[CONNECTOR]: Use netlink_has_listeners() to avoind unnecessary allocations.
[linux-2.6/verdex.git] / arch / parisc / mm / init.c
blob7847ca13d6c2933b2be345e8d73a9ffd3d1229db
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
12 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 extern char _text; /* start of kernel code, defined by linker */
34 extern int data_start;
35 extern char _end; /* end of BSS, defined by linker */
36 extern char __init_begin, __init_end;
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
40 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
41 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
42 #endif
44 static struct resource data_resource = {
45 .name = "Kernel data",
46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
49 static struct resource code_resource = {
50 .name = "Kernel code",
51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
54 static struct resource pdcdata_resource = {
55 .name = "PDC data (Page Zero)",
56 .start = 0,
57 .end = 0x9ff,
58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
63 /* The following array is initialized from the firmware specific
64 * information retrieved in kernel/inventory.c.
67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
68 int npmem_ranges __read_mostly;
70 #ifdef __LP64__
71 #define MAX_MEM (~0UL)
72 #else /* !__LP64__ */
73 #define MAX_MEM (3584U*1024U*1024U)
74 #endif /* !__LP64__ */
76 static unsigned long mem_limit __read_mostly = MAX_MEM;
78 static void __init mem_limit_func(void)
80 char *cp, *end;
81 unsigned long limit;
82 extern char saved_command_line[];
84 /* We need this before __setup() functions are called */
86 limit = MAX_MEM;
87 for (cp = saved_command_line; *cp; ) {
88 if (memcmp(cp, "mem=", 4) == 0) {
89 cp += 4;
90 limit = memparse(cp, &end);
91 if (end != cp)
92 break;
93 cp = end;
94 } else {
95 while (*cp != ' ' && *cp)
96 ++cp;
97 while (*cp == ' ')
98 ++cp;
102 if (limit < mem_limit)
103 mem_limit = limit;
106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108 static void __init setup_bootmem(void)
110 unsigned long bootmap_size;
111 unsigned long mem_max;
112 unsigned long bootmap_pages;
113 unsigned long bootmap_start_pfn;
114 unsigned long bootmap_pfn;
115 #ifndef CONFIG_DISCONTIGMEM
116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117 int npmem_holes;
118 #endif
119 int i, sysram_resource_count;
121 disable_sr_hashing(); /* Turn off space register hashing */
124 * Sort the ranges. Since the number of ranges is typically
125 * small, and performance is not an issue here, just do
126 * a simple insertion sort.
129 for (i = 1; i < npmem_ranges; i++) {
130 int j;
132 for (j = i; j > 0; j--) {
133 unsigned long tmp;
135 if (pmem_ranges[j-1].start_pfn <
136 pmem_ranges[j].start_pfn) {
138 break;
140 tmp = pmem_ranges[j-1].start_pfn;
141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
142 pmem_ranges[j].start_pfn = tmp;
143 tmp = pmem_ranges[j-1].pages;
144 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
145 pmem_ranges[j].pages = tmp;
149 #ifndef CONFIG_DISCONTIGMEM
151 * Throw out ranges that are too far apart (controlled by
152 * MAX_GAP).
155 for (i = 1; i < npmem_ranges; i++) {
156 if (pmem_ranges[i].start_pfn -
157 (pmem_ranges[i-1].start_pfn +
158 pmem_ranges[i-1].pages) > MAX_GAP) {
159 npmem_ranges = i;
160 printk("Large gap in memory detected (%ld pages). "
161 "Consider turning on CONFIG_DISCONTIGMEM\n",
162 pmem_ranges[i].start_pfn -
163 (pmem_ranges[i-1].start_pfn +
164 pmem_ranges[i-1].pages));
165 break;
168 #endif
170 if (npmem_ranges > 1) {
172 /* Print the memory ranges */
174 printk(KERN_INFO "Memory Ranges:\n");
176 for (i = 0; i < npmem_ranges; i++) {
177 unsigned long start;
178 unsigned long size;
180 size = (pmem_ranges[i].pages << PAGE_SHIFT);
181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
183 i,start, start + (size - 1), size >> 20);
187 sysram_resource_count = npmem_ranges;
188 for (i = 0; i < sysram_resource_count; i++) {
189 struct resource *res = &sysram_resources[i];
190 res->name = "System RAM";
191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194 request_resource(&iomem_resource, res);
198 * For 32 bit kernels we limit the amount of memory we can
199 * support, in order to preserve enough kernel address space
200 * for other purposes. For 64 bit kernels we don't normally
201 * limit the memory, but this mechanism can be used to
202 * artificially limit the amount of memory (and it is written
203 * to work with multiple memory ranges).
