[CONNECTOR]: Use netlink_has_listeners() to avoind unnecessary allocations.
[linux-2.6/verdex.git] / arch / sparc64 / kernel / time.c
blob7d61f1bfd3d33806b2babc5e7065a35542f14c63
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/config.h>
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/init.h>
24 #include <linux/ioport.h>
25 #include <linux/mc146818rtc.h>
26 #include <linux/delay.h>
27 #include <linux/profile.h>
28 #include <linux/bcd.h>
29 #include <linux/jiffies.h>
30 #include <linux/cpufreq.h>
31 #include <linux/percpu.h>
32 #include <linux/profile.h>
33 #include <linux/miscdevice.h>
34 #include <linux/rtc.h>
36 #include <asm/oplib.h>
37 #include <asm/mostek.h>
38 #include <asm/timer.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/sbus.h>
42 #include <asm/fhc.h>
43 #include <asm/pbm.h>
44 #include <asm/ebus.h>
45 #include <asm/isa.h>
46 #include <asm/starfire.h>
47 #include <asm/smp.h>
48 #include <asm/sections.h>
49 #include <asm/cpudata.h>
50 #include <asm/uaccess.h>
52 DEFINE_SPINLOCK(mostek_lock);
53 DEFINE_SPINLOCK(rtc_lock);
54 void __iomem *mstk48t02_regs = NULL;
55 #ifdef CONFIG_PCI
56 unsigned long ds1287_regs = 0UL;
57 #endif
59 extern unsigned long wall_jiffies;
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
64 static int set_rtc_mmss(unsigned long);
66 #define TICK_PRIV_BIT (1UL << 63)
68 #ifdef CONFIG_SMP
69 unsigned long profile_pc(struct pt_regs *regs)
71 unsigned long pc = instruction_pointer(regs);
73 if (in_lock_functions(pc))
74 return regs->u_regs[UREG_RETPC];
75 return pc;
77 EXPORT_SYMBOL(profile_pc);
78 #endif
80 static void tick_disable_protection(void)
82 /* Set things up so user can access tick register for profiling
83 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
84 * read back of %tick after writing it.
86 __asm__ __volatile__(
87 " ba,pt %%xcc, 1f\n"
88 " nop\n"
89 " .align 64\n"
90 "1: rd %%tick, %%g2\n"
91 " add %%g2, 6, %%g2\n"
92 " andn %%g2, %0, %%g2\n"
93 " wrpr %%g2, 0, %%tick\n"
94 " rdpr %%tick, %%g0"
95 : /* no outputs */
96 : "r" (TICK_PRIV_BIT)
97 : "g2");
100 static void tick_init_tick(unsigned long offset)
102 tick_disable_protection();
104 __asm__ __volatile__(
105 " rd %%tick, %%g1\n"
106 " andn %%g1, %1, %%g1\n"
107 " ba,pt %%xcc, 1f\n"
108 " add %%g1, %0, %%g1\n"
109 " .align 64\n"
110 "1: wr %%g1, 0x0, %%tick_cmpr\n"
111 " rd %%tick_cmpr, %%g0"
112 : /* no outputs */
113 : "r" (offset), "r" (TICK_PRIV_BIT)
114 : "g1");
117 static unsigned long tick_get_tick(void)
119 unsigned long ret;
121 __asm__ __volatile__("rd %%tick, %0\n\t"
122 "mov %0, %0"
123 : "=r" (ret));
125 return ret & ~TICK_PRIV_BIT;
128 static unsigned long tick_get_compare(void)
130 unsigned long ret;
132 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
133 "mov %0, %0"
134 : "=r" (ret));
136 return ret;
139 static unsigned long tick_add_compare(unsigned long adj)
141 unsigned long new_compare;
143 /* Workaround for Spitfire Errata (#54 I think??), I discovered
144 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
145 * number 103640.
147 * On Blackbird writes to %tick_cmpr can fail, the
148 * workaround seems to be to execute the wr instruction
149 * at the start of an I-cache line, and perform a dummy
150 * read back from %tick_cmpr right after writing to it. -DaveM
152 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
153 "ba,pt %%xcc, 1f\n\t"
154 " add %0, %1, %0\n\t"
155 ".align 64\n"
156 "1:\n\t"
157 "wr %0, 0, %%tick_cmpr\n\t"
158 "rd %%tick_cmpr, %%g0"
159 : "=&r" (new_compare)
160 : "r" (adj));
162 return new_compare;
165 static unsigned long tick_add_tick(unsigned long adj, unsigned long offset)
167 unsigned long new_tick, tmp;
169 /* Also need to handle Blackbird bug here too. */
170 __asm__ __volatile__("rd %%tick, %0\n\t"
171 "add %0, %2, %0\n\t"
172 "wrpr %0, 0, %%tick\n\t"
173 "andn %0, %4, %1\n\t"
174 "ba,pt %%xcc, 1f\n\t"
175 " add %1, %3, %1\n\t"
176 ".align 64\n"
177 "1:\n\t"
178 "wr %1, 0, %%tick_cmpr\n\t"
179 "rd %%tick_cmpr, %%g0"
180 : "=&r" (new_tick), "=&r" (tmp)
181 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
183 return new_tick;
186 static struct sparc64_tick_ops tick_operations __read_mostly = {
187 .init_tick = tick_init_tick,
188 .get_tick = tick_get_tick,
189 .get_compare = tick_get_compare,
190 .add_tick = tick_add_tick,
191 .add_compare = tick_add_compare,
192 .softint_mask = 1UL << 0,
195 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
197 static void stick_init_tick(unsigned long offset)
199 /* Writes to the %tick and %stick register are not
200 * allowed on sun4v. The Hypervisor controls that
201 * bit, per-strand.
