[PATCH] libata: fix ata_std_probe_reset() SATA detection
[linux-2.6/verdex.git] / drivers / scsi / libata-core.c
blobd4fb0f754c916d0e1bf52c018d3c21338171b2ab
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 MODULE_AUTHOR("Jeff Garzik");
82 MODULE_DESCRIPTION("Library module for ATA devices");
83 MODULE_LICENSE("GPL");
84 MODULE_VERSION(DRV_VERSION);
86 /**
87 * ata_tf_load_pio - send taskfile registers to host controller
88 * @ap: Port to which output is sent
89 * @tf: ATA taskfile register set
91 * Outputs ATA taskfile to standard ATA host controller.
93 * LOCKING:
94 * Inherited from caller.
97 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
99 struct ata_ioports *ioaddr = &ap->ioaddr;
100 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
102 if (tf->ctl != ap->last_ctl) {
103 outb(tf->ctl, ioaddr->ctl_addr);
104 ap->last_ctl = tf->ctl;
105 ata_wait_idle(ap);
108 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
109 outb(tf->hob_feature, ioaddr->feature_addr);
110 outb(tf->hob_nsect, ioaddr->nsect_addr);
111 outb(tf->hob_lbal, ioaddr->lbal_addr);
112 outb(tf->hob_lbam, ioaddr->lbam_addr);
113 outb(tf->hob_lbah, ioaddr->lbah_addr);
114 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
115 tf->hob_feature,
116 tf->hob_nsect,
117 tf->hob_lbal,
118 tf->hob_lbam,
119 tf->hob_lbah);
122 if (is_addr) {
123 outb(tf->feature, ioaddr->feature_addr);
124 outb(tf->nsect, ioaddr->nsect_addr);
125 outb(tf->lbal, ioaddr->lbal_addr);
126 outb(tf->lbam, ioaddr->lbam_addr);
127 outb(tf->lbah, ioaddr->lbah_addr);
128 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
129 tf->feature,
130 tf->nsect,
131 tf->lbal,
132 tf->lbam,
133 tf->lbah);
136 if (tf->flags & ATA_TFLAG_DEVICE) {
137 outb(tf->device, ioaddr->device_addr);
138 VPRINTK("device 0x%X\n", tf->device);
141 ata_wait_idle(ap);
145 * ata_tf_load_mmio - send taskfile registers to host controller
146 * @ap: Port to which output is sent
147 * @tf: ATA taskfile register set
149 * Outputs ATA taskfile to standard ATA host controller using MMIO.
151 * LOCKING:
152 * Inherited from caller.
155 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
157 struct ata_ioports *ioaddr = &ap->ioaddr;
158 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
160 if (tf->ctl != ap->last_ctl) {
161 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
162 ap->last_ctl = tf->ctl;
163 ata_wait_idle(ap);
166 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
167 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
168 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
169 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
170 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
171 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
172 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
173 tf->hob_feature,
174 tf->hob_nsect,
175 tf->hob_lbal,
176 tf->hob_lbam,
177 tf->hob_lbah);
180 if (is_addr) {
181 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
182 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
183 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
184 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
185 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
186 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
187 tf->feature,
188 tf->nsect,
189 tf->lbal,
190 tf->lbam,
191 tf->lbah);
194 if (tf->flags & ATA_TFLAG_DEVICE) {
195 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
196 VPRINTK("device 0x%X\n", tf->device);
199 ata_wait_idle(ap);
204 * ata_tf_load - send taskfile registers to host controller
205 * @ap: Port to which output is sent
206 * @tf: ATA taskfile register set
208 * Outputs ATA taskfile to standard ATA host controller using MMIO
209 * or PIO as indicated by the ATA_FLAG_MMIO flag.
210 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
211 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
212 * hob_lbal, hob_lbam, and hob_lbah.
214 * This function waits for idle (!BUSY and !DRQ) after writing
215 * registers. If the control register has a new value, this
216 * function also waits for idle after writing control and before
217 * writing the remaining registers.
219 * May be used as the tf_load() entry in ata_port_operations.
221 * LOCKING:
222 * Inherited from caller.
224 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
226 if (ap->flags & ATA_FLAG_MMIO)
227 ata_tf_load_mmio(ap, tf);
228 else
229 ata_tf_load_pio(ap, tf);
233 * ata_exec_command_pio - issue ATA command to host controller
234 * @ap: port to which command is being issued
235 * @tf: ATA taskfile register set
237 * Issues PIO write to ATA command register, with proper
238 * synchronization with interrupt handler / other threads.
240 * LOCKING:
241 * spin_lock_irqsave(host_set lock)
244 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
246 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
248 outb(tf->command, ap->ioaddr.command_addr);
249 ata_pause(ap);
254 * ata_exec_command_mmio - issue ATA command to host controller
255 * @ap: port to which command is being issued
256 * @tf: ATA taskfile register set
258 * Issues MMIO write to ATA command register, with proper
259 * synchronization with interrupt handler / other threads.
261 * LOCKING:
262 * spin_lock_irqsave(host_set lock)
265 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
267 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
269 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
270 ata_pause(ap);
275 * ata_exec_command - issue ATA command to host controller
276 * @ap: port to which command is being issued
277 * @tf: ATA taskfile register set
279 * Issues PIO/MMIO write to ATA command register, with proper
280 * synchronization with interrupt handler / other threads.
282 * LOCKING:
283 * spin_lock_irqsave(host_set lock)
285 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
287 if (ap->flags & ATA_FLAG_MMIO)
288 ata_exec_command_mmio(ap, tf);
289 else
290 ata_exec_command_pio(ap, tf);
294 * ata_tf_to_host - issue ATA taskfile to host controller
295 * @ap: port to which command is being issued
296 * @tf: ATA taskfile register set
298 * Issues ATA taskfile register set to ATA host controller,
299 * with proper synchronization with interrupt handler and
300 * other threads.
302 * LOCKING:
303 * spin_lock_irqsave(host_set lock)
306 static inline void ata_tf_to_host(struct ata_port *ap,
307 const struct ata_taskfile *tf)
309 ap->ops->tf_load(ap, tf);
310 ap->ops->exec_command(ap, tf);
314 * ata_tf_read_pio - input device's ATA taskfile shadow registers
315 * @ap: Port from which input is read
316 * @tf: ATA taskfile register set for storing input
318 * Reads ATA taskfile registers for currently-selected device
319 * into @tf.
321 * LOCKING:
322 * Inherited from caller.
325 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
327 struct ata_ioports *ioaddr = &ap->ioaddr;
329 tf->command = ata_check_status(ap);
330 tf->feature = inb(ioaddr->error_addr);
331 tf->nsect = inb(ioaddr->nsect_addr);
332 tf->lbal = inb(ioaddr->lbal_addr);
333 tf->lbam = inb(ioaddr->lbam_addr);
334 tf->lbah = inb(ioaddr->lbah_addr);
335 tf->device = inb(ioaddr->device_addr);
337 if (tf->flags & ATA_TFLAG_LBA48) {
338 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
339 tf->hob_feature = inb(ioaddr->error_addr);
340 tf->hob_nsect = inb(ioaddr->nsect_addr);
341 tf->hob_lbal = inb(ioaddr->lbal_addr);
342 tf->hob_lbam = inb(ioaddr->lbam_addr);
343 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
349 * @ap: Port from which input is read
350 * @tf: ATA taskfile register set for storing input
352 * Reads ATA taskfile registers for currently-selected device
353 * into @tf via MMIO.
355 * LOCKING:
356 * Inherited from caller.
359 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
361 struct ata_ioports *ioaddr = &ap->ioaddr;
363 tf->command = ata_check_status(ap);
364 tf->feature = readb((void __iomem *)ioaddr->error_addr);
365 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
366 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
367 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
368 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
369 tf->device = readb((void __iomem *)ioaddr->device_addr);
371 if (tf->flags & ATA_TFLAG_LBA48) {
372 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
373 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
374 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
375 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
376 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
377 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
383 * ata_tf_read - input device's ATA taskfile shadow registers
384 * @ap: Port from which input is read
385 * @tf: ATA taskfile register set for storing input
387 * Reads ATA taskfile registers for currently-selected device
388 * into @tf.
