027 break;
1029 case EFI_UNUSABLE_MEMORY:
1030 name = "reserved";
1031 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1032 break;
1034 case EFI_RESERVED_TYPE:
1035 case EFI_RUNTIME_SERVICES_CODE:
1036 case EFI_RUNTIME_SERVICES_DATA:
1037 case EFI_ACPI_RECLAIM_MEMORY:
1038 default:
1039 name = "reserved";
1040 flags |= IORESOURCE_BUSY;
1041 break;
1044 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1045 printk(KERN_ERR "failed to alocate resource for iomem\n");
1046 return;
1049 res->name = name;
1050 res->start = md->phys_addr;
1051 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1052 res->flags = flags;
1054 if (insert_resource(&iomem_resource, res) < 0)
1055 kfree(res);
1056 else {
1058 * We don't know which region contains
1059 * kernel data so we try it repeatedly and
1060 * let the resource manager test it.
1062 insert_resource(res, code_resource);
1063 insert_resource(res, data_resource);