203 if (tlb_type != hypervisor) {
204 tick_disable_protection();
206 /* Let the user get at STICK too. */
207 __asm__ __volatile__(
208 " rd %%asr24, %%g2\n"
209 " andn %%g2, %0, %%g2\n"
210 " wr %%g2, 0, %%asr24"
211 : /* no outputs */
212 : "r" (TICK_PRIV_BIT)
213 : "g1", "g2");
216 __asm__ __volatile__(
217 " rd %%asr24, %%g1\n"
218 " andn %%g1, %1, %%g1\n"
219 " add %%g1, %0, %%g1\n"
220 " wr %%g1, 0x0, %%asr25"
221 : /* no outputs */
222 : "r" (offset), "r" (TICK_PRIV_BIT)
223 : "g1");
226 static unsigned long stick_get_tick(void)
228 unsigned long ret;
230 __asm__ __volatile__("rd %%asr24, %0"
231 : "=r" (ret));
233 return ret & ~TICK_PRIV_BIT;
236 static unsigned long stick_get_compare(void)
238 unsigned long ret;
240 __asm__ __volatile__("rd %%asr25, %0"
241 : "=r" (ret));
243 return ret;
246 static unsigned long stick_add_tick(unsigned long adj, unsigned long offset)
248 unsigned long new_tick, tmp;
250 __asm__ __volatile__("rd %%asr24, %0\n\t"
251 "add %0, %2, %0\n\t"
252 "wr %0, 0, %%asr24\n\t"
253 "andn %0, %4, %1\n\t"
254 "add %1, %3, %1\n\t"
255 "wr %1, 0, %%asr25"
256 : "=&r" (new_tick), "=&r" (tmp)
257 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
259 return new_tick;
262 static unsigned long stick_add_compare(unsigned long adj)
264 unsigned long new_compare;
266 __asm__ __volatile__("rd %%asr25, %0\n\t"
267 "add %0, %1, %0\n\t"
268 "wr %0, 0, %%asr25"
269 : "=&r" (new_compare)
270 : "r" (adj));
272 return new_compare;
275 static struct sparc64_tick_ops stick_operations __read_mostly = {
276 .init_tick = stick_init_tick,
277 .get_tick = stick_get_tick,
278 .get_compare = stick_get_compare,
279 .add_tick = stick_add_tick,
280 .add_compare = stick_add_compare,
281 .softint_mask = 1UL << 16,
284 /* On Hummingbird the STICK/STICK_CMPR register is implemented
285 * in I/O space. There are two 64-bit registers each, the
286 * first holds the low 32-bits of the value and the second holds
287 * the high 32-bits.
289 * Since STICK is constantly updating, we have to access it carefully.
291 * The sequence we use to read is:
292 * 1) read high
293 * 2) read low
294 * 3) read high again, if it rolled re-read both low and high again.
296 * Writing STICK safely is also tricky:
297 * 1) write low to zero
298 * 2) write high
299 * 3) write low
301 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
302 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
304 static unsigned long __hbird_read_stick(void)
306 unsigned long ret, tmp1, tmp2, tmp3;
307 unsigned long addr = HBIRD_STICK_ADDR+8;
309 __asm__ __volatile__("ldxa [%1] %5, %2\n"
310 "1:\n\t"
311 "sub %1, 0x8, %1\n\t"
312 "ldxa [%1] %5, %3\n\t"
313 "add %1, 0x8, %1\n\t"
314 "ldxa [%1] %5, %4\n\t"
315 "cmp %4, %2\n\t"
316 "bne,a,pn %%xcc, 1b\n\t"
317 " mov %4, %2\n\t"
318 "sllx %4, 32, %4\n\t"
319 "or %3, %4, %0\n\t"
320 : "=&r" (ret), "=&r" (addr),
321 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
322 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
324 return ret;
327 static unsigned long __hbird_read_compare(void)
329 unsigned long low, high;
330 unsigned long addr = HBIRD_STICKCMP_ADDR;
332 __asm__ __volatile__("ldxa [%2] %3, %0\n\t"
333 "add %2, 0x8, %2\n\t"
334 "ldxa [%2] %3, %1"
335 : "=&r" (low), "=&r" (high), "=&r" (addr)
336 : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr));
338 return (high << 32UL) | low;
341 static void __hbird_write_stick(unsigned long val)
343 unsigned long low = (val & 0xffffffffUL);
344 unsigned long high = (val >> 32UL);
345 unsigned long addr = HBIRD_STICK_ADDR;
347 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
348 "add %0, 0x8, %0\n\t"
349 "stxa %3, [%0] %4\n\t"
350 "sub %0, 0x8, %0\n\t"
351 "stxa %2, [%0] %4"
352 : "=&r" (addr)
353 : "0" (addr), "r" (low), "r" (high),
354 "i" (ASI_PHYS_BYPASS_EC_E));
357 static void __hbird_write_compare(unsigned long val)
359 unsigned long low = (val & 0xffffffffUL);
360 unsigned long high = (val >> 32UL);
361 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
363 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
364 "sub %0, 0x8, %0\n\t"
365 "stxa %2, [%0] %4"
366 : "=&r" (addr)
367 : "0" (addr), "r" (low), "r" (high),
368 "i" (ASI_PHYS_BYPASS_EC_E));
371 static void hbtick_init_tick(unsigned long offset)
373 unsigned long val;
375 tick_disable_protection();
377 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
378 * XXX into actually sending STICK interrupts. I think because
379 * XXX of how we store %tick_cmpr in head.S this somehow resets the
380 * XXX {TICK + STICK} interrupt mux. -DaveM
382 __hbird_write_stick(__hbird_read_stick());
384 val = __hbird_read_stick() & ~TICK_PRIV_BIT;
385 __hbird_write_compare(val + offset);
388 static unsigned long hbtick_get_tick(void)
390 return __hbird_read_stick() & ~TICK_PRIV_BIT;
393 static unsigned long hbtick_get_compare(void)
395 return __hbird_read_compare();
398 static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset)
400 unsigned long val;
402 val = __hbird_read_stick() + adj;
403 __hbird_write_stick(val);
405 val &= ~TICK_PRIV_BIT;
406 __hbird_write_compare(val + offset);
408 return val;
411 static unsigned long hbtick_add_compare(unsigned long adj)
413 unsigned long val = __hbird_read_compare() + adj;
415 val &= ~TICK_PRIV_BIT;
416 __hbird_write_compare(val);
418 return val;
421 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
422 .init_tick = hbtick_init_tick,
423 .get_tick = hbtick_get_tick,
424 .get_compare = hbtick_get_compare,
425 .add_tick = hbtick_add_tick,
426 .add_compare = hbtick_add_compare,
427 .softint_mask = 1UL << 0,
430 /* timer_interrupt() needs to keep up the real-time clock,
431 * as well as call the "do_timer()" routine every clocktick
433 * NOTE: On SUN5 systems the ticker interrupt comes in using 2
434 * interrupts, one at level14 and one with softint bit 0.