390 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
391 * is set, also reads the hob registers.
393 * May be used as the tf_read() entry in ata_port_operations.
395 * LOCKING:
396 * Inherited from caller.
398 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
400 if (ap->flags & ATA_FLAG_MMIO)
401 ata_tf_read_mmio(ap, tf);
402 else
403 ata_tf_read_pio(ap, tf);
407 * ata_check_status_pio - Read device status reg & clear interrupt
408 * @ap: port where the device is
410 * Reads ATA taskfile status register for currently-selected device
411 * and return its value. This also clears pending interrupts
412 * from this device
414 * LOCKING:
415 * Inherited from caller.
417 static u8 ata_check_status_pio(struct ata_port *ap)
419 return inb(ap->ioaddr.status_addr);
423 * ata_check_status_mmio - Read device status reg & clear interrupt
424 * @ap: port where the device is
426 * Reads ATA taskfile status register for currently-selected device
427 * via MMIO and return its value. This also clears pending interrupts
428 * from this device
430 * LOCKING:
431 * Inherited from caller.
433 static u8 ata_check_status_mmio(struct ata_port *ap)
435 return readb((void __iomem *) ap->ioaddr.status_addr);
440 * ata_check_status - Read device status reg & clear interrupt
441 * @ap: port where the device is
443 * Reads ATA taskfile status register for currently-selected device
444 * and return its value. This also clears pending interrupts
445 * from this device
447 * May be used as the check_status() entry in ata_port_operations.
449 * LOCKING:
450 * Inherited from caller.
452 u8 ata_check_status(struct ata_port *ap)
454 if (ap->flags & ATA_FLAG_MMIO)
455 return ata_check_status_mmio(ap);
456 return ata_check_status_pio(ap);
461 * ata_altstatus - Read device alternate status reg
462 * @ap: port where the device is
464 * Reads ATA taskfile alternate status register for
465 * currently-selected device and return its value.
467 * Note: may NOT be used as the check_altstatus() entry in
468 * ata_port_operations.
470 * LOCKING:
471 * Inherited from caller.
473 u8 ata_altstatus(struct ata_port *ap)
475 if (ap->ops->check_altstatus)
476 return ap->ops->check_altstatus(ap);
478 if (ap->flags & ATA_FLAG_MMIO)
479 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
480 return inb(ap->ioaddr.altstatus_addr);
485 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
486 * @tf: Taskfile to convert
487 * @fis: Buffer into which data will output
488 * @pmp: Port multiplier port
490 * Converts a standard ATA taskfile to a Serial ATA
491 * FIS structure (Register - Host to Device).
493 * LOCKING:
494 * Inherited from caller.
497 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
499 fis[0] = 0x27; /* Register - Host to Device FIS */
500 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
501 bit 7 indicates Command FIS */
502 fis[2] = tf->command;
503 fis[3] = tf->feature;
505 fis[4] = tf->lbal;
506 fis[5] = tf->lbam;
507 fis[6] = tf->lbah;
508 fis[7] = tf->device;
510 fis[8] = tf->hob_lbal;
511 fis[9] = tf->hob_lbam;
512 fis[10] = tf->hob_lbah;
513 fis[11] = tf->hob_feature;
515 fis[12] = tf->nsect;
516 fis[13] = tf->hob_nsect;
517 fis[14] = 0;
518 fis[15] = tf->ctl;
520 fis[16] = 0;
521 fis[17] = 0;
522 fis[18] = 0;
523 fis[19] = 0;
527 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
528 * @fis: Buffer from which data will be input
529 * @tf: Taskfile to output
531 * Converts a serial ATA FIS structure to a standard ATA taskfile.
533 * LOCKING:
534 * Inherited from caller.
537 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
539 tf->command = fis[2]; /* status */
540 tf->feature = fis[3]; /* error */
542 tf->lbal = fis[4];
543 tf->lbam = fis[5];
544 tf->lbah = fis[6];
545 tf->device = fis[7];
547 tf->hob_lbal = fis[8];
548 tf->hob_lbam = fis[9];
549 tf->hob_lbah = fis[10];
551 tf->nsect = fis[12];
552 tf->hob_nsect = fis[13];
555 static const u8 ata_rw_cmds[] = {
556 /* pio multi */
557 ATA_CMD_READ_MULTI,
558 ATA_CMD_WRITE_MULTI,
559 ATA_CMD_READ_MULTI_EXT,
560 ATA_CMD_WRITE_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_FUA_EXT,
565 /* pio */
566 ATA_CMD_PIO_READ,
567 ATA_CMD_PIO_WRITE,
568 ATA_CMD_PIO_READ_EXT,
569 ATA_CMD_PIO_WRITE_EXT,
574 /* dma */
575 ATA_CMD_READ,
576 ATA_CMD_WRITE,
577 ATA_CMD_READ_EXT,
578 ATA_CMD_WRITE_EXT,
582 ATA_CMD_WRITE_FUA_EXT
586 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
587 * @qc: command to examine and configure
589 * Examine the device configuration and tf->flags to calculate
590 * the proper read/write commands and protocol to use.
592 * LOCKING:
593 * caller.
595 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
597 struct ata_taskfile *tf = &qc->tf;
598 struct ata_device *dev = qc->dev;
599 u8 cmd;
601 int index, fua, lba48, write;
603 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
604 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
605 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
607 if (dev->flags & ATA_DFLAG_PIO) {
608 tf->protocol = ATA_PROT_PIO;
609 index = dev->multi_count ? 0 : 8;
610 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
611 /* Unable to use DMA due to host limitation */
612 tf->protocol = ATA_PROT_PIO;
613 index = dev->multi_count ? 0 : 4;
614 } else {
615 tf->protocol = ATA_PROT_DMA;
616 index = 16;
619 cmd = ata_rw_cmds[index + fua + lba48 + write];
620 if (cmd) {
621 tf->command = cmd;
622 return 0;
624 return -1;
627 static const char * const xfer_mode_str[] = {
628 "UDMA/16",
629 "UDMA/25",
630 "UDMA/33",
631 "UDMA/44",
632 "UDMA/66",
633 "UDMA/100",
634 "UDMA/133",
635 "UDMA7",
636 "MWDMA0",
637 "MWDMA1",
638 "MWDMA2",
639 "PIO0",
640 "PIO1",
641 "PIO2",
642 "PIO3",
643 "PIO4",
647 * ata_udma_string - convert UDMA bit offset to string
648 * @mask: mask of bits supported; only highest bit counts.
650 * Determine string which represents the highest speed
651 * (highest bit in @udma_mask).
653 * LOCKING:
654 * None.
656 * RETURNS:
657 * Constant C string representing highest speed listed in
658 * @udma_mask, or the constant C string "<n/a>".
661 static const char *ata_mode_string(unsigned int mask)
663 int i;
665 for (i = 7; i >= 0; i--)
666 if (mask & (1 << i))
667 goto out;
668 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
669 if (mask & (1 << i))
670 goto out;
671 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
672 if (mask & (1 << i))
673 goto out;
675 return "<n/a>";
677 out:
678 return xfer_mode_str[i];
682 * ata_pio_devchk - PATA device presence detection
683 * @ap: ATA channel to examine
684 * @device: Device to examine (starting at zero)
686 * This technique was originally described in
687 * Hale Landis's ATADRVR (www.ata-atapi.com), and
688 * later found its way into the ATA/ATAPI spec.
690 * Write a pattern to the ATA shadow registers,
691 * and if a device is present, it will respond by
692 * correctly storing and echoing back the
693 * ATA shadow register contents.
695 * LOCKING:
696 * caller.
