1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
41 #include <asm/sections.h>
43 extern void calibrate_delay(void);
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id
;
48 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_NONE
;
49 cpumask_t phys_cpu_present_map __read_mostly
= CPU_MASK_NONE
;
50 cpumask_t cpu_sibling_map
[NR_CPUS
] __read_mostly
=
51 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
52 static cpumask_t smp_commenced_mask
;
53 static cpumask_t cpu_callout_map
;
55 void smp_info(struct seq_file
*m
)
59 seq_printf(m
, "State:\n");
60 for (i
= 0; i
< NR_CPUS
; i
++) {
63 "CPU%d:\t\tonline\n", i
);
67 void smp_bogo(struct seq_file
*m
)
71 for (i
= 0; i
< NR_CPUS
; i
++)
74 "Cpu%dBogo\t: %lu.%02lu\n"
75 "Cpu%dClkTck\t: %016lx\n",
76 i
, cpu_data(i
).udelay_val
/ (500000/HZ
),
77 (cpu_data(i
).udelay_val
/ (5000/HZ
)) % 100,
78 i
, cpu_data(i
).clock_tick
);
81 void __init
smp_store_cpu_info(int id
)
85 /* multiplier and counter set by
86 smp_setup_percpu_timer() */
87 cpu_data(id
).udelay_val
= loops_per_jiffy
;
89 cpu_find_by_mid(id
, &cpu_node
);
90 cpu_data(id
).clock_tick
= prom_getintdefault(cpu_node
,
91 "clock-frequency", 0);
93 def
= ((tlb_type
== hypervisor
) ? (8 * 1024) : (16 * 1024));
94 cpu_data(id
).dcache_size
= prom_getintdefault(cpu_node
, "dcache-size",
98 cpu_data(id
).dcache_line_size
=
99 prom_getintdefault(cpu_node
, "dcache-line-size", def
);
102 cpu_data(id
).icache_size
= prom_getintdefault(cpu_node
, "icache-size",
106 cpu_data(id
).icache_line_size
=
107 prom_getintdefault(cpu_node
, "icache-line-size", def
);
109 def
= ((tlb_type
== hypervisor
) ?
112 cpu_data(id
).ecache_size
= prom_getintdefault(cpu_node
, "ecache-size",
116 cpu_data(id
).ecache_line_size
=
117 prom_getintdefault(cpu_node
, "ecache-line-size", def
);
119 printk("CPU[%d]: Caches "
120 "D[sz(%d):line_sz(%d)] "
121 "I[sz(%d):line_sz(%d)] "
122 "E[sz(%d):line_sz(%d)]\n",
124 cpu_data(id
).dcache_size
, cpu_data(id
).dcache_line_size
,
125 cpu_data(id
).icache_size
, cpu_data(id
).icache_line_size
,
126 cpu_data(id
).ecache_size
, cpu_data(id
).ecache_line_size
);
129 static void smp_setup_percpu_timer(void);
131 static volatile unsigned long callin_flag
= 0;
133 void __init
smp_callin(void)
135 int cpuid
= hard_smp_processor_id();
137 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
139 if (tlb_type
== hypervisor
)
140 sun4v_ktsb_register();
144 smp_setup_percpu_timer();
146 if (cheetah_pcache_forced_on
)
147 cheetah_enable_pcache();
152 smp_store_cpu_info(cpuid
);
154 __asm__
__volatile__("membar #Sync\n\t"
155 "flush %%g6" : : : "memory");
157 /* Clear this or we will die instantly when we
158 * schedule back to this idler...