436 unsigned long timer_tick_offset __read_mostly;
438 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
440 #define TICK_SIZE (tick_nsec / 1000)
442 static inline void timer_check_rtc(void)
444 /* last time the cmos clock got updated */
445 static long last_rtc_update;
447 /* Determine when to update the Mostek clock. */
448 if (ntp_synced() &&
449 xtime.tv_sec > last_rtc_update + 660 &&
450 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
451 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
452 if (set_rtc_mmss(xtime.tv_sec) == 0)
453 last_rtc_update = xtime.tv_sec;
454 else
455 last_rtc_update = xtime.tv_sec - 600;
456 /* do it again in 60 s */
460 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
462 unsigned long ticks, compare, pstate;
464 write_seqlock(&xtime_lock);
466 do {
467 #ifndef CONFIG_SMP
468 profile_tick(CPU_PROFILING, regs);
469 update_process_times(user_mode(regs));
470 #endif
471 do_timer(regs);
473 /* Guarantee that the following sequences execute
474 * uninterrupted.
476 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
477 "wrpr %0, %1, %%pstate"
478 : "=r" (pstate)
479 : "i" (PSTATE_IE));
481 compare = tick_ops->add_compare(timer_tick_offset);
482 ticks = tick_ops->get_tick();
484 /* Restore PSTATE_IE. */
485 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
486 : /* no outputs */
487 : "r" (pstate));
488 } while (time_after_eq(ticks, compare));
490 timer_check_rtc();
492 write_sequnlock(&xtime_lock);
494 return IRQ_HANDLED;
497 #ifdef CONFIG_SMP
498 void timer_tick_interrupt(struct pt_regs *regs)
500 write_seqlock(&xtime_lock);
502 do_timer(regs);
504 timer_check_rtc();
506 write_sequnlock(&xtime_lock);
508 #endif
510 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
511 static void __init kick_start_clock(void)
513 void __iomem *regs = mstk48t02_regs;
514 u8 sec, tmp;
515 int i, count;
517 prom_printf("CLOCK: Clock was stopped. Kick start ");
519 spin_lock_irq(&mostek_lock);
521 /* Turn on the kick start bit to start the oscillator. */
522 tmp = mostek_read(regs + MOSTEK_CREG);
523 tmp |= MSTK_CREG_WRITE;
524 mostek_write(regs + MOSTEK_CREG, tmp);
525 tmp = mostek_read(regs + MOSTEK_SEC);
526 tmp &= ~MSTK_STOP;
527 mostek_write(regs + MOSTEK_SEC, tmp);
528 tmp = mostek_read(regs + MOSTEK_HOUR);
529 tmp |= MSTK_KICK_START;
530 mostek_write(regs + MOSTEK_HOUR, tmp);
531 tmp = mostek_read(regs + MOSTEK_CREG);
532 tmp &= ~MSTK_CREG_WRITE;
533 mostek_write(regs + MOSTEK_CREG, tmp);
535 spin_unlock_irq(&mostek_lock);
537 /* Delay to allow the clock oscillator to start. */
538 sec = MSTK_REG_SEC(regs);
539 for (i = 0; i < 3; i++) {
540 while (sec == MSTK_REG_SEC(regs))
541 for (count = 0; count < 100000; count++)
542 /* nothing */ ;
543 prom_printf(".");
544 sec = MSTK_REG_SEC(regs);
546 prom_printf("\n");
548 spin_lock_irq(&mostek_lock);
550 /* Turn off kick start and set a "valid" time and date. */
551 tmp = mostek_read(regs + MOSTEK_CREG);
552 tmp |= MSTK_CREG_WRITE;
553 mostek_write(regs + MOSTEK_CREG, tmp);
554 tmp = mostek_read(regs + MOSTEK_HOUR);
555 tmp &= ~MSTK_KICK_START;
556 mostek_write(regs + MOSTEK_HOUR, tmp);
557 MSTK_SET_REG_SEC(regs,0);
558 MSTK_SET_REG_MIN(regs,0);
559 MSTK_SET_REG_HOUR(regs,0);
560 MSTK_SET_REG_DOW(regs,5);
561 MSTK_SET_REG_DOM(regs,1);
562 MSTK_SET_REG_MONTH(regs,8);
563 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
564 tmp = mostek_read(regs + MOSTEK_CREG);
565 tmp &= ~MSTK_CREG_WRITE;
566 mostek_write(regs + MOSTEK_CREG, tmp);
568 spin_unlock_irq(&mostek_lock);
570 /* Ensure the kick start bit is off. If it isn't, turn it off. */