699 static unsigned int ata_pio_devchk(struct ata_port *ap,
700 unsigned int device)
702 struct ata_ioports *ioaddr = &ap->ioaddr;
703 u8 nsect, lbal;
705 ap->ops->dev_select(ap, device);
707 outb(0x55, ioaddr->nsect_addr);
708 outb(0xaa, ioaddr->lbal_addr);
710 outb(0xaa, ioaddr->nsect_addr);
711 outb(0x55, ioaddr->lbal_addr);
713 outb(0x55, ioaddr->nsect_addr);
714 outb(0xaa, ioaddr->lbal_addr);
716 nsect = inb(ioaddr->nsect_addr);
717 lbal = inb(ioaddr->lbal_addr);
719 if ((nsect == 0x55) && (lbal == 0xaa))
720 return 1; /* we found a device */
722 return 0; /* nothing found */
726 * ata_mmio_devchk - PATA device presence detection
727 * @ap: ATA channel to examine
728 * @device: Device to examine (starting at zero)
730 * This technique was originally described in
731 * Hale Landis's ATADRVR (www.ata-atapi.com), and
732 * later found its way into the ATA/ATAPI spec.
734 * Write a pattern to the ATA shadow registers,
735 * and if a device is present, it will respond by
736 * correctly storing and echoing back the
737 * ATA shadow register contents.
739 * LOCKING:
740 * caller.
743 static unsigned int ata_mmio_devchk(struct ata_port *ap,
744 unsigned int device)
746 struct ata_ioports *ioaddr = &ap->ioaddr;
747 u8 nsect, lbal;
749 ap->ops->dev_select(ap, device);
751 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
752 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
754 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
757 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
760 nsect = readb((void __iomem *) ioaddr->nsect_addr);
761 lbal = readb((void __iomem *) ioaddr->lbal_addr);
763 if ((nsect == 0x55) && (lbal == 0xaa))
764 return 1; /* we found a device */
766 return 0; /* nothing found */
770 * ata_devchk - PATA device presence detection
771 * @ap: ATA channel to examine
772 * @device: Device to examine (starting at zero)
774 * Dispatch ATA device presence detection, depending
775 * on whether we are using PIO or MMIO to talk to the
776 * ATA shadow registers.
778 * LOCKING:
779 * caller.
782 static unsigned int ata_devchk(struct ata_port *ap,
783 unsigned int device)
785 if (ap->flags & ATA_FLAG_MMIO)
786 return ata_mmio_devchk(ap, device);
787 return ata_pio_devchk(ap, device);
791 * ata_dev_classify - determine device type based on ATA-spec signature
792 * @tf: ATA taskfile register set for device to be identified
794 * Determine from taskfile register contents whether a device is
795 * ATA or ATAPI, as per "Signature and persistence" section
796 * of ATA/PI spec (volume 1, sect 5.14).
798 * LOCKING:
799 * None.
801 * RETURNS:
802 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
803 * the event of failure.
806 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
808 /* Apple's open source Darwin code hints that some devices only
809 * put a proper signature into the LBA mid/high registers,
810 * So, we only check those. It's sufficient for uniqueness.
813 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
814 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
815 DPRINTK("found ATA device by sig\n");
816 return ATA_DEV_ATA;
819 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
820 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
821 DPRINTK("found ATAPI device by sig\n");
822 return ATA_DEV_ATAPI;
825 DPRINTK("unknown device\n");
826 return ATA_DEV_UNKNOWN;
830 * ata_dev_try_classify - Parse returned ATA device signature
831 * @ap: ATA channel to examine
832 * @device: Device to examine (starting at zero)
833 * @r_err: Value of error register on completion
835 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
836 * an ATA/ATAPI-defined set of values is placed in the ATA
837 * shadow registers, indicating the results of device detection
838 * and diagnostics.
840 * Select the ATA device, and read the values from the ATA shadow
841 * registers. Then parse according to the Error register value,
842 * and the spec-defined values examined by ata_dev_classify().
844 * LOCKING:
845 * caller.
847 * RETURNS:
848 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
851 static unsigned int
852 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
854 struct ata_taskfile tf;
855 unsigned int class;
856 u8 err;
858 ap->ops->dev_select(ap, device);
860 memset(&tf, 0, sizeof(tf));
862 ap->ops->tf_read(ap, &tf);
863 err = tf.feature;
864 if (r_err)
865 *r_err = err;
867 /* see if device passed diags */
868 if (err == 1)
869 /* do nothing */ ;
870 else if ((device == 0) && (err == 0x81))
871 /* do nothing */ ;
872 else
873 return ATA_DEV_NONE;
875 /* determine if device is ATA or ATAPI */
876 class = ata_dev_classify(&tf);
878 if (class == ATA_DEV_UNKNOWN)
879 return ATA_DEV_NONE;
880 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
881 return ATA_DEV_NONE;
882 return class;
886 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
887 * @id: IDENTIFY DEVICE results we will examine
888 * @s: string into which data is output
889 * @ofs: offset into identify device page
890 * @len: length of string to return. must be an even number.
892 * The strings in the IDENTIFY DEVICE page are broken up into
893 * 16-bit chunks. Run through the string, and output each
894 * 8-bit chunk linearly, regardless of platform.
896 * LOCKING:
897 * caller.
900 void ata_dev_id_string(const u16 *id, unsigned char *s,
901 unsigned int ofs, unsigned int len)
903 unsigned int c;
905 while (len > 0) {
906 c = id[ofs] >> 8;
907 *s = c;
908 s++;
910 c = id[ofs] & 0xff;
911 *s = c;
912 s++;
914 ofs++;
915 len -= 2;
921 * ata_noop_dev_select - Select device 0/1 on ATA bus
922 * @ap: ATA channel to manipulate
923 * @device: ATA device (numbered from zero) to select
925 * This function performs no actual function.
927 * May be used as the dev_select() entry in ata_port_operations.
929 * LOCKING:
930 * caller.
932 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
938 * ata_std_dev_select - Select device 0/1 on ATA bus
939 * @ap: ATA channel to manipulate
940 * @device: ATA device (numbered from zero) to select
942 * Use the method defined in the ATA specification to
943 * make either device 0, or device 1, active on the
944 * ATA channel. Works with both PIO and MMIO.
946 * May be used as the dev_select() entry in ata_port_operations.
948 * LOCKING:
949 * caller.
952 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
954 u8 tmp;
956 if (device == 0)
957 tmp = ATA_DEVICE_OBS;
958 else
959 tmp = ATA_DEVICE_OBS | ATA_DEV1;
961 if (ap->flags & ATA_FLAG_MMIO) {
962 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
963 } else {
964 outb(tmp, ap->ioaddr.device_addr);
966 ata_pause(ap); /* needed; also flushes, for mmio */
970 * ata_dev_select - Select device 0/1 on ATA bus
971 * @ap: ATA channel to manipulate
972 * @device: ATA device (numbered from zero) to select
973 * @wait: non-zero to wait for Status register BSY bit to clear
974 * @can_sleep: non-zero if context allows sleeping
976 * Use the method defined in the ATA specification to
977 * make either device 0, or device 1, active on the
978 * ATA channel.
980 * This is a high-level version of ata_std_dev_select(),
981 * which additionally provides the services of inserting
982 * the proper pauses and status polling, where needed.
984 * LOCKING:
985 * caller.
988 void ata_dev_select(struct ata_port *ap, unsigned int device,
989 unsigned int wait, unsigned int can_sleep)
991 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
992 ap->id, device, wait);
994 if (wait)
995 ata_wait_idle(ap);
997 ap->ops->dev_select(ap, device);
999 if (wait) {
1000 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1001 msleep(150);
1002 ata_wait_idle(ap);
1007 * ata_dump_id - IDENTIFY DEVICE info debugging output
1008 * @dev: Device whose IDENTIFY DEVICE page we will dump
1010 * Dump selected 16-bit words from a detected device's
1011 * IDENTIFY PAGE page.
1013 * LOCKING:
1014 * caller.
