[CONNECTOR]: Use netlink_has_listeners() to avoind unnecessary allocations.
[linux-2.6/verdex.git] / arch / ia64 / kernel / kprobes.c
blob50ae8c7d453d5075641a191dcfdf5bf0d4087ece
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/preempt.h>
32 #include <linux/moduleloader.h>
34 #include <asm/pgtable.h>
35 #include <asm/kdebug.h>
36 #include <asm/sections.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45 { M, I, I }, /* 00 */
46 { M, I, I }, /* 01 */
47 { M, I, I }, /* 02 */
48 { M, I, I }, /* 03 */
49 { M, L, X }, /* 04 */
50 { M, L, X }, /* 05 */
51 { u, u, u }, /* 06 */
52 { u, u, u }, /* 07 */
53 { M, M, I }, /* 08 */
54 { M, M, I }, /* 09 */
55 { M, M, I }, /* 0A */
56 { M, M, I }, /* 0B */
57 { M, F, I }, /* 0C */
58 { M, F, I }, /* 0D */
59 { M, M, F }, /* 0E */
60 { M, M, F }, /* 0F */
61 { M, I, B }, /* 10 */
62 { M, I, B }, /* 11 */
63 { M, B, B }, /* 12 */
64 { M, B, B }, /* 13 */
65 { u, u, u }, /* 14 */
66 { u, u, u }, /* 15 */
67 { B, B, B }, /* 16 */
68 { B, B, B }, /* 17 */
69 { M, M, B }, /* 18 */
70 { M, M, B }, /* 19 */
71 { u, u, u }, /* 1A */
72 { u, u, u }, /* 1B */
73 { M, F, B }, /* 1C */
74 { M, F, B }, /* 1D */
75 { u, u, u }, /* 1E */
76 { u, u, u }, /* 1F */
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
85 uint major_opcode,
86 unsigned long kprobe_inst,
87 struct kprobe *p)
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
92 /* Check for Break instruction
93 * Bits 37:40 Major opcode to be zero
94 * Bits 27:32 X6 to be zero
95 * Bits 32:35 X3 to be zero
97 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98 /* is a break instruction */
99 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
100 return;
103 if (bundle_encoding[template][slot] == B) {
104 switch (major_opcode) {
105 case INDIRECT_CALL_OPCODE:
106 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
108 break;
109 case IP_RELATIVE_PREDICT_OPCODE:
110 case IP_RELATIVE_BRANCH_OPCODE:
111 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
112 break;
113 case IP_RELATIVE_CALL_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
117 break;
119 } else if (bundle_encoding[template][slot] == X) {
120 switch (major_opcode) {
121 case LONG_CALL_OPCODE:
122 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
124 break;
127 return;
131 * In this function we check to see if the instruction
132 * on which we are inserting kprobe is supported.
133 * Returns 0 if supported
134 * Returns -EINVAL if unsupported
136 static int __kprobes unsupported_inst(uint template, uint slot,
137 uint major_opcode,
138 unsigned long kprobe_inst,
139 struct kprobe *p)
141 unsigned long addr = (unsigned long)p->addr;
143 if (bundle_encoding[template][slot] == I) {
144 switch (major_opcode) {
145 case 0x0: //I_UNIT_MISC_OPCODE:
147 * Check for Integer speculation instruction
148 * - Bit 33-35 to be equal to 0x1
150 if (((kprobe_inst >> 33) & 0x7) == 1) {
151 printk(KERN_WARNING
152 "Kprobes on speculation inst at <0x%lx> not supported\n",
153 addr);
154 return -EINVAL;
158 * IP relative mov instruction
159 * - Bit 27-35 to be equal to 0x30
161 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
162 printk(KERN_WARNING
163 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
164 addr);
165 return -EINVAL;
170 return 0;
175 * In this function we check to see if the instruction
176 * (qp) cmpx.crel.ctype p1,p2=r2,r3
177 * on which we are inserting kprobe is cmp instruction
178 * with ctype as unc.