571 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
572 prom_printf("CLOCK: Kick start still on!\n");
574 spin_lock_irq(&mostek_lock);
576 tmp = mostek_read(regs + MOSTEK_CREG);
577 tmp |= MSTK_CREG_WRITE;
578 mostek_write(regs + MOSTEK_CREG, tmp);
580 tmp = mostek_read(regs + MOSTEK_HOUR);
581 tmp &= ~MSTK_KICK_START;
582 mostek_write(regs + MOSTEK_HOUR, tmp);
584 tmp = mostek_read(regs + MOSTEK_CREG);
585 tmp &= ~MSTK_CREG_WRITE;
586 mostek_write(regs + MOSTEK_CREG, tmp);
588 spin_unlock_irq(&mostek_lock);
591 prom_printf("CLOCK: Kick start procedure successful.\n");
594 /* Return nonzero if the clock chip battery is low. */
595 static int __init has_low_battery(void)
597 void __iomem *regs = mstk48t02_regs;
598 u8 data1, data2;
600 spin_lock_irq(&mostek_lock);
602 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
603 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
604 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
605 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
607 spin_unlock_irq(&mostek_lock);
609 return (data1 == data2); /* Was the write blocked? */
612 /* Probe for the real time clock chip. */
613 static void __init set_system_time(void)
615 unsigned int year, mon, day, hour, min, sec;
616 void __iomem *mregs = mstk48t02_regs;
617 #ifdef CONFIG_PCI
618 unsigned long dregs = ds1287_regs;
619 #else
620 unsigned long dregs = 0UL;
621 #endif
622 u8 tmp;
624 if (!mregs && !dregs) {
625 prom_printf("Something wrong, clock regs not mapped yet.\n");
626 prom_halt();
629 if (mregs) {
630 spin_lock_irq(&mostek_lock);
632 /* Traditional Mostek chip. */
633 tmp = mostek_read(mregs + MOSTEK_CREG);
634 tmp |= MSTK_CREG_READ;
635 mostek_write(mregs + MOSTEK_CREG, tmp);
637 sec = MSTK_REG_SEC(mregs);
638 min = MSTK_REG_MIN(mregs);
639 hour = MSTK_REG_HOUR(mregs);
640 day = MSTK_REG_DOM(mregs);
641 mon = MSTK_REG_MONTH(mregs);
642 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
643 } else {
644 int i;
646 /* Dallas 12887 RTC chip. */
648 /* Stolen from arch/i386/kernel/time.c, see there for
649 * credits and descriptive comments.
651 for (i = 0; i < 1000000; i++) {
652 if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
653 break;
654 udelay(10);
656 for (i = 0; i < 1000000; i++) {
657 if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
658 break;
659 udelay(10);
661 do {
662 sec = CMOS_READ(RTC_SECONDS);
663 min = CMOS_READ(RTC_MINUTES);
664 hour = CMOS_READ(RTC_HOURS);
665 day = CMOS_READ(RTC_DAY_OF_MONTH);
666 mon = CMOS_READ(RTC_MONTH);
667 year = CMOS_READ(RTC_YEAR);
668 } while (sec != CMOS_READ(RTC_SECONDS));
669 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
670 BCD_TO_BIN(sec);
671 BCD_TO_BIN(min);
672 BCD_TO_BIN(hour);
673 BCD_TO_BIN(day);
674 BCD_TO_BIN(mon);
675 BCD_TO_BIN(year);
677 if ((year += 1900) < 1970)
678 year += 100;
681 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
682 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
683 set_normalized_timespec(&wall_to_monotonic,
684 -xtime.tv_sec, -xtime.tv_nsec);
686 if (mregs) {
687 tmp = mostek_read(mregs + MOSTEK_CREG);
688 tmp &= ~MSTK_CREG_READ;
689 mostek_write(mregs + MOSTEK_CREG, tmp);
691 spin_unlock_irq(&mostek_lock);
695 /* davem suggests we keep this within the 4M locked kernel image */
696 static u32 starfire_get_time(void)
698 static char obp_gettod[32];
699 static u32 unix_tod;
701 sprintf(obp_gettod, "h# %08x unix-gettod",
702 (unsigned int) (long) &unix_tod);
703 prom_feval(obp_gettod);
705 return unix_tod;
708 static int starfire_set_time(u32 val)
710 /* Do nothing, time is set using the service processor
711 * console on this platform.