1017 static inline void ata_dump_id(const struct ata_device *dev)
1019 DPRINTK("49==0x%04x "
1020 "53==0x%04x "
1021 "63==0x%04x "
1022 "64==0x%04x "
1023 "75==0x%04x \n",
1024 dev->id[49],
1025 dev->id[53],
1026 dev->id[63],
1027 dev->id[64],
1028 dev->id[75]);
1029 DPRINTK("80==0x%04x "
1030 "81==0x%04x "
1031 "82==0x%04x "
1032 "83==0x%04x "
1033 "84==0x%04x \n",
1034 dev->id[80],
1035 dev->id[81],
1036 dev->id[82],
1037 dev->id[83],
1038 dev->id[84]);
1039 DPRINTK("88==0x%04x "
1040 "93==0x%04x\n",
1041 dev->id[88],
1042 dev->id[93]);
1046 * Compute the PIO modes available for this device. This is not as
1047 * trivial as it seems if we must consider early devices correctly.
1049 * FIXME: pre IDE drive timing (do we care ?).
1052 static unsigned int ata_pio_modes(const struct ata_device *adev)
1054 u16 modes;
1056 /* Usual case. Word 53 indicates word 64 is valid */
1057 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1058 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1059 modes <<= 3;
1060 modes |= 0x7;
1061 return modes;
1064 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1065 number for the maximum. Turn it into a mask and return it */
1066 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1067 return modes;
1068 /* But wait.. there's more. Design your standards by committee and
1069 you too can get a free iordy field to process. However its the
1070 speeds not the modes that are supported... Note drivers using the
1071 timing API will get this right anyway */
1074 static inline void
1075 ata_queue_packet_task(struct ata_port *ap)
1077 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1078 queue_work(ata_wq, &ap->packet_task);
1081 static inline void
1082 ata_queue_pio_task(struct ata_port *ap)
1084 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1085 queue_work(ata_wq, &ap->pio_task);
1088 static inline void
1089 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
1091 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1092 queue_delayed_work(ata_wq, &ap->pio_task, delay);
1096 * ata_flush_pio_tasks - Flush pio_task and packet_task
1097 * @ap: the target ata_port
1099 * After this function completes, pio_task and packet_task are
1100 * guranteed not to be running or scheduled.
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1106 static void ata_flush_pio_tasks(struct ata_port *ap)
1108 int tmp = 0;
1109 unsigned long flags;
1111 DPRINTK("ENTER\n");
1113 spin_lock_irqsave(&ap->host_set->lock, flags);
1114 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
1115 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1117 DPRINTK("flush #1\n");
1118 flush_workqueue(ata_wq);
1121 * At this point, if a task is running, it's guaranteed to see
1122 * the FLUSH flag; thus, it will never queue pio tasks again.
1123 * Cancel and flush.
1125 tmp |= cancel_delayed_work(&ap->pio_task);
1126 tmp |= cancel_delayed_work(&ap->packet_task);
1127 if (!tmp) {
1128 DPRINTK("flush #2\n");
1129 flush_workqueue(ata_wq);
1132 spin_lock_irqsave(&ap->host_set->lock, flags);
1133 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
1134 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1136 DPRINTK("EXIT\n");
1139 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1141 struct completion *waiting = qc->private_data;
1143 qc->ap->ops->tf_read(qc->ap, &qc->tf);
1144 complete(waiting);
1148 * ata_exec_internal - execute libata internal command
1149 * @ap: Port to which the command is sent
1150 * @dev: Device to which the command is sent
1151 * @tf: Taskfile registers for the command and the result
1152 * @dma_dir: Data tranfer direction of the command
1153 * @buf: Data buffer of the command
1154 * @buflen: Length of data buffer
1156 * Executes libata internal command with timeout. @tf contains
1157 * command on entry and result on return. Timeout and error
1158 * conditions are reported via return value. No recovery action
1159 * is taken after a command times out. It's caller's duty to
1160 * clean up after timeout.
1162 * LOCKING:
1163 * None. Should be called with kernel context, might sleep.
1166 static unsigned
1167 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1168 struct ata_taskfile *tf,
1169 int dma_dir, void *buf, unsigned int buflen)
1171 u8 command = tf->command;
1172 struct ata_queued_cmd *qc;
1173 DECLARE_COMPLETION(wait);
1174 unsigned long flags;
1175 unsigned int err_mask;
1177 spin_lock_irqsave(&ap->host_set->lock, flags);
1179 qc = ata_qc_new_init(ap, dev);
1180 BUG_ON(qc == NULL);
1182 qc->tf = *tf;
1183 qc->dma_dir = dma_dir;
1184 if (dma_dir != DMA_NONE) {
1185 ata_sg_init_one(qc, buf, buflen);
1186 qc->nsect = buflen / ATA_SECT_SIZE;
1189 qc->private_data = &wait;
1190 qc->complete_fn = ata_qc_complete_internal;
1192 qc->err_mask = ata_qc_issue(qc);
1193 if (qc->err_mask)
1194 ata_qc_complete(qc);
1196 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1198 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1199 spin_lock_irqsave(&ap->host_set->lock, flags);
1201 /* We're racing with irq here. If we lose, the
1202 * following test prevents us from completing the qc
1203 * again. If completion irq occurs after here but
1204 * before the caller cleans up, it will result in a
1205 * spurious interrupt. We can live with that.
1207 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1208 qc->err_mask = AC_ERR_TIMEOUT;
1209 ata_qc_complete(qc);
1210 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1211 ap->id, command);
1214 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1217 *tf = qc->tf;
1218 err_mask = qc->err_mask;
1220 ata_qc_free(qc);
1222 return err_mask;
1226 * ata_pio_need_iordy - check if iordy needed
1227 * @adev: ATA device
1229 * Check if the current speed of the device requires IORDY. Used
1230 * by various controllers for chip configuration.
1233 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1235 int pio;
1236 int speed = adev->pio_mode - XFER_PIO_0;
1238 if (speed < 2)
1239 return 0;
1240 if (speed > 2)
1241 return 1;
1243 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1245 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1246 pio = adev->id[ATA_ID_EIDE_PIO];
1247 /* Is the speed faster than the drive allows non IORDY ? */
1248 if (pio) {
1249 /* This is cycle times not frequency - watch the logic! */
1250 if (pio > 240) /* PIO2 is 240nS per cycle */
1251 return 1;
1252 return 0;
1255 return 0;
1259 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1260 * @ap: port on which device we wish to probe resides
1261 * @device: device bus address, starting at zero
1263 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1264 * command, and read back the 512-byte device information page.
1265 * The device information page is fed to us via the standard
1266 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1267 * using standard PIO-IN paths)
1269 * After reading the device information page, we use several
1270 * bits of information from it to initialize data structures
1271 * that will be used during the lifetime of the ata_device.
1272 * Other data from the info page is used to disqualify certain
1273 * older ATA devices we do not wish to support.
1275 * LOCKING:
1276 * Inherited from caller. Some functions called by this function
1277 * obtain the host_set lock.
1280 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1282 struct ata_device *dev = &ap->device[device];
1283 unsigned int major_version;
1284 u16 tmp;
1285 unsigned long xfer_modes;
1286 unsigned int using_edd;
1287 struct ata_taskfile tf;
1288 unsigned int err_mask;
1289 int rc;
1291 if (!ata_dev_present(dev)) {
1292 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1293 ap->id, device);
1294 return;
1297 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1298 using_edd = 0;
1299 else
1300 using_edd = 1;
1302 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1304 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1305 dev->class == ATA_DEV_NONE);
1307 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1309 retry:
1310 ata_tf_init(ap, &tf, device);
1312 if (dev->class == ATA_DEV_ATA) {
1313 tf.command = ATA_CMD_ID_ATA;
1314 DPRINTK("do ATA identify\n");
1315 } else {
1316 tf.command = ATA_CMD_ID_ATAPI;
1317 DPRINTK("do ATAPI identify\n");
1320 tf.protocol = ATA_PROT_PIO;
1322 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1323 dev->id, sizeof(dev->id));
1325 if (err_mask) {
1326 if (err_mask & ~AC_ERR_DEV)
1327 goto err_out;
1330 * arg! EDD works for all test cases, but seems to return
1331 * the ATA signature for some ATAPI devices. Until the
1332 * reason for this is found and fixed, we fix up the mess
1333 * here. If IDENTIFY DEVICE returns command aborted
1334 * (as ATAPI devices do), then we issue an
1335 * IDENTIFY PACKET DEVICE.