180 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
181 uint major_opcode,
182 unsigned long kprobe_inst)
184 cmp_inst_t cmp_inst;
185 uint ctype_unc = 0;
187 if (!((bundle_encoding[template][slot] == I) ||
188 (bundle_encoding[template][slot] == M)))
189 goto out;
191 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
192 (major_opcode == 0xE)))
193 goto out;
195 cmp_inst.l = kprobe_inst;
196 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
197 /* Integere compare - Register Register (A6 type)*/
198 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
199 &&(cmp_inst.f.c == 1))
200 ctype_unc = 1;
201 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
202 /* Integere compare - Immediate Register (A8 type)*/
203 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
204 ctype_unc = 1;
206 out:
207 return ctype_unc;
211 * In this function we override the bundle with
212 * the break instruction at the given slot.
214 static void __kprobes prepare_break_inst(uint template, uint slot,
215 uint major_opcode,
216 unsigned long kprobe_inst,
217 struct kprobe *p)
219 unsigned long break_inst = BREAK_INST;
220 bundle_t *bundle = &p->ainsn.insn.bundle;
223 * Copy the original kprobe_inst qualifying predicate(qp)
224 * to the break instruction iff !is_cmp_ctype_unc_inst
225 * because for cmp instruction with ctype equal to unc,
226 * which is a special instruction always needs to be
227 * executed regradless of qp
229 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
230 break_inst |= (0x3f & kprobe_inst);
232 switch (slot) {
233 case 0:
234 bundle->quad0.slot0 = break_inst;
235 break;
236 case 1:
237 bundle->quad0.slot1_p0 = break_inst;
238 bundle->quad1.slot1_p1 = break_inst >> (64-46);
239 break;
240 case 2:
241 bundle->quad1.slot2 = break_inst;
242 break;
246 * Update the instruction flag, so that we can
247 * emulate the instruction properly after we
248 * single step on original instruction
250 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
253 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
254 unsigned long *kprobe_inst, uint *major_opcode)
256 unsigned long kprobe_inst_p0, kprobe_inst_p1;
257 unsigned int template;
259 template = bundle->quad0.template;
261 switch (slot) {
262 case 0:
263 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
264 *kprobe_inst = bundle->quad0.slot0;
265 break;
266 case 1:
267 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
268 kprobe_inst_p0 = bundle->quad0.slot1_p0;
269 kprobe_inst_p1 = bundle->quad1.slot1_p1;
270 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271 break;
272 case 2:
273 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
274 *kprobe_inst = bundle->quad1.slot2;
275 break;
279 /* Returns non-zero if the addr is in the Interrupt Vector Table */
280 static inline int in_ivt_functions(unsigned long addr)
282 return (addr >= (unsigned long)__start_ivt_text
283 && addr < (unsigned long)__end_ivt_text);
286 static int __kprobes valid_kprobe_addr(int template, int slot,
287 unsigned long addr)
289 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
290 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
291 "at 0x%lx\n", addr);
292 return -EINVAL;
295 if (in_ivt_functions(addr)) {
296 printk(KERN_WARNING "Kprobes can't be inserted inside "
297 "IVT functions at 0x%lx\n", addr);
298 return -EINVAL;
301 if (slot == 1 && bundle_encoding[template][1] != L) {
302 printk(KERN_WARNING "Inserting kprobes on slot #1 "
303 "is not supported\n");
304 return -EINVAL;
307 return 0;
310 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
312 kcb->prev_kprobe.kp = kprobe_running();
313 kcb->prev_kprobe.status = kcb->kprobe_status;
316 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
319 kcb->kprobe_status = kcb->prev_kprobe.status;
322 static inline void set_current_kprobe(struct kprobe *p,
323 struct kprobe_ctlblk *kcb)
325 __get_cpu_var(current_kprobe) = p;
328 static void kretprobe_trampoline(void)
333 * At this point the target function has been tricked into
334 * returning into our trampoline. Lookup the associated instance
335 * and then:
336 * - call the handler function
337 * - cleanup by marking the instance as unused
338 * - long jump back to the original return address
340 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 struct kretprobe_instance *ri = NULL;
343 struct hlist_head *head;
344 struct hlist_node *node, *tmp;
345 unsigned long flags, orig_ret_address = 0;
346 unsigned long trampoline_address =
347 ((struct fnptr *)kretprobe_trampoline)->ip;
349 spin_lock_irqsave(&kretprobe_lock, flags);
350 head = kretprobe_inst_table_head(current);
353 * It is possible to have multiple instances associated with a given
354 * task either because an multiple functions in the call path
355 * have a return probe installed on them, and/or more then one return
356 * return probe was registered for a target function.