713 return 0;
716 static u32 hypervisor_get_time(void)
718 register unsigned long func asm("%o5");
719 register unsigned long arg0 asm("%o0");
720 register unsigned long arg1 asm("%o1");
721 int retries = 10000;
723 retry:
724 func = HV_FAST_TOD_GET;
725 arg0 = 0;
726 arg1 = 0;
727 __asm__ __volatile__("ta %6"
728 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
729 : "0" (func), "1" (arg0), "2" (arg1),
730 "i" (HV_FAST_TRAP));
731 if (arg0 == HV_EOK)
732 return arg1;
733 if (arg0 == HV_EWOULDBLOCK) {
734 if (--retries > 0) {
735 udelay(100);
736 goto retry;
738 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
739 return 0;
741 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
742 return 0;
745 static int hypervisor_set_time(u32 secs)
747 register unsigned long func asm("%o5");
748 register unsigned long arg0 asm("%o0");
749 int retries = 10000;
751 retry:
752 func = HV_FAST_TOD_SET;
753 arg0 = secs;
754 __asm__ __volatile__("ta %4"
755 : "=&r" (func), "=&r" (arg0)
756 : "0" (func), "1" (arg0),
757 "i" (HV_FAST_TRAP));
758 if (arg0 == HV_EOK)
759 return 0;
760 if (arg0 == HV_EWOULDBLOCK) {
761 if (--retries > 0) {
762 udelay(100);
763 goto retry;
765 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
766 return -EAGAIN;
768 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
769 return -EOPNOTSUPP;
772 void __init clock_probe(void)
774 struct linux_prom_registers clk_reg[2];
775 char model[128];
776 int node, busnd = -1, err;
777 unsigned long flags;
778 struct linux_central *cbus;
779 #ifdef CONFIG_PCI
780 struct linux_ebus *ebus = NULL;
781 struct sparc_isa_bridge *isa_br = NULL;
782 #endif
783 static int invoked;
785 if (invoked)
786 return;
787 invoked = 1;
790 if (this_is_starfire) {
791 xtime.tv_sec = starfire_get_time();
792 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
793 set_normalized_timespec(&wall_to_monotonic,
794 -xtime.tv_sec, -xtime.tv_nsec);
795 return;
797 if (tlb_type == hypervisor) {
798 xtime.tv_sec = hypervisor_get_time();
799 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
800 set_normalized_timespec(&wall_to_monotonic,
801 -xtime.tv_sec, -xtime.tv_nsec);
802 return;
805 local_irq_save(flags);
807 cbus = central_bus;
808 if (cbus != NULL)
809 busnd = central_bus->child->prom_node;
811 /* Check FHC Central then EBUSs then ISA bridges then SBUSs.
812 * That way we handle the presence of multiple properly.
814 * As a special case, machines with Central must provide the
815 * timer chip there.
817 #ifdef CONFIG_PCI
818 if (ebus_chain != NULL) {
819 ebus = ebus_chain;
820 if (busnd == -1)
821 busnd = ebus->prom_node;
823 if (isa_chain != NULL) {
824 isa_br = isa_chain;
825 if (busnd == -1)
826 busnd = isa_br->prom_node;
828 #endif
829 if (sbus_root != NULL && busnd == -1)
830 busnd = sbus_root->prom_node;
832 if (busnd == -1) {
833 prom_printf("clock_probe: problem, cannot find bus to search.\n");
834 prom_halt();
837 node = prom_getchild(busnd);
839 while (1) {
840 if (!node)
841 model[0] = 0;
842 else
843 prom_getstring(node, "model", model, sizeof(model));
844 if (strcmp(model, "mk48t02") &&
845 strcmp(model, "mk48t08") &&
846 strcmp(model, "mk48t59") &&
847 strcmp(model, "m5819") &&
848 strcmp(model, "m5819p") &&
849 strcmp(model, "m5823") &&
850 strcmp(model, "ds1287")) {
851 if (cbus != NULL) {
852 prom_printf("clock_probe: Central bus lacks timer chip.\n");
853 prom_halt();
856 if (node != 0)
857 node = prom_getsibling(node);
858 #ifdef CONFIG_PCI
859 while ((node == 0) && ebus != NULL) {
860 ebus = ebus->next;
861 if (ebus != NULL) {
862 busnd = ebus->prom_node;
863 node = prom_getchild(busnd);
866 while ((node == 0) && isa_br != NULL) {
867 isa_br = isa_br->next;
868 if (isa_br != NULL) {
869 busnd = isa_br->prom_node;
870 node = prom_getchild(busnd);
873 #endif
874 if (node == 0) {
875 prom_printf("clock_probe: Cannot find timer chip\n");
876 prom_halt();
878 continue;
881 err = prom_getproperty(node, "reg", (char *)clk_reg,
882 sizeof(clk_reg));
883 if(err == -1) {
884 prom_printf("clock_probe: Cannot get Mostek reg property\n");
885 prom_halt();
888 if (cbus != NULL) {
889 apply_fhc_ranges(central_bus->child, clk_reg, 1);
890 apply_central_ranges(central_bus, clk_reg, 1);
892 #ifdef CONFIG_PCI
893 else if (ebus != NULL) {
894 struct linux_ebus_device *edev;
896 for_each_ebusdev(edev, ebus)
897 if (edev->prom_node == node)
898 break;
899 if (edev == NULL) {
900 if (isa_chain != NULL)
901 goto try_isa_clock;
902 prom_printf("%s: Mostek not probed by EBUS\n",
903 __FUNCTION__);
904 prom_halt();
907 if (!strcmp(model, "ds1287") ||
908 !strcmp(model, "m5819") ||
909 !strcmp(model, "m5819p") ||
910 !strcmp(model, "m5823")) {
911 ds1287_regs = edev->resource[0].start;
912 } else {
913 mstk48t59_regs = (void __iomem *)
914 edev->resource[0].start;
915 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
917 break;
919 else if (isa_br != NULL) {
920 struct sparc_isa_device *isadev;
922 try_isa_clock:
923 for_each_isadev(isadev, isa_br)
924 if (isadev->prom_node == node)
925 break;
926 if (isadev == NULL) {
927 prom_printf("%s: Mostek not probed by ISA\n");
928 prom_halt();
930 if (!strcmp(model, "ds1287") ||
931 !strcmp(model, "m5819") ||