160 current_thread_info()->new_child
= 0;
162 /* Attach to the address space of init_task. */
163 atomic_inc(&init_mm
.mm_count
);
164 current
->active_mm
= &init_mm
;
166 while (!cpu_isset(cpuid
, smp_commenced_mask
))
169 cpu_set(cpuid
, cpu_online_map
);
171 /* idle thread is expected to have preempt disabled */
177 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
178 panic("SMP bolixed\n");
181 static unsigned long current_tick_offset __read_mostly
;
183 /* This tick register synchronization scheme is taken entirely from
184 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
186 * The only change I've made is to rework it so that the master
187 * initiates the synchonization instead of the slave. -DaveM
191 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
193 #define NUM_ROUNDS 64 /* magic value */
194 #define NUM_ITERS 5 /* likewise */
196 static DEFINE_SPINLOCK(itc_sync_lock
);
197 static unsigned long go
[SLAVE
+ 1];
199 #define DEBUG_TICK_SYNC 0
201 static inline long get_delta (long *rt
, long *master
)
203 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
204 unsigned long tcenter
, t0
, t1
, tm
;
207 for (i
= 0; i
< NUM_ITERS
; i
++) {
208 t0
= tick_ops
->get_tick();
211 while (!(tm
= go
[SLAVE
]))
215 t1
= tick_ops
->get_tick();
217 if (t1
- t0
< best_t1
- best_t0
)
218 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
221 *rt
= best_t1
- best_t0
;
222 *master
= best_tm
- best_t0
;
224 /* average best_t0 and best_t1 without overflow: */
225 tcenter
= (best_t0
/2 + best_t1
/2);
226 if (best_t0
% 2 + best_t1
% 2 == 2)
228 return tcenter
- best_tm
;
231 void smp_synchronize_tick_client(void)
233 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
234 unsigned long flags
, rt
, master_time_stamp
, bound
;
237 long rt
; /* roundtrip time */
238 long master
; /* master's timestamp */
239 long diff
; /* difference between midpoint and master's timestamp */
240 long lat
; /* estimate of itc adjustment latency */
249 local_irq_save(flags
);
251 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
252 delta
= get_delta(&rt
, &master_time_stamp
);
254 done
= 1; /* let's lock on to this... */
260 adjust_latency
+= -delta
;
261 adj
= -delta
+ adjust_latency
/4;
265 tick_ops
->add_tick(adj
, current_tick_offset
);
269 t
[i
].master
= master_time_stamp
;
271 t
[i
].lat
= adjust_latency
/4;
275 local_irq_restore(flags
);
278 for (i
= 0; i
< NUM_ROUNDS
; i
++)
279 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
280 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
283 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
284 "maxerr %lu cycles)\n", smp_processor_id(), delta
, rt
);
287 static void smp_start_sync_tick_client(int cpu
);
289 static void smp_synchronize_one_tick(int cpu
)
291 unsigned long flags
, i
;
295 smp_start_sync_tick_client(cpu
);
297 /* wait for client to be ready */
301 /* now let the client proceed into his loop */
305 spin_lock_irqsave(&itc_sync_lock
, flags
);
307 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
312 go
[SLAVE
] = tick_ops
->get_tick();
316 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
319 extern void sun4v_init_mondo_queues(int use_bootmem
, int cpu
, int alloc
, int load
);
321 extern unsigned long sparc64_cpu_startup
;
323 /* The OBP cpu startup callback truncates the 3rd arg cookie to
324 * 32-bits (I think) so to be safe we have it read the pointer
325 * contained here so we work on >4GB machines. -DaveM
327 static struct thread_info
*cpu_new_thread
= NULL
;
329 static int __devinit
smp_boot_one_cpu(unsigned int cpu
)
331 unsigned long entry
=
332 (unsigned long)(&sparc64_cpu_startup
);
333 unsigned long cookie
=
334 (unsigned long)(&cpu_new_thread
);
335 struct task_struct
*p
;
340 cpu_new_thread
= task_thread_info(p
);
341 cpu_set(cpu
, cpu_callout_map
);
343 if (tlb_type
== hypervisor
) {
344 /* Alloc the mondo queues, cpu will load them. */
345 sun4v_init_mondo_queues(0, cpu
, 1, 0);
347 prom_startcpu_cpuid(cpu
, entry
, cookie
);
351 cpu_find_by_mid(cpu
, &cpu_node
);
352 prom_startcpu(cpu_node
, entry
, cookie
);
355 for (timeout
= 0; timeout
< 5000000; timeout
++) {
364 printk("Processor %d is stuck.\n", cpu
);
365 cpu_clear(cpu
, cpu_callout_map
);
368 cpu_new_thread
= NULL
;
373 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
378 if (this_is_starfire
) {
379 /* map to real upaid */
380 cpu
= (((cpu
& 0x3c) << 1) |
381 ((cpu
& 0x40) >> 4) |
385 target
= (cpu
<< 14) | 0x70;
387 /* Ok, this is the real Spitfire Errata #54.