206 mem_limit_func(); /* check for "mem=" argument */
208 mem_max = 0;
209 num_physpages = 0;
210 for (i = 0; i < npmem_ranges; i++) {
211 unsigned long rsize;
213 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
214 if ((mem_max + rsize) > mem_limit) {
215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
216 if (mem_max == mem_limit)
217 npmem_ranges = i;
218 else {
219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
220 - (mem_max >> PAGE_SHIFT);
221 npmem_ranges = i + 1;
222 mem_max = mem_limit;
224 num_physpages += pmem_ranges[i].pages;
225 break;
227 num_physpages += pmem_ranges[i].pages;
228 mem_max += rsize;
231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
233 #ifndef CONFIG_DISCONTIGMEM
234 /* Merge the ranges, keeping track of the holes */
237 unsigned long end_pfn;
238 unsigned long hole_pages;
240 npmem_holes = 0;
241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
242 for (i = 1; i < npmem_ranges; i++) {
244 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
245 if (hole_pages) {
246 pmem_holes[npmem_holes].start_pfn = end_pfn;
247 pmem_holes[npmem_holes++].pages = hole_pages;
248 end_pfn += hole_pages;
250 end_pfn += pmem_ranges[i].pages;
253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
254 npmem_ranges = 1;
256 #endif
258 bootmap_pages = 0;
259 for (i = 0; i < npmem_ranges; i++)
260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264 #ifdef CONFIG_DISCONTIGMEM
265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
266 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
267 NODE_DATA(i)->bdata = &bmem_data[i];
269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271 for (i = 0; i < npmem_ranges; i++)
272 node_set_online(i);
273 #endif
276 * Initialize and free the full range of memory in each range.
277 * Note that the only writing these routines do are to the bootmap,
278 * and we've made sure to locate the bootmap properly so that they
279 * won't be writing over anything important.
282 bootmap_pfn = bootmap_start_pfn;
283 max_pfn = 0;
284 for (i = 0; i < npmem_ranges; i++) {
285 unsigned long start_pfn;
286 unsigned long npages;
288 start_pfn = pmem_ranges[i].start_pfn;
289 npages = pmem_ranges[i].pages;
291 bootmap_size = init_bootmem_node(NODE_DATA(i),
292 bootmap_pfn,
293 start_pfn,
294 (start_pfn + npages) );
295 free_bootmem_node(NODE_DATA(i),
296 (start_pfn << PAGE_SHIFT),
297 (npages << PAGE_SHIFT) );
298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299 if ((start_pfn + npages) > max_pfn)
300 max_pfn = start_pfn + npages;
303 /* IOMMU is always used to access "high mem" on those boxes
304 * that can support enough mem that a PCI device couldn't
305 * directly DMA to any physical addresses.
306 * ISA DMA support will need to revisit this.
308 max_low_pfn = max_pfn;
310 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
311 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
312 BUG();
315 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
317 #define PDC_CONSOLE_IO_IODC_SIZE 32768
319 reserve_bootmem_node(NODE_DATA(0), 0UL,
320 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
321 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
322 (unsigned long)(&_end - &_text));
323 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
324 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
326 #ifndef CONFIG_DISCONTIGMEM
328 /* reserve the holes */
330 for (i = 0; i < npmem_holes; i++) {
331 reserve_bootmem_node(NODE_DATA(0),
332 (pmem_holes[i].start_pfn << PAGE_SHIFT),
333 (pmem_holes[i].pages << PAGE_SHIFT));
335 #endif
337 #ifdef CONFIG_BLK_DEV_INITRD
338 if (initrd_start) {
339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
340 if (__pa(initrd_start) < mem_max) {
341 unsigned long initrd_reserve;
343 if (__pa(initrd_end) > mem_max) {
344 initrd_reserve = mem_max - __pa(initrd_start);
345 } else {
346 initrd_reserve = initrd_end - initrd_start;
348 initrd_below_start_ok = 1;
349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
351 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
354 #endif
356 data_resource.start = virt_to_phys(&data_start);
357 data_resource.end = virt_to_phys(&_end)-1;
358 code_resource.start = virt_to_phys(&_text);
359 code_resource.end = virt_to_phys(&data_start)-1;
361 /* We don't know which region the kernel will be in, so try
362 * all of them.