932 !strcmp(model, "m5819p") ||
933 !strcmp(model, "m5823")) {
934 ds1287_regs = isadev->resource.start;
935 } else {
936 mstk48t59_regs = (void __iomem *)
937 isadev->resource.start;
938 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
940 break;
942 #endif
943 else {
944 if (sbus_root->num_sbus_ranges) {
945 int nranges = sbus_root->num_sbus_ranges;
946 int rngc;
948 for (rngc = 0; rngc < nranges; rngc++)
949 if (clk_reg[0].which_io ==
950 sbus_root->sbus_ranges[rngc].ot_child_space)
951 break;
952 if (rngc == nranges) {
953 prom_printf("clock_probe: Cannot find ranges for "
954 "clock regs.\n");
955 prom_halt();
957 clk_reg[0].which_io =
958 sbus_root->sbus_ranges[rngc].ot_parent_space;
959 clk_reg[0].phys_addr +=
960 sbus_root->sbus_ranges[rngc].ot_parent_base;
964 if(model[5] == '0' && model[6] == '2') {
965 mstk48t02_regs = (void __iomem *)
966 (((u64)clk_reg[0].phys_addr) |
967 (((u64)clk_reg[0].which_io)<<32UL));
968 } else if(model[5] == '0' && model[6] == '8') {
969 mstk48t08_regs = (void __iomem *)
970 (((u64)clk_reg[0].phys_addr) |
971 (((u64)clk_reg[0].which_io)<<32UL));
972 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
973 } else {
974 mstk48t59_regs = (void __iomem *)
975 (((u64)clk_reg[0].phys_addr) |
976 (((u64)clk_reg[0].which_io)<<32UL));
977 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
979 break;
982 if (mstk48t02_regs != NULL) {
983 /* Report a low battery voltage condition. */
984 if (has_low_battery())
985 prom_printf("NVRAM: Low battery voltage!\n");
987 /* Kick start the clock if it is completely stopped. */
988 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
989 kick_start_clock();
992 set_system_time();
994 local_irq_restore(flags);
997 /* This is gets the master TICK_INT timer going. */
998 static unsigned long sparc64_init_timers(void)
1000 unsigned long clock;
1001 int node;
1002 #ifdef CONFIG_SMP
1003 extern void smp_tick_init(void);
1004 #endif
1006 if (tlb_type == spitfire) {
1007 unsigned long ver, manuf, impl;
1009 __asm__ __volatile__ ("rdpr %%ver, %0"
1010 : "=&r" (ver));
1011 manuf = ((ver >> 48) & 0xffff);
1012 impl = ((ver >> 32) & 0xffff);
1013 if (manuf == 0x17 && impl == 0x13) {
1014 /* Hummingbird, aka Ultra-IIe */
1015 tick_ops = &hbtick_operations;
1016 node = prom_root_node;
1017 clock = prom_getint(node, "stick-frequency");
1018 } else {
1019 tick_ops = &tick_operations;
1020 cpu_find_by_instance(0, &node, NULL);
1021 clock = prom_getint(node, "clock-frequency");
1023 } else {
1024 tick_ops = &stick_operations;
1025 node = prom_root_node;
1026 clock = prom_getint(node, "stick-frequency");
1028 timer_tick_offset = clock / HZ;
1030 #ifdef CONFIG_SMP
1031 smp_tick_init();
1032 #endif
1034 return clock;
1037 static void sparc64_start_timers(irqreturn_t (*cfunc)(int, void *, struct pt_regs *))
1039 unsigned long pstate;
1040 int err;
1042 /* Register IRQ handler. */
1043 err = request_irq(build_irq(0, 0, 0UL, 0UL), cfunc, 0,
1044 "timer", NULL);
1046 if (err) {
1047 prom_printf("Serious problem, cannot register TICK_INT\n");
1048 prom_halt();
1051 /* Guarantee that the following sequences execute
1052 * uninterrupted.
1054 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1055 "wrpr %0, %1, %%pstate"
1056 : "=r" (pstate)
1057 : "i" (PSTATE_IE));
1059 tick_ops->init_tick(timer_tick_offset);
1061 /* Restore PSTATE_IE. */
1062 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1063 : /* no outputs */
1064 : "r" (pstate));
1066 local_irq_enable();
1069 struct freq_table {
1070 unsigned long clock_tick_ref;
1071 unsigned int ref_freq;
1073 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
1075 unsigned long sparc64_get_clock_tick(unsigned int cpu)
1077 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
1079 if (ft->clock_tick_ref)
1080 return ft->clock_tick_ref;
1081 return cpu_data(cpu).clock_tick;
1084 #ifdef CONFIG_CPU_FREQ
1086 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1087 void *data)
1089 struct cpufreq_freqs *freq = data;
1090 unsigned int cpu = freq->cpu;
1091 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
1093 if (!ft->ref_freq) {
1094 ft->ref_freq = freq->old;
1095 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
1097 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1098 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
1099 (val == CPUFREQ_RESUMECHANGE)) {
1100 cpu_data(cpu).clock_tick =
1101 cpufreq_scale(ft->clock_tick_ref,
1102 ft->ref_freq,
1103 freq->new);
1106 return 0;
1109 static struct notifier_block sparc64_cpufreq_notifier_block = {
1110 .notifier_call = sparc64_cpufreq_notifier
1113 #endif /* CONFIG_CPU_FREQ */
1115 static struct time_interpolator sparc64_cpu_interpolator = {
1116 .source = TIME_SOURCE_CPU,
1117 .shift = 16,
1118 .mask = 0xffffffffffffffffLL
1121 /* The quotient formula is taken from the IA64 port. */
1122 #define SPARC64_NSEC_PER_CYC_SHIFT 30UL
1123 void __init time_init(void)
1125 unsigned long clock = sparc64_init_timers();
1127 sparc64_cpu_interpolator.frequency = clock;
1128 register_time_interpolator(&sparc64_cpu_interpolator);
1130 /* Now that the interpolator is registered, it is
1131 * safe to start the timer ticking.