388 * One must read back from a UDB internal register
389 * after writes to the UDB interrupt dispatch, but
390 * before the membar Sync for that write.
391 * So we use the high UDB control register (ASI 0x7f,
392 * ADDR 0x20) for the dummy read. -DaveM
395 __asm__
__volatile__(
396 "wrpr %1, %2, %%pstate\n\t"
397 "stxa %4, [%0] %3\n\t"
398 "stxa %5, [%0+%8] %3\n\t"
400 "stxa %6, [%0+%8] %3\n\t"
402 "stxa %%g0, [%7] %3\n\t"
405 "ldxa [%%g1] 0x7f, %%g0\n\t"
408 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
409 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
410 "r" (0x10), "0" (tmp
)
413 /* NOTE: PSTATE_IE is still clear. */
416 __asm__
__volatile__("ldxa [%%g0] %1, %0"
418 : "i" (ASI_INTR_DISPATCH_STAT
));
420 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
427 } while (result
& 0x1);
428 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
431 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
432 smp_processor_id(), result
);
439 static __inline__
void spitfire_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
444 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
445 for_each_cpu_mask(i
, mask
)
446 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, i
);
449 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
450 * packet, but we have no use for that. However we do take advantage of
451 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
453 static void cheetah_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
456 int nack_busy_id
, is_jbus
;
458 if (cpus_empty(mask
))
461 /* Unfortunately, someone at Sun had the brilliant idea to make the
462 * busy/nack fields hard-coded by ITID number for this Ultra-III
463 * derivative processor.
465 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
466 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
467 (ver
>> 32) == __SERRANO_ID
);
469 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
472 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
473 : : "r" (pstate
), "i" (PSTATE_IE
));
475 /* Setup the dispatch data registers. */
476 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
477 "stxa %1, [%4] %6\n\t"
478 "stxa %2, [%5] %6\n\t"
481 : "r" (data0
), "r" (data1
), "r" (data2
),
482 "r" (0x40), "r" (0x50), "r" (0x60),
489 for_each_cpu_mask(i
, mask
) {
490 u64 target
= (i
<< 14) | 0x70;
493 target
|= (nack_busy_id
<< 24);
494 __asm__
__volatile__(
495 "stxa %%g0, [%0] %1\n\t"
498 : "r" (target
), "i" (ASI_INTR_W
));
503 /* Now, poll for completion. */
508 stuck
= 100000 * nack_busy_id
;
510 __asm__
__volatile__("ldxa [%%g0] %1, %0"
511 : "=r" (dispatch_stat
)
512 : "i" (ASI_INTR_DISPATCH_STAT
));
513 if (dispatch_stat
== 0UL) {
514 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
520 } while (dispatch_stat
& 0x5555555555555555UL
);
522 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
525 if ((dispatch_stat
& ~(0x5555555555555555UL
)) == 0) {
526 /* Busy bits will not clear, continue instead
527 * of freezing up on this cpu.
529 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
530 smp_processor_id(), dispatch_stat
);
532 int i
, this_busy_nack
= 0;
534 /* Delay some random time with interrupts enabled
535 * to prevent deadlock.
537 udelay(2 * nack_busy_id
);
539 /* Clear out the mask bits for cpus which did not
542 for_each_cpu_mask(i
, mask
) {
546 check_mask
= (0x2UL
<< (2*i
));
548 check_mask
= (0x2UL
<<
550 if ((dispatch_stat
& check_mask
) == 0)
560 /* Multi-cpu list version. */
561 static void hypervisor_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
563 struct trap_per_cpu
*tb
;
566 cpumask_t error_mask
;
567 unsigned long flags
, status
;
568 int cnt
, retries
, this_cpu
, prev_sent
, i
;
570 /* We have to do this whole thing with interrupts fully disabled.
571 * Otherwise if we send an xcall from interrupt context it will
572 * corrupt both our mondo block and cpu list state.
574 * One consequence of this is that we cannot use timeout mechanisms
575 * that depend upon interrupts being delivered locally. So, for
576 * example, we cannot sample jiffies and expect it to advance.
578 * Fortunately, udelay() uses %stick/%tick so we can use that.