364 for (i = 0; i < sysram_resource_count; i++) {
365 struct resource *res = &sysram_resources[i];
366 request_resource(res, &code_resource);
367 request_resource(res, &data_resource);
369 request_resource(&sysram_resources[0], &pdcdata_resource);
372 void free_initmem(void)
374 unsigned long addr;
376 printk(KERN_INFO "Freeing unused kernel memory: ");
378 #ifdef CONFIG_DEBUG_KERNEL
379 /* Attempt to catch anyone trying to execute code here
380 * by filling the page with BRK insns.
382 * If we disable interrupts for all CPUs, then IPI stops working.
383 * Kinda breaks the global cache flushing.
385 local_irq_disable();
387 memset(&__init_begin, 0x00,
388 (unsigned long)&__init_end - (unsigned long)&__init_begin);
390 flush_data_cache();
391 asm volatile("sync" : : );
392 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
393 asm volatile("sync" : : );
395 local_irq_enable();
396 #endif
398 addr = (unsigned long)(&__init_begin);
399 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
400 ClearPageReserved(virt_to_page(addr));
401 set_page_count(virt_to_page(addr), 1);
402 free_page(addr);
403 num_physpages++;
404 totalram_pages++;
407 /* set up a new led state on systems shipped LED State panel */
408 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
410 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
414 #ifdef CONFIG_DEBUG_RODATA
415 void mark_rodata_ro(void)
417 extern char __start_rodata, __end_rodata;
418 /* rodata memory was already mapped with KERNEL_RO access rights by
419 pagetable_init() and map_pages(). No need to do additional stuff here */
420 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
421 (unsigned long)(&__end_rodata - &__start_rodata) >> 10);
423 #endif
427 * Just an arbitrary offset to serve as a "hole" between mapping areas
428 * (between top of physical memory and a potential pcxl dma mapping
429 * area, and below the vmalloc mapping area).
431 * The current 32K value just means that there will be a 32K "hole"
432 * between mapping areas. That means that any out-of-bounds memory
433 * accesses will hopefully be caught. The vmalloc() routines leaves
434 * a hole of 4kB between each vmalloced area for the same reason.
437 /* Leave room for gateway page expansion */
438 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
439 #error KERNEL_MAP_START is in gateway reserved region
440 #endif
441 #define MAP_START (KERNEL_MAP_START)
443 #define VM_MAP_OFFSET (32*1024)
444 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
445 & ~(VM_MAP_OFFSET-1)))
447 void *vmalloc_start __read_mostly;
448 EXPORT_SYMBOL(vmalloc_start);
450 #ifdef CONFIG_PA11
451 unsigned long pcxl_dma_start __read_mostly;
452 #endif
454 void __init mem_init(void)
456 high_memory = __va((max_pfn << PAGE_SHIFT));
458 #ifndef CONFIG_DISCONTIGMEM
459 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
460 totalram_pages += free_all_bootmem();
461 #else
463 int i;
465 for (i = 0; i < npmem_ranges; i++)
466 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
468 #endif
470 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
472 #ifdef CONFIG_PA11
473 if (hppa_dma_ops == &pcxl_dma_ops) {
474 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
475 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
476 } else {
477 pcxl_dma_start = 0;
478 vmalloc_start = SET_MAP_OFFSET(MAP_START);
480 #else
481 vmalloc_start = SET_MAP_OFFSET(MAP_START);
482 #endif
486 unsigned long *empty_zero_page __read_mostly;
488 void show_mem(void)
490 int i,free = 0,total = 0,reserved = 0;
491 int shared = 0, cached = 0;
493 printk(KERN_INFO "Mem-info:\n");
494 show_free_areas();
495 printk(KERN_INFO "Free swap: %6ldkB\n",
496 nr_swap_pages<<(PAGE_SHIFT-10));
497 #ifndef CONFIG_DISCONTIGMEM
498 i = max_mapnr;
499 while (i-- > 0) {
500 total++;