1337 * ATA software reset (SRST, the default) does not appear
1338 * to have this problem.
1340 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1341 u8 err = tf.feature;
1342 if (err & ATA_ABORTED) {
1343 dev->class = ATA_DEV_ATAPI;
1344 goto retry;
1347 goto err_out;
1350 swap_buf_le16(dev->id, ATA_ID_WORDS);
1352 /* print device capabilities */
1353 printk(KERN_DEBUG "ata%u: dev %u cfg "
1354 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1355 ap->id, device, dev->id[49],
1356 dev->id[82], dev->id[83], dev->id[84],
1357 dev->id[85], dev->id[86], dev->id[87],
1358 dev->id[88]);
1361 * common ATA, ATAPI feature tests
1364 /* we require DMA support (bits 8 of word 49) */
1365 if (!ata_id_has_dma(dev->id)) {
1366 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1367 goto err_out_nosup;
1370 /* quick-n-dirty find max transfer mode; for printk only */
1371 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1372 if (!xfer_modes)
1373 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1374 if (!xfer_modes)
1375 xfer_modes = ata_pio_modes(dev);
1377 ata_dump_id(dev);
1379 /* ATA-specific feature tests */
1380 if (dev->class == ATA_DEV_ATA) {
1381 if (!ata_id_is_ata(dev->id)) /* sanity check */
1382 goto err_out_nosup;
1384 /* get major version */
1385 tmp = dev->id[ATA_ID_MAJOR_VER];
1386 for (major_version = 14; major_version >= 1; major_version--)
1387 if (tmp & (1 << major_version))
1388 break;
1391 * The exact sequence expected by certain pre-ATA4 drives is:
1392 * SRST RESET
1393 * IDENTIFY
1394 * INITIALIZE DEVICE PARAMETERS
1395 * anything else..
1396 * Some drives were very specific about that exact sequence.
1398 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1399 ata_dev_init_params(ap, dev);
1401 /* current CHS translation info (id[53-58]) might be
1402 * changed. reread the identify device info.
1404 ata_dev_reread_id(ap, dev);
1407 if (ata_id_has_lba(dev->id)) {
1408 dev->flags |= ATA_DFLAG_LBA;
1410 if (ata_id_has_lba48(dev->id)) {
1411 dev->flags |= ATA_DFLAG_LBA48;
1412 dev->n_sectors = ata_id_u64(dev->id, 100);
1413 } else {
1414 dev->n_sectors = ata_id_u32(dev->id, 60);
1417 /* print device info to dmesg */
1418 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1419 ap->id, device,
1420 major_version,
1421 ata_mode_string(xfer_modes),
1422 (unsigned long long)dev->n_sectors,
1423 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1424 } else {
1425 /* CHS */
1427 /* Default translation */
1428 dev->cylinders = dev->id[1];
1429 dev->heads = dev->id[3];
1430 dev->sectors = dev->id[6];
1431 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1433 if (ata_id_current_chs_valid(dev->id)) {
1434 /* Current CHS translation is valid. */
1435 dev->cylinders = dev->id[54];
1436 dev->heads = dev->id[55];
1437 dev->sectors = dev->id[56];
1439 dev->n_sectors = ata_id_u32(dev->id, 57);
1442 /* print device info to dmesg */
1443 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1444 ap->id, device,
1445 major_version,
1446 ata_mode_string(xfer_modes),
1447 (unsigned long long)dev->n_sectors,
1448 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1452 ap->host->max_cmd_len = 16;
1455 /* ATAPI-specific feature tests */
1456 else if (dev->class == ATA_DEV_ATAPI) {
1457 if (ata_id_is_ata(dev->id)) /* sanity check */
1458 goto err_out_nosup;
1460 rc = atapi_cdb_len(dev->id);
1461 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1462 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1463 goto err_out_nosup;
1465 ap->cdb_len = (unsigned int) rc;
1466 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1468 /* print device info to dmesg */
1469 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1470 ap->id, device,
1471 ata_mode_string(xfer_modes));
1474 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1475 return;
1477 err_out_nosup:
1478 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1479 ap->id, device);
1480 err_out:
1481 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1482 DPRINTK("EXIT, err\n");
1486 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1488 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1492 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1493 * @ap: Bus
1494 * @i: Device
1496 * LOCKING:
1499 void ata_dev_config(struct ata_port *ap, unsigned int i)
1501 /* limit bridge transfers to udma5, 200 sectors */
1502 if (ata_dev_knobble(ap)) {
1503 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1504 ap->id, ap->device->devno);
1505 ap->udma_mask &= ATA_UDMA5;
1506 ap->host->max_sectors = ATA_MAX_SECTORS;
1507 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1508 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1511 if (ap->ops->dev_config)
1512 ap->ops->dev_config(ap, &ap->device[i]);
1516 * ata_bus_probe - Reset and probe ATA bus
1517 * @ap: Bus to probe
1519 * Master ATA bus probing function. Initiates a hardware-dependent
1520 * bus reset, then attempts to identify any devices found on
1521 * the bus.
1523 * LOCKING:
1524 * PCI/etc. bus probe sem.
1526 * RETURNS:
1527 * Zero on success, non-zero on error.
1530 static int ata_bus_probe(struct ata_port *ap)
1532 unsigned int i, found = 0;
1534 if (ap->ops->probe_reset) {
1535 unsigned int classes[ATA_MAX_DEVICES];
1536 int rc;
1538 ata_port_probe(ap);
1540 rc = ap->ops->probe_reset(ap, classes);
1541 if (rc == 0) {
1542 for (i = 0; i < ATA_MAX_DEVICES; i++)
1543 ap->device[i].class = classes[i];
1544 } else {
1545 printk(KERN_ERR "ata%u: probe reset failed, "
1546 "disabling port\n", ap->id);
1547 ata_port_disable(ap);
1549 } else
1550 ap->ops->phy_reset(ap);
1552 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1553 goto err_out;
1555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1556 ata_dev_identify(ap, i);
1557 if (ata_dev_present(&ap->device[i])) {
1558 found = 1;
1559 ata_dev_config(ap,i);
1563 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1564 goto err_out_disable;
1566 ata_set_mode(ap);
1567 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1568 goto err_out_disable;
1570 return 0;
1572 err_out_disable:
1573 ap->ops->port_disable(ap);
1574 err_out:
1575 return -1;
1579 * ata_port_probe - Mark port as enabled
1580 * @ap: Port for which we indicate enablement
1582 * Modify @ap data structure such that the system
1583 * thinks that the entire port is enabled.
1585 * LOCKING: host_set lock, or some other form of
1586 * serialization.
1589 void ata_port_probe(struct ata_port *ap)
1591 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1595 * sata_print_link_status - Print SATA link status
1596 * @ap: SATA port to printk link status about
1598 * This function prints link speed and status of a SATA link.
1600 * LOCKING:
1601 * None.
1603 static void sata_print_link_status(struct ata_port *ap)
1605 u32 sstatus, tmp;
1606 const char *speed;
1608 if (!ap->ops->scr_read)
1609 return;
1611 sstatus = scr_read(ap, SCR_STATUS);
1613 if (sata_dev_present(ap)) {
1614 tmp = (sstatus >> 4) & 0xf;
1615 if (tmp & (1 << 0))
1616 speed = "1.5";
1617 else if (tmp & (1 << 1))
1618 speed = "3.0";
1619 else
1620 speed = "<unknown>";
1621 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1622 ap->id, speed, sstatus);
1623 } else {
1624 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1625 ap->id, sstatus);
1630 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1631 * @ap: SATA port associated with target SATA PHY.
1633 * This function issues commands to standard SATA Sxxx
1634 * PHY registers, to wake up the phy (and device), and
1635 * clear any reset condition.