580 local_irq_save(flags
);
582 this_cpu
= smp_processor_id();
583 tb
= &trap_block
[this_cpu
];
585 mondo
= __va(tb
->cpu_mondo_block_pa
);
591 cpu_list
= __va(tb
->cpu_list_pa
);
593 /* Setup the initial cpu list. */
595 for_each_cpu_mask(i
, mask
)
598 cpus_clear(error_mask
);
602 int forward_progress
, n_sent
;
604 status
= sun4v_cpu_mondo_send(cnt
,
606 tb
->cpu_mondo_block_pa
);
608 /* HV_EOK means all cpus received the xcall, we're done. */
609 if (likely(status
== HV_EOK
))
612 /* First, see if we made any forward progress.
614 * The hypervisor indicates successful sends by setting
615 * cpu list entries to the value 0xffff.
618 for (i
= 0; i
< cnt
; i
++) {
619 if (likely(cpu_list
[i
] == 0xffff))
623 forward_progress
= 0;
624 if (n_sent
> prev_sent
)
625 forward_progress
= 1;
629 /* If we get a HV_ECPUERROR, then one or more of the cpus
630 * in the list are in error state. Use the cpu_state()
631 * hypervisor call to find out which cpus are in error state.
633 if (unlikely(status
== HV_ECPUERROR
)) {
634 for (i
= 0; i
< cnt
; i
++) {
642 err
= sun4v_cpu_state(cpu
);
644 err
== HV_CPU_STATE_ERROR
) {
645 cpu_list
[i
] = 0xffff;
646 cpu_set(cpu
, error_mask
);
649 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
650 goto fatal_mondo_error
;
652 /* Don't bother rewriting the CPU list, just leave the
653 * 0xffff and non-0xffff entries in there and the
654 * hypervisor will do the right thing.
656 * Only advance timeout state if we didn't make any
659 if (unlikely(!forward_progress
)) {
660 if (unlikely(++retries
> 10000))
661 goto fatal_mondo_timeout
;
663 /* Delay a little bit to let other cpus catch up
664 * on their cpu mondo queue work.
670 local_irq_restore(flags
);
672 if (unlikely(!cpus_empty(error_mask
)))
673 goto fatal_mondo_cpu_error
;
677 fatal_mondo_cpu_error
:
678 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
679 "were in error state\n",
681 printk(KERN_CRIT
"CPU[%d]: Error mask [ ", this_cpu
);
682 for_each_cpu_mask(i
, error_mask
)
688 local_irq_restore(flags
);
689 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
690 " progress after %d retries.\n",
692 goto dump_cpu_list_and_out
;
695 local_irq_restore(flags
);
696 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
698 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
699 "mondo_block_pa(%lx)\n",
700 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
702 dump_cpu_list_and_out
:
703 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
704 for (i
= 0; i
< cnt
; i
++)
705 printk("%u ", cpu_list
[i
]);
709 /* Send cross call to all processors mentioned in MASK
712 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, cpumask_t mask
)
714 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
715 int this_cpu
= get_cpu();
717 cpus_and(mask
, mask
, cpu_online_map
);
718 cpu_clear(this_cpu
, mask
);
720 if (tlb_type
== spitfire
)
721 spitfire_xcall_deliver(data0
, data1
, data2
, mask
);
722 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
723 cheetah_xcall_deliver(data0
, data1
, data2
, mask
);
725 hypervisor_xcall_deliver(data0
, data1
, data2
, mask
);
726 /* NOTE: Caller runs local copy on master. */
731 extern unsigned long xcall_sync_tick
;
733 static void smp_start_sync_tick_client(int cpu
)
735 cpumask_t mask
= cpumask_of_cpu(cpu
);
737 smp_cross_call_masked(&xcall_sync_tick
,
741 /* Send cross call to all processors except self. */
742 #define smp_cross_call(func, ctx, data1, data2) \
743 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
745 struct call_data_struct
{
746 void (*func
) (void *info
);
752 static DEFINE_SPINLOCK(call_lock
);
753 static struct call_data_struct
*call_data
;
755 extern unsigned long xcall_call_function
;
758 * You must not call this function with disabled interrupts or from a
759 * hardware interrupt handler or from a bottom half handler.