358 * We can handle this because:
359 * - instances are always inserted at the head of the list
360 * - when multiple return probes are registered for the same
361 * function, the first instance's ret_addr will point to the
362 * real return address, and all the rest will point to
363 * kretprobe_trampoline
365 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366 if (ri->task != current)
367 /* another task is sharing our hash bucket */
368 continue;
370 if (ri->rp && ri->rp->handler)
371 ri->rp->handler(ri, regs);
373 orig_ret_address = (unsigned long)ri->ret_addr;
374 recycle_rp_inst(ri);
376 if (orig_ret_address != trampoline_address)
378 * This is the real return address. Any other
379 * instances associated with this task are for
380 * other calls deeper on the call stack
382 break;
385 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
386 regs->cr_iip = orig_ret_address;
388 reset_current_kprobe();
389 spin_unlock_irqrestore(&kretprobe_lock, flags);
390 preempt_enable_no_resched();
393 * By returning a non-zero value, we are telling
394 * kprobe_handler() that we don't want the post_handler
395 * to run (and have re-enabled preemption)
397 return 1;
400 /* Called with kretprobe_lock held */
401 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
402 struct pt_regs *regs)
404 struct kretprobe_instance *ri;
406 if ((ri = get_free_rp_inst(rp)) != NULL) {
407 ri->rp = rp;
408 ri->task = current;
409 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
411 /* Replace the return addr with trampoline addr */
412 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
414 add_rp_inst(ri);
415 } else {
416 rp->nmissed++;
420 int __kprobes arch_prepare_kprobe(struct kprobe *p)
422 unsigned long addr = (unsigned long) p->addr;
423 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
424 unsigned long kprobe_inst=0;
425 unsigned int slot = addr & 0xf, template, major_opcode = 0;
426 bundle_t *bundle = &p->ainsn.insn.bundle;
428 memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
429 memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
431 template = bundle->quad0.template;
433 if(valid_kprobe_addr(template, slot, addr))
434 return -EINVAL;
436 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
437 if (slot == 1 && bundle_encoding[template][1] == L)
438 slot++;
440 /* Get kprobe_inst and major_opcode from the bundle */
441 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
443 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
444 return -EINVAL;
446 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
448 return 0;
451 void __kprobes arch_arm_kprobe(struct kprobe *p)
453 unsigned long addr = (unsigned long)p->addr;
454 unsigned long arm_addr = addr & ~0xFULL;
456 memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
457 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
460 void __kprobes arch_disarm_kprobe(struct kprobe *p)
462 unsigned long addr = (unsigned long)p->addr;
463 unsigned long arm_addr = addr & ~0xFULL;
465 /* p->opcode contains the original unaltered bundle */
466 memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
467 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
471 * We are resuming execution after a single step fault, so the pt_regs
472 * structure reflects the register state after we executed the instruction
473 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
474 * the ip to point back to the original stack address. To set the IP address
475 * to original stack address, handle the case where we need to fixup the
476 * relative IP address and/or fixup branch register.