501 if (PageReserved(mem_map+i))
502 reserved++;
503 else if (PageSwapCache(mem_map+i))
504 cached++;
505 else if (!page_count(&mem_map[i]))
506 free++;
507 else
508 shared += page_count(&mem_map[i]) - 1;
510 #else
511 for (i = 0; i < npmem_ranges; i++) {
512 int j;
514 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
515 struct page *p;
516 unsigned long flags;
518 pgdat_resize_lock(NODE_DATA(i), &flags);
519 p = nid_page_nr(i, j) - node_start_pfn(i);
521 total++;
522 if (PageReserved(p))
523 reserved++;
524 else if (PageSwapCache(p))
525 cached++;
526 else if (!page_count(p))
527 free++;
528 else
529 shared += page_count(p) - 1;
530 pgdat_resize_unlock(NODE_DATA(i), &flags);
533 #endif
534 printk(KERN_INFO "%d pages of RAM\n", total);
535 printk(KERN_INFO "%d reserved pages\n", reserved);
536 printk(KERN_INFO "%d pages shared\n", shared);
537 printk(KERN_INFO "%d pages swap cached\n", cached);
540 #ifdef CONFIG_DISCONTIGMEM
542 struct zonelist *zl;
543 int i, j, k;
545 for (i = 0; i < npmem_ranges; i++) {
546 for (j = 0; j < MAX_NR_ZONES; j++) {
547 zl = NODE_DATA(i)->node_zonelists + j;
549 printk("Zone list for zone %d on node %d: ", j, i);
550 for (k = 0; zl->zones[k] != NULL; k++)
551 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
552 printk("\n");
556 #endif
560 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
562 pgd_t *pg_dir;
563 pmd_t *pmd;
564 pte_t *pg_table;
565 unsigned long end_paddr;
566 unsigned long start_pmd;
567 unsigned long start_pte;
568 unsigned long tmp1;
569 unsigned long tmp2;
570 unsigned long address;
571 unsigned long ro_start;
572 unsigned long ro_end;
573 unsigned long fv_addr;
574 unsigned long gw_addr;
575 extern const unsigned long fault_vector_20;
576 extern void * const linux_gateway_page;
578 ro_start = __pa((unsigned long)&_text);
579 ro_end = __pa((unsigned long)&data_start);
580 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
581 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
583 end_paddr = start_paddr + size;
585 pg_dir = pgd_offset_k(start_vaddr);
587 #if PTRS_PER_PMD == 1
588 start_pmd = 0;
589 #else
590 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
591 #endif
592 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
594 address = start_paddr;
595 while (address < end_paddr) {
596 #if PTRS_PER_PMD == 1
597 pmd = (pmd_t *)__pa(pg_dir);
598 #else
599 pmd = (pmd_t *)pgd_address(*pg_dir);
602 * pmd is physical at this point
605 if (!pmd) {
606 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
607 pmd = (pmd_t *) __pa(pmd);
610 pgd_populate(NULL, pg_dir, __va(pmd));
611 #endif
612 pg_dir++;
614 /* now change pmd to kernel virtual addresses */
616 pmd = (pmd_t *)__va(pmd) + start_pmd;
617 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
620 * pg_table is physical at this point
623 pg_table = (pte_t *)pmd_address(*pmd);
624 if (!pg_table) {
625 pg_table = (pte_t *)
626 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
627 pg_table = (pte_t *) __pa(pg_table);
630 pmd_populate_kernel(NULL, pmd, __va(pg_table));
632 /* now change pg_table to kernel virtual addresses */
634 pg_table = (pte_t *) __va(pg_table) + start_pte;
635 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
636 pte_t pte;
639 * Map the fault vector writable so we can
640 * write the HPMC checksum.
642 if (address >= ro_start && address < ro_end
643 && address != fv_addr
644 && address != gw_addr)
645 pte = __mk_pte(address, PAGE_KERNEL_RO);
646 else
647 pte = __mk_pte(address, pgprot);
649 if (address >= end_paddr)
650 pte_val(pte) = 0;
652 set_pte(pg_table, pte);
654 address += PAGE_SIZE;
656 start_pte = 0;
658 if (address >= end_paddr)
659 break;
661 start_pmd = 0;
666 * pagetable_init() sets up the page tables
668 * Note that gateway_init() places the Linux gateway page at page 0.