761 static int smp_call_function_mask(void (*func
)(void *info
), void *info
,
762 int nonatomic
, int wait
, cpumask_t mask
)
764 struct call_data_struct data
;
768 /* Can deadlock when called with interrupts disabled */
769 WARN_ON(irqs_disabled());
773 atomic_set(&data
.finished
, 0);
776 spin_lock(&call_lock
);
778 cpu_clear(smp_processor_id(), mask
);
779 cpus
= cpus_weight(mask
);
785 smp_cross_call_masked(&xcall_call_function
, 0, 0, 0, mask
);
788 * Wait for other cpus to complete function or at
789 * least snap the call data.
792 while (atomic_read(&data
.finished
) != cpus
) {
800 spin_unlock(&call_lock
);
805 spin_unlock(&call_lock
);
806 printk("XCALL: Remote cpus not responding, ncpus=%d finished=%d\n",
807 cpus
, atomic_read(&data
.finished
));
811 int smp_call_function(void (*func
)(void *info
), void *info
,
812 int nonatomic
, int wait
)
814 return smp_call_function_mask(func
, info
, nonatomic
, wait
,
818 void smp_call_function_client(int irq
, struct pt_regs
*regs
)
820 void (*func
) (void *info
) = call_data
->func
;
821 void *info
= call_data
->info
;
823 clear_softint(1 << irq
);
824 if (call_data
->wait
) {
825 /* let initiator proceed only after completion */
827 atomic_inc(&call_data
->finished
);
829 /* let initiator proceed after getting data */
830 atomic_inc(&call_data
->finished
);
835 static void tsb_sync(void *info
)
837 struct mm_struct
*mm
= info
;
839 if (current
->active_mm
== mm
)
840 tsb_context_switch(mm
);
843 void smp_tsb_sync(struct mm_struct
*mm
)
845 smp_call_function_mask(tsb_sync
, mm
, 0, 1, mm
->cpu_vm_mask
);
848 extern unsigned long xcall_flush_tlb_mm
;
849 extern unsigned long xcall_flush_tlb_pending
;
850 extern unsigned long xcall_flush_tlb_kernel_range
;
851 extern unsigned long xcall_report_regs
;
852 extern unsigned long xcall_receive_signal
;
853 extern unsigned long xcall_new_mmu_context_version
;
855 #ifdef DCACHE_ALIASING_POSSIBLE
856 extern unsigned long xcall_flush_dcache_page_cheetah
;
858 extern unsigned long xcall_flush_dcache_page_spitfire
;
860 #ifdef CONFIG_DEBUG_DCFLUSH
861 extern atomic_t dcpage_flushes
;
862 extern atomic_t dcpage_flushes_xcall
;
865 static __inline__
void __local_flush_dcache_page(struct page
*page
)
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 __flush_dcache_page(page_address(page
),
869 ((tlb_type
== spitfire
) &&
870 page_mapping(page
) != NULL
));
872 if (page_mapping(page
) != NULL
&&
873 tlb_type
== spitfire
)
874 __flush_icache_page(__pa(page_address(page
)));
878 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
880 cpumask_t mask
= cpumask_of_cpu(cpu
);
883 if (tlb_type
== hypervisor
)
886 #ifdef CONFIG_DEBUG_DCFLUSH
887 atomic_inc(&dcpage_flushes
);
890 this_cpu
= get_cpu();
892 if (cpu
== this_cpu
) {
893 __local_flush_dcache_page(page
);
894 } else if (cpu_online(cpu
)) {
895 void *pg_addr
= page_address(page
);
898 if (tlb_type
== spitfire
) {
900 ((u64
)&xcall_flush_dcache_page_spitfire
);
901 if (page_mapping(page
) != NULL
)
902 data0
|= ((u64
)1 << 32);
903 spitfire_xcall_deliver(data0
,
907 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
910 ((u64
)&xcall_flush_dcache_page_cheetah
);
911 cheetah_xcall_deliver(data0
,
916 #ifdef CONFIG_DEBUG_DCFLUSH
917 atomic_inc(&dcpage_flushes_xcall
);
924 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
926 void *pg_addr
= page_address(page
);
927 cpumask_t mask
= cpu_online_map
;
931 if (tlb_type
== hypervisor
)
934 this_cpu
= get_cpu();
936 cpu_clear(this_cpu
, mask
);
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes
);
941 if (cpus_empty(mask
))
943 if (tlb_type
== spitfire
) {
944 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
945 if (page_mapping(page
) != NULL
)
946 data0
|= ((u64
)1 << 32);
947 spitfire_xcall_deliver(data0
,
951 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
952 #ifdef DCACHE_ALIASING_POSSIBLE
953 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
954 cheetah_xcall_deliver(data0
,
959 #ifdef CONFIG_DEBUG_DCFLUSH
960 atomic_inc(&dcpage_flushes_xcall
);
963 __local_flush_dcache_page(page
);
968 static void __smp_receive_signal_mask(cpumask_t mask
)
970 smp_cross_call_masked(&xcall_receive_signal
, 0, 0, 0, mask
);
973 void smp_receive_signal(int cpu
)
975 cpumask_t mask
= cpumask_of_cpu(cpu
);
978 __smp_receive_signal_mask(mask
);
981 void smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
983 clear_softint(1 << irq
);
986 void smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
988 struct mm_struct
*mm
;
991 clear_softint(1 << irq
);
993 /* See if we need to allocate a new TLB context because
994 * the version of the one we are using is now out of date.