1133 sparc64_start_timers(timer_interrupt);
1135 timer_ticks_per_nsec_quotient =
1136 (((NSEC_PER_SEC << SPARC64_NSEC_PER_CYC_SHIFT) +
1137 (clock / 2)) / clock);
1139 #ifdef CONFIG_CPU_FREQ
1140 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1141 CPUFREQ_TRANSITION_NOTIFIER);
1142 #endif
1145 unsigned long long sched_clock(void)
1147 unsigned long ticks = tick_ops->get_tick();
1149 return (ticks * timer_ticks_per_nsec_quotient)
1150 >> SPARC64_NSEC_PER_CYC_SHIFT;
1153 static int set_rtc_mmss(unsigned long nowtime)
1155 int real_seconds, real_minutes, chip_minutes;
1156 void __iomem *mregs = mstk48t02_regs;
1157 #ifdef CONFIG_PCI
1158 unsigned long dregs = ds1287_regs;
1159 #else
1160 unsigned long dregs = 0UL;
1161 #endif
1162 unsigned long flags;
1163 u8 tmp;
1166 * Not having a register set can lead to trouble.
1167 * Also starfire doesn't have a tod clock.
1169 if (!mregs && !dregs)
1170 return -1;
1172 if (mregs) {
1173 spin_lock_irqsave(&mostek_lock, flags);
1175 /* Read the current RTC minutes. */
1176 tmp = mostek_read(mregs + MOSTEK_CREG);
1177 tmp |= MSTK_CREG_READ;
1178 mostek_write(mregs + MOSTEK_CREG, tmp);
1180 chip_minutes = MSTK_REG_MIN(mregs);
1182 tmp = mostek_read(mregs + MOSTEK_CREG);
1183 tmp &= ~MSTK_CREG_READ;
1184 mostek_write(mregs + MOSTEK_CREG, tmp);
1187 * since we're only adjusting minutes and seconds,
1188 * don't interfere with hour overflow. This avoids
1189 * messing with unknown time zones but requires your
1190 * RTC not to be off by more than 15 minutes
1192 real_seconds = nowtime % 60;
1193 real_minutes = nowtime / 60;
1194 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1195 real_minutes += 30; /* correct for half hour time zone */
1196 real_minutes %= 60;
1198 if (abs(real_minutes - chip_minutes) < 30) {
1199 tmp = mostek_read(mregs + MOSTEK_CREG);
1200 tmp |= MSTK_CREG_WRITE;
1201 mostek_write(mregs + MOSTEK_CREG, tmp);
1203 MSTK_SET_REG_SEC(mregs,real_seconds);
1204 MSTK_SET_REG_MIN(mregs,real_minutes);
1206 tmp = mostek_read(mregs + MOSTEK_CREG);
1207 tmp &= ~MSTK_CREG_WRITE;
1208 mostek_write(mregs + MOSTEK_CREG, tmp);
1210 spin_unlock_irqrestore(&mostek_lock, flags);
1212 return 0;
1213 } else {
1214 spin_unlock_irqrestore(&mostek_lock, flags);
1216 return -1;
1218 } else {
1219 int retval = 0;
1220 unsigned char save_control, save_freq_select;
1222 /* Stolen from arch/i386/kernel/time.c, see there for
1223 * credits and descriptive comments.
1225 spin_lock_irqsave(&rtc_lock, flags);
1226 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1227 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1229 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1230 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1232 chip_minutes = CMOS_READ(RTC_MINUTES);
1233 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1234 BCD_TO_BIN(chip_minutes);
1235 real_seconds = nowtime % 60;
1236 real_minutes = nowtime / 60;
1237 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1238 real_minutes += 30;
1239 real_minutes %= 60;
1241 if (abs(real_minutes - chip_minutes) < 30) {
1242 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1243 BIN_TO_BCD(real_seconds);
1244 BIN_TO_BCD(real_minutes);
1246 CMOS_WRITE(real_seconds,RTC_SECONDS);
1247 CMOS_WRITE(real_minutes,RTC_MINUTES);
1248 } else {
1249 printk(KERN_WARNING
1250 "set_rtc_mmss: can't update from %d to %d\n",
1251 chip_minutes, real_minutes);
1252 retval = -1;
1255 CMOS_WRITE(save_control, RTC_CONTROL);
1256 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1257 spin_unlock_irqrestore(&rtc_lock, flags);
1259 return retval;
1263 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1264 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1266 /* months start at 0 now */
1267 static unsigned char days_in_mo[] =
1268 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
1270 #define FEBRUARY 2
1271 #define STARTOFTIME 1970
1272 #define SECDAY 86400L
1273 #define SECYR (SECDAY * 365)
1274 #define leapyear(year) ((year) % 4 == 0 && \
1275 ((year) % 100 != 0 || (year) % 400 == 0))
1276 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1277 #define days_in_month(a) (month_days[(a) - 1])
1279 static int month_days[12] = {
1280 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1284 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1286 static void GregorianDay(struct rtc_time * tm)
1288 int leapsToDate;
1289 int lastYear;
1290 int day;
1291 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1293 lastYear = tm->tm_year - 1;
1296 * Number of leap corrections to apply up to end of last year
1298 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1301 * This year is a leap year if it is divisible by 4 except when it is
1302 * divisible by 100 unless it is divisible by 400
1304 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1306 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1308 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1309 tm->tm_mday;
1311 tm->tm_wday = day % 7;
1314 static void to_tm(int tim, struct rtc_time *tm)
1316 register int i;
1317 register long hms, day;
1319 day = tim / SECDAY;
1320 hms = tim % SECDAY;
1322 /* Hours, minutes, seconds are easy */
1323 tm->tm_hour = hms / 3600;
1324 tm->tm_min = (hms % 3600) / 60;
1325 tm->tm_sec = (hms % 3600) % 60;
1327 /* Number of years in days */
1328 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1329 day -= days_in_year(i);
1330 tm->tm_year = i;
1332 /* Number of months in days left */
1333 if (leapyear(tm->tm_year))
1334 days_in_month(FEBRUARY) = 29;
1335 for (i = 1; day >= days_in_month(i); i++)
1336 day -= days_in_month(i);
1337 days_in_month(FEBRUARY) = 28;
1338 tm->tm_mon = i;
1340 /* Days are what is left over (+1) from all that. */
1341 tm->tm_mday = day + 1;
1344 * Determine the day of week
1346 GregorianDay(tm);
1349 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1350 * aka Unix time. So we have to convert to/from rtc_time.