669 * Since gateway pages cannot be dereferenced this has the desirable
670 * side effect of trapping those pesky NULL-reference errors in the
671 * kernel.
673 static void __init pagetable_init(void)
675 int range;
677 /* Map each physical memory range to its kernel vaddr */
679 for (range = 0; range < npmem_ranges; range++) {
680 unsigned long start_paddr;
681 unsigned long end_paddr;
682 unsigned long size;
684 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
685 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
686 size = pmem_ranges[range].pages << PAGE_SHIFT;
688 map_pages((unsigned long)__va(start_paddr), start_paddr,
689 size, PAGE_KERNEL);
692 #ifdef CONFIG_BLK_DEV_INITRD
693 if (initrd_end && initrd_end > mem_limit) {
694 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
695 map_pages(initrd_start, __pa(initrd_start),
696 initrd_end - initrd_start, PAGE_KERNEL);
698 #endif
700 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
701 memset(empty_zero_page, 0, PAGE_SIZE);
704 static void __init gateway_init(void)
706 unsigned long linux_gateway_page_addr;
707 /* FIXME: This is 'const' in order to trick the compiler
708 into not treating it as DP-relative data. */
709 extern void * const linux_gateway_page;
711 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
714 * Setup Linux Gateway page.
716 * The Linux gateway page will reside in kernel space (on virtual
717 * page 0), so it doesn't need to be aliased into user space.
720 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
721 PAGE_SIZE, PAGE_GATEWAY);
724 #ifdef CONFIG_HPUX
725 void
726 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
728 pgd_t *pg_dir;
729 pmd_t *pmd;
730 pte_t *pg_table;
731 unsigned long start_pmd;
732 unsigned long start_pte;
733 unsigned long address;
734 unsigned long hpux_gw_page_addr;
735 /* FIXME: This is 'const' in order to trick the compiler
736 into not treating it as DP-relative data. */
737 extern void * const hpux_gateway_page;
739 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
742 * Setup HP-UX Gateway page.
744 * The HP-UX gateway page resides in the user address space,
745 * so it needs to be aliased into each process.
748 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
750 #if PTRS_PER_PMD == 1
751 start_pmd = 0;
752 #else
753 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
754 #endif
755 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
757 address = __pa(&hpux_gateway_page);
758 #if PTRS_PER_PMD == 1
759 pmd = (pmd_t *)__pa(pg_dir);
760 #else
761 pmd = (pmd_t *) pgd_address(*pg_dir);
764 * pmd is physical at this point
767 if (!pmd) {
768 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
769 pmd = (pmd_t *) __pa(pmd);
772 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
773 #endif
774 /* now change pmd to kernel virtual addresses */
776 pmd = (pmd_t *)__va(pmd) + start_pmd;
779 * pg_table is physical at this point
782 pg_table = (pte_t *) pmd_address(*pmd);
783 if (!pg_table)
784 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
786 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
788 /* now change pg_table to kernel virtual addresses */
790 pg_table = (pte_t *) __va(pg_table) + start_pte;
791 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
793 EXPORT_SYMBOL(map_hpux_gateway_page);
794 #endif
796 void __init paging_init(void)
798 int i;
800 setup_bootmem();
801 pagetable_init();
802 gateway_init();
803 flush_cache_all_local(); /* start with known state */
804 flush_tlb_all_local(NULL);
806 for (i = 0; i < npmem_ranges; i++) {
807 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
809 /* We have an IOMMU, so all memory can go into a single
810 ZONE_DMA zone. */
811 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
813 #ifdef CONFIG_DISCONTIGMEM
814 /* Need to initialize the pfnnid_map before we can initialize
815 the zone */
817 int j;
818 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
819 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
820 j++) {
821 pfnnid_map[j] = i;
824 #endif
826 free_area_init_node(i, NODE_DATA(i), zones_size,
827 pmem_ranges[i].start_pfn, NULL);
831 #ifdef CONFIG_PA20
834 * Currently, all PA20 chips have 18 bit protection id's, which is the
835 * limiting factor (space ids are 32 bits).
838 #define NR_SPACE_IDS 262144
840 #else
843 * Currently we have a one-to-one relationship between space id's and
844 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
845 * support 15 bit protection id's, so that is the limiting factor.