996 mm
= current
->active_mm
;
997 if (unlikely(!mm
|| (mm
== &init_mm
)))
1000 spin_lock_irqsave(&mm
->context
.lock
, flags
);
1002 if (unlikely(!CTX_VALID(mm
->context
)))
1003 get_new_mmu_context(mm
);
1005 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
1007 load_secondary_context(mm
);
1008 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
1012 void smp_new_mmu_context_version(void)
1014 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
1017 void smp_report_regs(void)
1019 smp_cross_call(&xcall_report_regs
, 0, 0, 0);
1022 /* We know that the window frames of the user have been flushed
1023 * to the stack before we get here because all callers of us
1024 * are flush_tlb_*() routines, and these run after flush_cache_*()
1025 * which performs the flushw.
1027 * The SMP TLB coherency scheme we use works as follows:
1029 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1030 * space has (potentially) executed on, this is the heuristic
1031 * we use to avoid doing cross calls.
1033 * Also, for flushing from kswapd and also for clones, we
1034 * use cpu_vm_mask as the list of cpus to make run the TLB.
1036 * 2) TLB context numbers are shared globally across all processors
1037 * in the system, this allows us to play several games to avoid
1040 * One invariant is that when a cpu switches to a process, and
1041 * that processes tsk->active_mm->cpu_vm_mask does not have the
1042 * current cpu's bit set, that tlb context is flushed locally.
1044 * If the address space is non-shared (ie. mm->count == 1) we avoid
1045 * cross calls when we want to flush the currently running process's
1046 * tlb state. This is done by clearing all cpu bits except the current
1047 * processor's in current->active_mm->cpu_vm_mask and performing the
1048 * flush locally only. This will force any subsequent cpus which run
1049 * this task to flush the context from the local tlb if the process
1050 * migrates to another cpu (again).
1052 * 3) For shared address spaces (threads) and swapping we bite the
1053 * bullet for most cases and perform the cross call (but only to
1054 * the cpus listed in cpu_vm_mask).
1056 * The performance gain from "optimizing" away the cross call for threads is
1057 * questionable (in theory the big win for threads is the massive sharing of
1058 * address space state across processors).
1061 /* This currently is only used by the hugetlb arch pre-fault
1062 * hook on UltraSPARC-III+ and later when changing the pagesize
1063 * bits of the context register for an address space.