478 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
480 unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
481 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
482 unsigned long template;
483 int slot = ((unsigned long)p->addr & 0xf);
485 template = p->opcode.bundle.quad0.template;
487 if (slot == 1 && bundle_encoding[template][1] == L)
488 slot = 2;
490 if (p->ainsn.inst_flag) {
492 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
493 /* Fix relative IP address */
494 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
497 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
499 * Fix target branch register, software convention is
500 * to use either b0 or b6 or b7, so just checking
501 * only those registers
503 switch (p->ainsn.target_br_reg) {
504 case 0:
505 if ((regs->b0 == bundle_addr) ||
506 (regs->b0 == bundle_addr + 0x10)) {
507 regs->b0 = (regs->b0 - bundle_addr) +
508 resume_addr;
510 break;
511 case 6:
512 if ((regs->b6 == bundle_addr) ||
513 (regs->b6 == bundle_addr + 0x10)) {
514 regs->b6 = (regs->b6 - bundle_addr) +
515 resume_addr;
517 break;
518 case 7:
519 if ((regs->b7 == bundle_addr) ||
520 (regs->b7 == bundle_addr + 0x10)) {
521 regs->b7 = (regs->b7 - bundle_addr) +
522 resume_addr;
524 break;
525 } /* end switch */
527 goto turn_ss_off;
530 if (slot == 2) {
531 if (regs->cr_iip == bundle_addr + 0x10) {
532 regs->cr_iip = resume_addr + 0x10;
534 } else {
535 if (regs->cr_iip == bundle_addr) {
536 regs->cr_iip = resume_addr;
540 turn_ss_off:
541 /* Turn off Single Step bit */
542 ia64_psr(regs)->ss = 0;
545 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
547 unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
548 unsigned long slot = (unsigned long)p->addr & 0xf;
550 /* single step inline if break instruction */
551 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
552 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
553 else
554 regs->cr_iip = bundle_addr & ~0xFULL;
556 if (slot > 2)
557 slot = 0;
559 ia64_psr(regs)->ri = slot;
561 /* turn on single stepping */
562 ia64_psr(regs)->ss = 1;
565 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
567 unsigned int slot = ia64_psr(regs)->ri;
568 unsigned int template, major_opcode;
569 unsigned long kprobe_inst;
570 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
571 bundle_t bundle;
573 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
574 template = bundle.quad0.template;
576 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
577 if (slot == 1 && bundle_encoding[template][1] == L)
578 slot++;
580 /* Get Kprobe probe instruction at given slot*/
581 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
583 /* For break instruction,
584 * Bits 37:40 Major opcode to be zero
585 * Bits 27:32 X6 to be zero
586 * Bits 32:35 X3 to be zero
588 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
589 /* Not a break instruction */
590 return 0;
593 /* Is a break instruction */
594 return 1;
597 static int __kprobes pre_kprobes_handler(struct die_args *args)
599 struct kprobe *p;
600 int ret = 0;
601 struct pt_regs *regs = args->regs;
602 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
603 struct kprobe_ctlblk *kcb;
606 * We don't want to be preempted for the entire
607 * duration of kprobe processing
609 preempt_disable();
610 kcb = get_kprobe_ctlblk();
612 /* Handle recursion cases */
613 if (kprobe_running()) {
614 p = get_kprobe(addr);
615 if (p) {
616 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
617 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
618 ia64_psr(regs)->ss = 0;
619 goto no_kprobe;
621 /* We have reentered the pre_kprobe_handler(), since
622 * another probe was hit while within the handler.
623 * We here save the original kprobes variables and
624 * just single step on the instruction of the new probe
625 * without calling any user handlers.
627 save_previous_kprobe(kcb);
628 set_current_kprobe(p, kcb);
629 kprobes_inc_nmissed_count(p);
630 prepare_ss(p, regs);
631 kcb->kprobe_status = KPROBE_REENTER;
632 return 1;
633 } else if (args->err == __IA64_BREAK_JPROBE) {
635 * jprobe instrumented function just completed
637 p = __get_cpu_var(current_kprobe);
638 if (p->break_handler && p->break_handler(p, regs)) {
639 goto ss_probe;
641 } else if (!is_ia64_break_inst(regs)) {
642 /* The breakpoint instruction was removed by
643 * another cpu right after we hit, no further
644 * handling of this interrupt is appropriate
646 ret = 1;
647 goto no_kprobe;
648 } else {
649 /* Not our break */
650 goto no_kprobe;
654 p = get_kprobe(addr);
655 if (!p) {
656 if (!is_ia64_break_inst(regs)) {
658 * The breakpoint instruction was removed right
659 * after we hit it. Another cpu has removed
660 * either a probepoint or a debugger breakpoint
661 * at this address. In either case, no further
662 * handling of this interrupt is appropriate.