1637 * LOCKING:
1638 * PCI/etc. bus probe sem.
1641 void __sata_phy_reset(struct ata_port *ap)
1643 u32 sstatus;
1644 unsigned long timeout = jiffies + (HZ * 5);
1646 if (ap->flags & ATA_FLAG_SATA_RESET) {
1647 /* issue phy wake/reset */
1648 scr_write_flush(ap, SCR_CONTROL, 0x301);
1649 /* Couldn't find anything in SATA I/II specs, but
1650 * AHCI-1.1 10.4.2 says at least 1 ms. */
1651 mdelay(1);
1653 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1655 /* wait for phy to become ready, if necessary */
1656 do {
1657 msleep(200);
1658 sstatus = scr_read(ap, SCR_STATUS);
1659 if ((sstatus & 0xf) != 1)
1660 break;
1661 } while (time_before(jiffies, timeout));
1663 /* print link status */
1664 sata_print_link_status(ap);
1666 /* TODO: phy layer with polling, timeouts, etc. */
1667 if (sata_dev_present(ap))
1668 ata_port_probe(ap);
1669 else
1670 ata_port_disable(ap);
1672 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1673 return;
1675 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1676 ata_port_disable(ap);
1677 return;
1680 ap->cbl = ATA_CBL_SATA;
1684 * sata_phy_reset - Reset SATA bus.
1685 * @ap: SATA port associated with target SATA PHY.
1687 * This function resets the SATA bus, and then probes
1688 * the bus for devices.
1690 * LOCKING:
1691 * PCI/etc. bus probe sem.
1694 void sata_phy_reset(struct ata_port *ap)
1696 __sata_phy_reset(ap);
1697 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1698 return;
1699 ata_bus_reset(ap);
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1709 * on this port.
1711 * LOCKING: host_set lock, or some other form of
1712 * serialization.
1715 void ata_port_disable(struct ata_port *ap)
1717 ap->device[0].class = ATA_DEV_NONE;
1718 ap->device[1].class = ATA_DEV_NONE;
1719 ap->flags |= ATA_FLAG_PORT_DISABLED;
1723 * This mode timing computation functionality is ported over from
1724 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1727 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1728 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1729 * for PIO 5, which is a nonstandard extension and UDMA6, which
1730 * is currently supported only by Maxtor drives.
1733 static const struct ata_timing ata_timing[] = {
1735 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1736 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1737 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1738 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1740 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1741 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1742 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1744 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1746 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1747 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1748 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1750 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1751 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1752 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1754 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1755 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1756 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1758 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1759 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1760 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1762 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1764 { 0xFF }
1767 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1768 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1770 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1772 q->setup = EZ(t->setup * 1000, T);
1773 q->act8b = EZ(t->act8b * 1000, T);
1774 q->rec8b = EZ(t->rec8b * 1000, T);
1775 q->cyc8b = EZ(t->cyc8b * 1000, T);
1776 q->active = EZ(t->active * 1000, T);
1777 q->recover = EZ(t->recover * 1000, T);
1778 q->cycle = EZ(t->cycle * 1000, T);
1779 q->udma = EZ(t->udma * 1000, UT);
1782 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1783 struct ata_timing *m, unsigned int what)
1785 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1786 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1787 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1788 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1789 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1790 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1791 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1792 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1795 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1797 const struct ata_timing *t;
1799 for (t = ata_timing; t->mode != speed; t++)
1800 if (t->mode == 0xFF)
1801 return NULL;
1802 return t;
1805 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1806 struct ata_timing *t, int T, int UT)
1808 const struct ata_timing *s;
1809 struct ata_timing p;
1812 * Find the mode.
1815 if (!(s = ata_timing_find_mode(speed)))
1816 return -EINVAL;
1818 memcpy(t, s, sizeof(*s));
1821 * If the drive is an EIDE drive, it can tell us it needs extended
1822 * PIO/MW_DMA cycle timing.
1825 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1826 memset(&p, 0, sizeof(p));
1827 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1828 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1829 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1830 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1831 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1833 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1837 * Convert the timing to bus clock counts.
1840 ata_timing_quantize(t, t, T, UT);
1843 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1844 * S.M.A.R.T * and some other commands. We have to ensure that the
1845 * DMA cycle timing is slower/equal than the fastest PIO timing.
1848 if (speed > XFER_PIO_4) {
1849 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1850 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1854 * Lengthen active & recovery time so that cycle time is correct.
1857 if (t->act8b + t->rec8b < t->cyc8b) {
1858 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1859 t->rec8b = t->cyc8b - t->act8b;
1862 if (t->active + t->recover < t->cycle) {
1863 t->active += (t->cycle - (t->active + t->recover)) / 2;
1864 t->recover = t->cycle - t->active;
1867 return 0;
1870 static const struct {
1871 unsigned int shift;
1872 u8 base;
1873 } xfer_mode_classes[] = {
1874 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1875 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1876 { ATA_SHIFT_PIO, XFER_PIO_0 },
1879 static u8 base_from_shift(unsigned int shift)
1881 int i;
1883 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1884 if (xfer_mode_classes[i].shift == shift)
1885 return xfer_mode_classes[i].base;
1887 return 0xff;
1890 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1892 int ofs, idx;
1893 u8 base;
1895 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1896 return;
1898 if (dev->xfer_shift == ATA_SHIFT_PIO)
1899 dev->flags |= ATA_DFLAG_PIO;
1901 ata_dev_set_xfermode(ap, dev);
1903 base = base_from_shift(dev->xfer_shift);
1904 ofs = dev->xfer_mode - base;
1905 idx = ofs + dev->xfer_shift;
1906 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1908 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1909 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1911 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1912 ap->id, dev->devno, xfer_mode_str[idx]);
1915 static int ata_host_set_pio(struct ata_port *ap)
1917 unsigned int mask;
1918 int x, i;
1919 u8 base, xfer_mode;
1921 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1922 x = fgb(mask);
1923 if (x < 0) {
1924 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1925 return -1;
1928 base = base_from_shift(ATA_SHIFT_PIO);
1929 xfer_mode = base + x;
1931 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1932 (int)base, (int)xfer_mode, mask, x);
1934 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1935 struct ata_device *dev = &ap->device[i];
1936 if (ata_dev_present(dev)) {
1937 dev->pio_mode = xfer_mode;
1938 dev->xfer_mode = xfer_mode;
1939 dev->xfer_shift = ATA_SHIFT_PIO;
1940 if (ap->ops->set_piomode)
1941 ap->ops->set_piomode(ap, dev);
1945 return 0;
1948 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1949 unsigned int xfer_shift)
1951 int i;
1953 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1954 struct ata_device *dev = &ap->device[i];
1955 if (ata_dev_present(dev)) {
1956 dev->dma_mode = xfer_mode;
1957 dev->xfer_mode = xfer_mode;
1958 dev->xfer_shift = xfer_shift;
1959 if (ap->ops->set_dmamode)
1960 ap->ops->set_dmamode(ap, dev);
1966 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1967 * @ap: port on which timings will be programmed
1969 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1971 * LOCKING:
1972 * PCI/etc. bus probe sem.
1974 static void ata_set_mode(struct ata_port *ap)
1976 unsigned int xfer_shift;
1977 u8 xfer_mode;
1978 int rc;
1980 /* step 1: always set host PIO timings */
1981 rc = ata_host_set_pio(ap);
1982 if (rc)
1983 goto err_out;
1985 /* step 2: choose the best data xfer mode */
1986 xfer_mode = xfer_shift = 0;
1987 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1988 if (rc)
1989 goto err_out;
1991 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1992 if (xfer_shift != ATA_SHIFT_PIO)
1993 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1995 /* step 4: update devices' xfer mode */
1996 ata_dev_set_mode(ap, &ap->device[0]);
1997 ata_dev_set_mode(ap, &ap->device[1]);
1999 if (ap->flags & ATA_FLAG_PORT_DISABLED)
2000 return;
2002 if (ap->ops->post_set_mode)
2003 ap->ops->post_set_mode(ap);
2005 return;
2007 err_out:
2008 ata_port_disable(ap);
2012 * ata_busy_sleep - sleep until BSY clears, or timeout
2013 * @ap: port containing status register to be polled
2014 * @tmout_pat: impatience timeout
2015 * @tmout: overall timeout
2017 * Sleep until ATA Status register bit BSY clears,
2018 * or a timeout occurs.