1065 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1067 u32 ctx
= CTX_HWBITS(mm
->context
);
1068 int cpu
= get_cpu();
1070 if (atomic_read(&mm
->mm_users
) == 1) {
1071 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1072 goto local_flush_and_out
;
1075 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1079 local_flush_and_out
:
1080 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1085 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1087 u32 ctx
= CTX_HWBITS(mm
->context
);
1088 int cpu
= get_cpu();
1090 if (mm
== current
->active_mm
&& atomic_read(&mm
->mm_users
) == 1)
1091 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1093 smp_cross_call_masked(&xcall_flush_tlb_pending
,
1094 ctx
, nr
, (unsigned long) vaddrs
,
1097 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1102 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1105 end
= PAGE_ALIGN(end
);
1107 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1110 __flush_tlb_kernel_range(start
, end
);
1115 /* #define CAPTURE_DEBUG */
1116 extern unsigned long xcall_capture
;
1118 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1119 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1120 static unsigned long penguins_are_doing_time
;
1122 void smp_capture(void)
1124 int result
= atomic_add_ret(1, &smp_capture_depth
);
1127 int ncpus
= num_online_cpus();
1129 #ifdef CAPTURE_DEBUG
1130 printk("CPU[%d]: Sending penguins to jail...",
1131 smp_processor_id());
1133 penguins_are_doing_time
= 1;
1134 membar_storestore_loadstore();
1135 atomic_inc(&smp_capture_registry
);
1136 smp_cross_call(&xcall_capture
, 0, 0, 0);
1137 while (atomic_read(&smp_capture_registry
) != ncpus
)
1139 #ifdef CAPTURE_DEBUG
1145 void smp_release(void)
1147 if (atomic_dec_and_test(&smp_capture_depth
)) {
1148 #ifdef CAPTURE_DEBUG
1149 printk("CPU[%d]: Giving pardon to "
1150 "imprisoned penguins\n",
1151 smp_processor_id());
1153 penguins_are_doing_time
= 0;
1154 membar_storeload_storestore();
1155 atomic_dec(&smp_capture_registry
);
1159 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1160 * can service tlb flush xcalls...
1162 extern void prom_world(int);
1164 void smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1166 clear_softint(1 << irq
);
1170 __asm__
__volatile__("flushw");
1172 atomic_inc(&smp_capture_registry
);
1173 membar_storeload_storestore();
1174 while (penguins_are_doing_time
)
1176 atomic_dec(&smp_capture_registry
);
1182 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1183 #define prof_counter(__cpu) cpu_data(__cpu).counter
1185 void smp_percpu_timer_interrupt(struct pt_regs
*regs
)
1187 unsigned long compare
, tick
, pstate
;
1188 int cpu
= smp_processor_id();
1189 int user
= user_mode(regs
);
1192 * Check for level 14 softint.
1195 unsigned long tick_mask
= tick_ops
->softint_mask
;
1197 if (!(get_softint() & tick_mask
)) {
1198 extern void handler_irq(int, struct pt_regs
*);
1200 handler_irq(14, regs
);
1203 clear_softint(tick_mask
);
1207 profile_tick(CPU_PROFILING
, regs
);
1208 if (!--prof_counter(cpu
)) {
1211 if (cpu
== boot_cpu_id
) {
1212 kstat_this_cpu
.irqs
[0]++;
1213 timer_tick_interrupt(regs
);
1216 update_process_times(user
);
1220 prof_counter(cpu
) = prof_multiplier(cpu
);
1223 /* Guarantee that the following sequences execute
1226 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
1227 "wrpr %0, %1, %%pstate"
1231 compare
= tick_ops
->add_compare(current_tick_offset
);
1232 tick
= tick_ops
->get_tick();
1234 /* Restore PSTATE_IE. */
1235 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
1238 } while (time_after_eq(tick
, compare
));
1241 static void __init
smp_setup_percpu_timer(void)
1243 int cpu
= smp_processor_id();
1244 unsigned long pstate
;
1246 prof_counter(cpu
) = prof_multiplier(cpu
) = 1;
1248 /* Guarantee that the following sequences execute