664 ret = 1;
668 /* Not one of our break, let kernel handle it */
669 goto no_kprobe;
672 set_current_kprobe(p, kcb);
673 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
675 if (p->pre_handler && p->pre_handler(p, regs))
677 * Our pre-handler is specifically requesting that we just
678 * do a return. This is used for both the jprobe pre-handler
679 * and the kretprobe trampoline
681 return 1;
683 ss_probe:
684 prepare_ss(p, regs);
685 kcb->kprobe_status = KPROBE_HIT_SS;
686 return 1;
688 no_kprobe:
689 preempt_enable_no_resched();
690 return ret;
693 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
695 struct kprobe *cur = kprobe_running();
696 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
698 if (!cur)
699 return 0;
701 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
702 kcb->kprobe_status = KPROBE_HIT_SSDONE;
703 cur->post_handler(cur, regs, 0);
706 resume_execution(cur, regs);
708 /*Restore back the original saved kprobes variables and continue. */
709 if (kcb->kprobe_status == KPROBE_REENTER) {
710 restore_previous_kprobe(kcb);
711 goto out;
713 reset_current_kprobe();
715 out:
716 preempt_enable_no_resched();
717 return 1;
720 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
722 struct kprobe *cur = kprobe_running();
723 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
725 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
726 return 1;
728 if (kcb->kprobe_status & KPROBE_HIT_SS) {
729 resume_execution(cur, regs);
730 reset_current_kprobe();
731 preempt_enable_no_resched();
734 return 0;
737 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
738 unsigned long val, void *data)
740 struct die_args *args = (struct die_args *)data;
741 int ret = NOTIFY_DONE;
743 switch(val) {
744 case DIE_BREAK:
745 /* err is break number from ia64_bad_break() */
746 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
747 if (pre_kprobes_handler(args))
748 ret = NOTIFY_STOP;
749 break;
750 case DIE_FAULT:
751 /* err is vector number from ia64_fault() */
752 if (args->err == 36)
753 if (post_kprobes_handler(args->regs))
754 ret = NOTIFY_STOP;
755 break;
756 case DIE_PAGE_FAULT:
757 /* kprobe_running() needs smp_processor_id() */
758 preempt_disable();
759 if (kprobe_running() &&
760 kprobes_fault_handler(args->regs, args->trapnr))
761 ret = NOTIFY_STOP;
762 preempt_enable();
763 default:
764 break;
766 return ret;
769 struct param_bsp_cfm {
770 unsigned long ip;
771 unsigned long *bsp;
772 unsigned long cfm;
775 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
777 unsigned long ip;
778 struct param_bsp_cfm *lp = arg;
780 do {
781 unw_get_ip(info, &ip);
782 if (ip == 0)
783 break;
784 if (ip == lp->ip) {
785 unw_get_bsp(info, (unsigned long*)&lp->bsp);
786 unw_get_cfm(info, (unsigned long*)&lp->cfm);
787 return;
789 } while (unw_unwind(info) >= 0);
790 lp->bsp = 0;
791 lp->cfm = 0;
792 return;
795 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
797 struct jprobe *jp = container_of(p, struct jprobe, kp);
798 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
799 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800 struct param_bsp_cfm pa;
801 int bytes;
804 * Callee owns the argument space and could overwrite it, eg
805 * tail call optimization. So to be absolutely safe
806 * we save the argument space before transfering the control
807 * to instrumented jprobe function which runs in
808 * the process context
810 pa.ip = regs->cr_iip;
811 unw_init_running(ia64_get_bsp_cfm, &pa);
812 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
813 - (char *)pa.bsp;
814 memcpy( kcb->jprobes_saved_stacked_regs,
815 pa.bsp,
816 bytes );
817 kcb->bsp = pa.bsp;
818 kcb->cfm = pa.cfm;
820 /* save architectural state */
821 kcb->jprobe_saved_regs = *regs;
823 /* after rfi, execute the jprobe instrumented function */
824 regs->cr_iip = addr & ~0xFULL;
825 ia64_psr(regs)->ri = addr & 0xf;
826 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
829 * fix the return address to our jprobe_inst_return() function
830 * in the jprobes.S file
832 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
834 return 1;
837 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
839 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
840 int bytes;
842 /* restoring architectural state */
843 *regs = kcb->jprobe_saved_regs;
845 /* restoring the original argument space */
846 flush_register_stack();
847 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
848 - (char *)kcb->bsp;
849 memcpy( kcb->bsp,
850 kcb->jprobes_saved_stacked_regs,
851 bytes );
852 invalidate_stacked_regs();
854 preempt_enable_no_resched();
855 return 1;
858 static struct kprobe trampoline_p = {
859 .pre_handler = trampoline_probe_handler
862 int __init arch_init_kprobes(void)
864 trampoline_p.addr =
865 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
866 return register_kprobe(&trampoline_p);