2020 * LOCKING: None.
2023 unsigned int ata_busy_sleep (struct ata_port *ap,
2024 unsigned long tmout_pat, unsigned long tmout)
2026 unsigned long timer_start, timeout;
2027 u8 status;
2029 status = ata_busy_wait(ap, ATA_BUSY, 300);
2030 timer_start = jiffies;
2031 timeout = timer_start + tmout_pat;
2032 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2033 msleep(50);
2034 status = ata_busy_wait(ap, ATA_BUSY, 3);
2037 if (status & ATA_BUSY)
2038 printk(KERN_WARNING "ata%u is slow to respond, "
2039 "please be patient\n", ap->id);
2041 timeout = timer_start + tmout;
2042 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2043 msleep(50);
2044 status = ata_chk_status(ap);
2047 if (status & ATA_BUSY) {
2048 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2049 ap->id, tmout / HZ);
2050 return 1;
2053 return 0;
2056 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2058 struct ata_ioports *ioaddr = &ap->ioaddr;
2059 unsigned int dev0 = devmask & (1 << 0);
2060 unsigned int dev1 = devmask & (1 << 1);
2061 unsigned long timeout;
2063 /* if device 0 was found in ata_devchk, wait for its
2064 * BSY bit to clear
2066 if (dev0)
2067 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2069 /* if device 1 was found in ata_devchk, wait for
2070 * register access, then wait for BSY to clear
2072 timeout = jiffies + ATA_TMOUT_BOOT;
2073 while (dev1) {
2074 u8 nsect, lbal;
2076 ap->ops->dev_select(ap, 1);
2077 if (ap->flags & ATA_FLAG_MMIO) {
2078 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2079 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2080 } else {
2081 nsect = inb(ioaddr->nsect_addr);
2082 lbal = inb(ioaddr->lbal_addr);
2084 if ((nsect == 1) && (lbal == 1))
2085 break;
2086 if (time_after(jiffies, timeout)) {
2087 dev1 = 0;
2088 break;
2090 msleep(50); /* give drive a breather */
2092 if (dev1)
2093 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2095 /* is all this really necessary? */
2096 ap->ops->dev_select(ap, 0);
2097 if (dev1)
2098 ap->ops->dev_select(ap, 1);
2099 if (dev0)
2100 ap->ops->dev_select(ap, 0);
2104 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2105 * @ap: Port to reset and probe
2107 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2108 * probe the bus. Not often used these days.
2110 * LOCKING:
2111 * PCI/etc. bus probe sem.
2112 * Obtains host_set lock.
2116 static unsigned int ata_bus_edd(struct ata_port *ap)
2118 struct ata_taskfile tf;
2119 unsigned long flags;
2121 /* set up execute-device-diag (bus reset) taskfile */
2122 /* also, take interrupts to a known state (disabled) */
2123 DPRINTK("execute-device-diag\n");
2124 ata_tf_init(ap, &tf, 0);
2125 tf.ctl |= ATA_NIEN;
2126 tf.command = ATA_CMD_EDD;
2127 tf.protocol = ATA_PROT_NODATA;
2129 /* do bus reset */
2130 spin_lock_irqsave(&ap->host_set->lock, flags);
2131 ata_tf_to_host(ap, &tf);
2132 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2134 /* spec says at least 2ms. but who knows with those
2135 * crazy ATAPI devices...
2137 msleep(150);
2139 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2142 static unsigned int ata_bus_softreset(struct ata_port *ap,
2143 unsigned int devmask)
2145 struct ata_ioports *ioaddr = &ap->ioaddr;
2147 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2149 /* software reset. causes dev0 to be selected */
2150 if (ap->flags & ATA_FLAG_MMIO) {
2151 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2152 udelay(20); /* FIXME: flush */
2153 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2154 udelay(20); /* FIXME: flush */
2155 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2156 } else {
2157 outb(ap->ctl, ioaddr->ctl_addr);
2158 udelay(10);
2159 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2160 udelay(10);
2161 outb(ap->ctl, ioaddr->ctl_addr);
2164 /* spec mandates ">= 2ms" before checking status.
2165 * We wait 150ms, because that was the magic delay used for
2166 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2167 * between when the ATA command register is written, and then
2168 * status is checked. Because waiting for "a while" before
2169 * checking status is fine, post SRST, we perform this magic
2170 * delay here as well.
2172 msleep(150);
2174 ata_bus_post_reset(ap, devmask);
2176 return 0;
2180 * ata_bus_reset - reset host port and associated ATA channel
2181 * @ap: port to reset
2183 * This is typically the first time we actually start issuing
2184 * commands to the ATA channel. We wait for BSY to clear, then
2185 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2186 * result. Determine what devices, if any, are on the channel
2187 * by looking at the device 0/1 error register. Look at the signature
2188 * stored in each device's taskfile registers, to determine if
2189 * the device is ATA or ATAPI.
2191 * LOCKING:
2192 * PCI/etc. bus probe sem.
2193 * Obtains host_set lock.
2195 * SIDE EFFECTS:
2196 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2199 void ata_bus_reset(struct ata_port *ap)
2201 struct ata_ioports *ioaddr = &ap->ioaddr;
2202 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2203 u8 err;
2204 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2206 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2208 /* determine if device 0/1 are present */
2209 if (ap->flags & ATA_FLAG_SATA_RESET)
2210 dev0 = 1;
2211 else {
2212 dev0 = ata_devchk(ap, 0);
2213 if (slave_possible)
2214 dev1 = ata_devchk(ap, 1);
2217 if (dev0)
2218 devmask |= (1 << 0);
2219 if (dev1)
2220 devmask |= (1 << 1);
2222 /* select device 0 again */
2223 ap->ops->dev_select(ap, 0);
2225 /* issue bus reset */
2226 if (ap->flags & ATA_FLAG_SRST)
2227 rc = ata_bus_softreset(ap, devmask);
2228 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2229 /* set up device control */
2230 if (ap->flags & ATA_FLAG_MMIO)
2231 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2232 else
2233 outb(ap->ctl, ioaddr->ctl_addr);
2234 rc = ata_bus_edd(ap);
2237 if (rc)
2238 goto err_out;
2241 * determine by signature whether we have ATA or ATAPI devices
2243 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2244 if ((slave_possible) && (err != 0x81))
2245 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2247 /* re-enable interrupts */
2248 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2249 ata_irq_on(ap);
2251 /* is double-select really necessary? */
2252 if (ap->device[1].class != ATA_DEV_NONE)
2253 ap->ops->dev_select(ap, 1);
2254 if (ap->device[0].class != ATA_DEV_NONE)
2255 ap->ops->dev_select(ap, 0);
2257 /* if no devices were detected, disable this port */
2258 if ((ap->device[0].class == ATA_DEV_NONE) &&
2259 (ap->device[1].class == ATA_DEV_NONE))
2260 goto err_out;
2262 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2263 /* set up device control for ATA_FLAG_SATA_RESET */
2264 if (ap->flags & ATA_FLAG_MMIO)
2265 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2266 else
2267 outb(ap->ctl, ioaddr->ctl_addr);
2270 DPRINTK("EXIT\n");
2271 return;
2273 err_out:
2274 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2275 ap->ops->port_disable(ap);
2277 DPRINTK("EXIT\n");
2281 * ata_std_softreset - reset host port via ATA SRST
2282 * @ap: port to reset
2283 * @verbose: fail verbosely
2284 * @classes: resulting classes of attached devices
2286 * Reset host port using ATA SRST. This function is to be used
2287 * as standard callback for ata_drive_*_reset() functions.