1251 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
1252 "wrpr %0, %1, %%pstate"
1256 tick_ops
->init_tick(current_tick_offset
);
1258 /* Restore PSTATE_IE. */
1259 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
1264 void __init
smp_tick_init(void)
1266 boot_cpu_id
= hard_smp_processor_id();
1267 current_tick_offset
= timer_tick_offset
;
1269 cpu_set(boot_cpu_id
, cpu_online_map
);
1270 prof_counter(boot_cpu_id
) = prof_multiplier(boot_cpu_id
) = 1;
1273 /* /proc/profile writes can call this, don't __init it please. */
1274 static DEFINE_SPINLOCK(prof_setup_lock
);
1276 int setup_profiling_timer(unsigned int multiplier
)
1278 unsigned long flags
;
1281 if ((!multiplier
) || (timer_tick_offset
/ multiplier
) < 1000)
1284 spin_lock_irqsave(&prof_setup_lock
, flags
);
1285 for (i
= 0; i
< NR_CPUS
; i
++)
1286 prof_multiplier(i
) = multiplier
;
1287 current_tick_offset
= (timer_tick_offset
/ multiplier
);
1288 spin_unlock_irqrestore(&prof_setup_lock
, flags
);
1293 /* Constrain the number of cpus to max_cpus. */
1294 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1298 if (num_possible_cpus() > max_cpus
) {
1302 while (!cpu_find_by_instance(instance
, NULL
, &mid
)) {
1303 if (mid
!= boot_cpu_id
) {
1304 cpu_clear(mid
, phys_cpu_present_map
);
1305 if (num_possible_cpus() <= max_cpus
)
1313 if (tlb_type
== hypervisor
) {
1316 /* XXX get this mapping from machine description */
1318 if ((j
>> 2) == (i
>> 2))
1319 cpu_set(j
, cpu_sibling_map
[i
]);
1322 cpu_set(i
, cpu_sibling_map
[i
]);
1326 smp_store_cpu_info(boot_cpu_id
);
1329 /* Set this up early so that things like the scheduler can init
1330 * properly. We use the same cpu mask for both the present and
1333 void __init
smp_setup_cpu_possible_map(void)
1338 while (!cpu_find_by_instance(instance
, NULL
, &mid
)) {
1340 cpu_set(mid
, phys_cpu_present_map
);
1345 void __devinit
smp_prepare_boot_cpu(void)
1347 int cpu
= hard_smp_processor_id();
1349 if (cpu
>= NR_CPUS
) {
1350 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1354 current_thread_info()->cpu
= cpu
;
1355 __local_per_cpu_offset
= __per_cpu_offset(cpu
);
1357 cpu_set(smp_processor_id(), cpu_online_map
);
1358 cpu_set(smp_processor_id(), phys_cpu_present_map
);
1361 int __devinit
__cpu_up(unsigned int cpu
)
1363 int ret
= smp_boot_one_cpu(cpu
);
1366 cpu_set(cpu
, smp_commenced_mask
);
1367 while (!cpu_isset(cpu
, cpu_online_map
))
1369 if (!cpu_isset(cpu
, cpu_online_map
)) {
1372 /* On SUN4V, writes to %tick and %stick are
1375 if (tlb_type
!= hypervisor
)
1376 smp_synchronize_one_tick(cpu
);
1382 void __init
smp_cpus_done(unsigned int max_cpus
)
1384 unsigned long bogosum
= 0;
1387 for (i
= 0; i
< NR_CPUS
; i
++) {
1389 bogosum
+= cpu_data(i
).udelay_val
;
1391 printk("Total of %ld processors activated "
1392 "(%lu.%02lu BogoMIPS).\n",
1393 (long) num_online_cpus(),
1394 bogosum
/(500000/HZ
),
1395 (bogosum
/(5000/HZ
))%100);
1398 void smp_send_reschedule(int cpu
)
1400 smp_receive_signal(cpu
);
1403 /* This is a nop because we capture all other cpus
1404 * anyways when making the PROM active.
1406 void smp_send_stop(void)
1410 unsigned long __per_cpu_base __read_mostly
;
1411 unsigned long __per_cpu_shift __read_mostly
;
1413 EXPORT_SYMBOL(__per_cpu_base
);
1414 EXPORT_SYMBOL(__per_cpu_shift
);
1416 void __init
setup_per_cpu_areas(void)
1418 unsigned long goal
, size
, i
;
1421 /* Copy section for each CPU (we discard the original) */
1422 goal
= ALIGN(__per_cpu_end
- __per_cpu_start
, SMP_CACHE_BYTES
);
1423 #ifdef CONFIG_MODULES
1424 if (goal
< PERCPU_ENOUGH_ROOM
)
1425 goal
= PERCPU_ENOUGH_ROOM
;
1427 __per_cpu_shift
= 0;
1428 for (size
= 1UL; size
< goal
; size
<<= 1UL)
1431 ptr
= alloc_bootmem(size
* NR_CPUS
);
1433 __per_cpu_base
= ptr
- __per_cpu_start
;
1435 for (i
= 0; i
< NR_CPUS
; i
++, ptr
+= size
)
1436 memcpy(ptr
, __per_cpu_start
, __per_cpu_end
- __per_cpu_start
);