1352 static inline void mini_get_rtc_time(struct rtc_time *time)
1354 unsigned long flags;
1355 u32 seconds;
1357 spin_lock_irqsave(&rtc_lock, flags);
1358 seconds = 0;
1359 if (this_is_starfire)
1360 seconds = starfire_get_time();
1361 else if (tlb_type == hypervisor)
1362 seconds = hypervisor_get_time();
1363 spin_unlock_irqrestore(&rtc_lock, flags);
1365 to_tm(seconds, time);
1366 time->tm_year -= 1900;
1367 time->tm_mon -= 1;
1370 static inline int mini_set_rtc_time(struct rtc_time *time)
1372 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1373 time->tm_mday, time->tm_hour,
1374 time->tm_min, time->tm_sec);
1375 unsigned long flags;
1376 int err;
1378 spin_lock_irqsave(&rtc_lock, flags);
1379 err = -ENODEV;
1380 if (this_is_starfire)
1381 err = starfire_set_time(seconds);
1382 else if (tlb_type == hypervisor)
1383 err = hypervisor_set_time(seconds);
1384 spin_unlock_irqrestore(&rtc_lock, flags);
1386 return err;
1389 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1390 unsigned int cmd, unsigned long arg)
1392 struct rtc_time wtime;
1393 void __user *argp = (void __user *)arg;
1395 switch (cmd) {
1397 case RTC_PLL_GET:
1398 return -EINVAL;
1400 case RTC_PLL_SET:
1401 return -EINVAL;
1403 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1404 return 0;
1406 case RTC_UIE_ON: /* enable ints for RTC updates. */
1407 return -EINVAL;
1409 case RTC_RD_TIME: /* Read the time/date from RTC */
1410 /* this doesn't get week-day, who cares */
1411 memset(&wtime, 0, sizeof(wtime));
1412 mini_get_rtc_time(&wtime);
1414 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1416 case RTC_SET_TIME: /* Set the RTC */
1418 int year;
1419 unsigned char leap_yr;
1421 if (!capable(CAP_SYS_TIME))
1422 return -EACCES;
1424 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1425 return -EFAULT;
1427 year = wtime.tm_year + 1900;
1428 leap_yr = ((!(year % 4) && (year % 100)) ||
1429 !(year % 400));
1431 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1))
1432 return -EINVAL;
1434 if (wtime.tm_mday < 0 || wtime.tm_mday >
1435 (days_in_mo[wtime.tm_mon] + ((wtime.tm_mon == 1) && leap_yr)))
1436 return -EINVAL;
1438 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1439 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1440 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1441 return -EINVAL;
1443 return mini_set_rtc_time(&wtime);
1447 return -EINVAL;
1450 static int mini_rtc_open(struct inode *inode, struct file *file)
1452 if (mini_rtc_status & RTC_IS_OPEN)
1453 return -EBUSY;
1455 mini_rtc_status |= RTC_IS_OPEN;
1457 return 0;
1460 static int mini_rtc_release(struct inode *inode, struct file *file)
1462 mini_rtc_status &= ~RTC_IS_OPEN;
1463 return 0;
1467 static struct file_operations mini_rtc_fops = {
1468 .owner = THIS_MODULE,
1469 .ioctl = mini_rtc_ioctl,
1470 .open = mini_rtc_open,
1471 .release = mini_rtc_release,
1474 static struct miscdevice rtc_mini_dev =
1476 .minor = RTC_MINOR,
1477 .name = "rtc",
1478 .fops = &mini_rtc_fops,
1481 static int __init rtc_mini_init(void)
1483 int retval;
1485 if (tlb_type != hypervisor && !this_is_starfire)
1486 return -ENODEV;
1488 printk(KERN_INFO "Mini RTC Driver\n");
1490 retval = misc_register(&rtc_mini_dev);
1491 if (retval < 0)
1492 return retval;
1494 return 0;
1497 static void __exit rtc_mini_exit(void)
1499 misc_deregister(&rtc_mini_dev);
1503 module_init(rtc_mini_init);
1504 module_exit(rtc_mini_exit);