846 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
847 * probably not worth the effort for a special case here.
850 #define NR_SPACE_IDS 32768
852 #endif /* !CONFIG_PA20 */
854 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
855 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
857 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
858 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
859 static unsigned long space_id_index;
860 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
861 static unsigned long dirty_space_ids = 0;
863 static DEFINE_SPINLOCK(sid_lock);
865 unsigned long alloc_sid(void)
867 unsigned long index;
869 spin_lock(&sid_lock);
871 if (free_space_ids == 0) {
872 if (dirty_space_ids != 0) {
873 spin_unlock(&sid_lock);
874 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
875 spin_lock(&sid_lock);
877 if (free_space_ids == 0)
878 BUG();
881 free_space_ids--;
883 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
884 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
885 space_id_index = index;
887 spin_unlock(&sid_lock);
889 return index << SPACEID_SHIFT;
892 void free_sid(unsigned long spaceid)
894 unsigned long index = spaceid >> SPACEID_SHIFT;
895 unsigned long *dirty_space_offset;
897 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
898 index &= (BITS_PER_LONG - 1);
900 spin_lock(&sid_lock);
902 if (*dirty_space_offset & (1L << index))
903 BUG(); /* attempt to free space id twice */
905 *dirty_space_offset |= (1L << index);
906 dirty_space_ids++;
908 spin_unlock(&sid_lock);
912 #ifdef CONFIG_SMP
913 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
915 int i;
917 /* NOTE: sid_lock must be held upon entry */
919 *ndirtyptr = dirty_space_ids;
920 if (dirty_space_ids != 0) {
921 for (i = 0; i < SID_ARRAY_SIZE; i++) {
922 dirty_array[i] = dirty_space_id[i];
923 dirty_space_id[i] = 0;
925 dirty_space_ids = 0;
928 return;
931 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
933 int i;
935 /* NOTE: sid_lock must be held upon entry */
937 if (ndirty != 0) {
938 for (i = 0; i < SID_ARRAY_SIZE; i++) {
939 space_id[i] ^= dirty_array[i];
942 free_space_ids += ndirty;
943 space_id_index = 0;
947 #else /* CONFIG_SMP */
949 static void recycle_sids(void)
951 int i;
953 /* NOTE: sid_lock must be held upon entry */
955 if (dirty_space_ids != 0) {
956 for (i = 0; i < SID_ARRAY_SIZE; i++) {
957 space_id[i] ^= dirty_space_id[i];
958 dirty_space_id[i] = 0;
961 free_space_ids += dirty_space_ids;
962 dirty_space_ids = 0;
963 space_id_index = 0;
966 #endif
969 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
970 * purged, we can safely reuse the space ids that were released but
971 * not flushed from the tlb.
974 #ifdef CONFIG_SMP
976 static unsigned long recycle_ndirty;
977 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
978 static unsigned int recycle_inuse = 0;
980 void flush_tlb_all(void)
982 int do_recycle;
984 do_recycle = 0;
985 spin_lock(&sid_lock);
986 if (dirty_space_ids > RECYCLE_THRESHOLD) {
987 if (recycle_inuse) {
988 BUG(); /* FIXME: Use a semaphore/wait queue here */
990 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
991 recycle_inuse++;
992 do_recycle++;
994 spin_unlock(&sid_lock);
995 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
996 if (do_recycle) {
997 spin_lock(&sid_lock);
998 recycle_sids(recycle_ndirty,recycle_dirty_array);
999 recycle_inuse = 0;
1000 spin_unlock(&sid_lock);
1003 #else
1004 void flush_tlb_all(void)
1006 spin_lock(&sid_lock);
1007 flush_tlb_all_local(NULL);
1008 recycle_sids();
1009 spin_unlock(&sid_lock);
1011 #endif
1013 #ifdef CONFIG_BLK_DEV_INITRD
1014 void free_initrd_mem(unsigned long start, unsigned long end)
1016 #if 0
1017 if (start < end)
1018 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1019 for (; start < end; start += PAGE_SIZE) {
1020 ClearPageReserved(virt_to_page(start));
1021 set_page_count(virt_to_page(start), 1);
1022 free_page(start);
1023 num_physpages++;
1024 totalram_pages++;
1026 #endif
1028 #endif