2289 * LOCKING:
2290 * Kernel thread context (may sleep)
2292 * RETURNS:
2293 * 0 on success, -errno otherwise.
2295 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2297 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2298 unsigned int devmask = 0, err_mask;
2299 u8 err;
2301 DPRINTK("ENTER\n");
2303 /* determine if device 0/1 are present */
2304 if (ata_devchk(ap, 0))
2305 devmask |= (1 << 0);
2306 if (slave_possible && ata_devchk(ap, 1))
2307 devmask |= (1 << 1);
2309 /* devchk reports device presence without actual device on
2310 * most SATA controllers. Check SStatus and turn devmask off
2311 * if link is offline. Note that we should continue resetting
2312 * even when it seems like there's no device.
2314 if (ap->ops->scr_read && !sata_dev_present(ap))
2315 devmask = 0;
2317 /* select device 0 again */
2318 ap->ops->dev_select(ap, 0);
2320 /* issue bus reset */
2321 DPRINTK("about to softreset, devmask=%x\n", devmask);
2322 err_mask = ata_bus_softreset(ap, devmask);
2323 if (err_mask) {
2324 if (verbose)
2325 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2326 ap->id, err_mask);
2327 else
2328 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2329 err_mask);
2330 return -EIO;
2333 /* determine by signature whether we have ATA or ATAPI devices */
2334 classes[0] = ata_dev_try_classify(ap, 0, &err);
2335 if (slave_possible && err != 0x81)
2336 classes[1] = ata_dev_try_classify(ap, 1, &err);
2338 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2339 return 0;
2343 * sata_std_hardreset - reset host port via SATA phy reset
2344 * @ap: port to reset
2345 * @verbose: fail verbosely
2346 * @class: resulting class of attached device
2348 * SATA phy-reset host port using DET bits of SControl register.
2349 * This function is to be used as standard callback for
2350 * ata_drive_*_reset().
2352 * LOCKING:
2353 * Kernel thread context (may sleep)
2355 * RETURNS:
2356 * 0 on success, -errno otherwise.
2358 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2360 u32 sstatus, serror;
2361 unsigned long timeout = jiffies + (HZ * 5);
2363 DPRINTK("ENTER\n");
2365 /* Issue phy wake/reset */
2366 scr_write_flush(ap, SCR_CONTROL, 0x301);
2369 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2370 * 10.4.2 says at least 1 ms.
2372 msleep(1);
2374 scr_write_flush(ap, SCR_CONTROL, 0x300);
2376 /* Wait for phy to become ready, if necessary. */
2377 do {
2378 msleep(200);
2379 sstatus = scr_read(ap, SCR_STATUS);
2380 if ((sstatus & 0xf) != 1)
2381 break;
2382 } while (time_before(jiffies, timeout));
2384 /* Clear SError */
2385 serror = scr_read(ap, SCR_ERROR);
2386 scr_write(ap, SCR_ERROR, serror);
2388 /* TODO: phy layer with polling, timeouts, etc. */
2389 if (!sata_dev_present(ap)) {
2390 *class = ATA_DEV_NONE;
2391 DPRINTK("EXIT, link offline\n");
2392 return 0;
2395 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2396 if (verbose)
2397 printk(KERN_ERR "ata%u: COMRESET failed "
2398 "(device not ready)\n", ap->id);
2399 else
2400 DPRINTK("EXIT, device not ready\n");
2401 return -EIO;
2404 *class = ata_dev_try_classify(ap, 0, NULL);
2406 DPRINTK("EXIT, class=%u\n", *class);
2407 return 0;
2411 * ata_std_postreset - standard postreset callback
2412 * @ap: the target ata_port
2413 * @classes: classes of attached devices
2415 * This function is invoked after a successful reset. Note that
2416 * the device might have been reset more than once using
2417 * different reset methods before postreset is invoked.
2418 * postreset is also reponsible for setting cable type.
2420 * This function is to be used as standard callback for
2421 * ata_drive_*_reset().
2423 * LOCKING:
2424 * Kernel thread context (may sleep)
2426 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2428 DPRINTK("ENTER\n");
2430 /* set cable type */
2431 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2432 ap->cbl = ATA_CBL_SATA;
2434 /* print link status */
2435 if (ap->cbl == ATA_CBL_SATA)
2436 sata_print_link_status(ap);
2438 /* bail out if no device is present */
2439 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2440 DPRINTK("EXIT, no device\n");
2441 return;
2444 /* is double-select really necessary? */
2445 if (classes[0] != ATA_DEV_NONE)
2446 ap->ops->dev_select(ap, 1);
2447 if (classes[1] != ATA_DEV_NONE)
2448 ap->ops->dev_select(ap, 0);
2450 /* re-enable interrupts & set up device control */
2451 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2452 ata_irq_on(ap);
2454 DPRINTK("EXIT\n");
2458 * ata_std_probe_reset - standard probe reset method
2459 * @ap: prot to perform probe-reset
2460 * @classes: resulting classes of attached devices
2462 * The stock off-the-shelf ->probe_reset method.
2464 * LOCKING:
2465 * Kernel thread context (may sleep)
2467 * RETURNS:
2468 * 0 on success, -errno otherwise.
2470 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2472 ata_reset_fn_t hardreset;
2474 hardreset = NULL;
2475 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2476 hardreset = sata_std_hardreset;
2478 return ata_drive_probe_reset(ap, ata_std_softreset, hardreset,
2479 ata_std_postreset, classes);
2482 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2483 ata_postreset_fn_t postreset,
2484 unsigned int *classes)
2486 int i, rc;
2488 for (i = 0; i < ATA_MAX_DEVICES; i++)
2489 classes[i] = ATA_DEV_UNKNOWN;
2491 rc = reset(ap, 0, classes);
2492 if (rc)
2493 return rc;
2495 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2496 * is complete and convert all ATA_DEV_UNKNOWN to
2497 * ATA_DEV_NONE.
2499 for (i = 0; i < ATA_MAX_DEVICES; i++)
2500 if (classes[i] != ATA_DEV_UNKNOWN)
2501 break;
2503 if (i < ATA_MAX_DEVICES)
2504 for (i = 0; i < ATA_MAX_DEVICES; i++)
2505 if (classes[i] == ATA_DEV_UNKNOWN)
2506 classes[i] = ATA_DEV_NONE;
2508 if (postreset)
2509 postreset(ap, classes);
2511 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2515 * ata_drive_probe_reset - Perform probe reset with given methods
2516 * @ap: port to reset
2517 * @softreset: softreset method (can be NULL)
2518 * @hardreset: hardreset method (can be NULL)
2519 * @postreset: postreset method (can be NULL)
2520 * @classes: resulting classes of attached devices
2522 * Reset the specified port and classify attached devices using
2523 * given methods. This function prefers softreset but tries all
2524 * possible reset sequences to reset and classify devices. This
2525 * function is intended to be used for constructing ->probe_reset
2526 * callback by low level drivers.
2528 * Reset methods should follow the following rules.
2530 * - Return 0 on sucess, -errno on failure.
2531 * - If classification is supported, fill classes[] with
2532 * recognized class codes.
2533 * - If classification is not supported, leave classes[] alone.
2534 * - If verbose is non-zero, print error message on failure;
2535 * otherwise, shut up.
2537 * LOCKING:
2538 * Kernel thread context (may sleep)
2540 * RETURNS:
2541 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2542 * if classification fails, and any error code from reset
2543 * methods.
2545 int ata_drive_probe_reset(struct ata_port *ap,
2546 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2547 ata_postreset_fn_t postreset, unsigned int *classes)
2549 int rc = -EINVAL;
2551 if (softreset) {
2552 rc = do_probe_reset(ap, softreset, postreset, classes);
2553 if (rc == 0)
2554 return 0;
2557 if (!hardreset)
2558 return rc;
2560 rc = do_probe_reset(ap, hardreset, postreset, classes);
2561 if (rc == 0 || rc != -ENODEV)
2562 return rc;
2564 if (softreset)
2565 rc = do_probe_reset(ap, softreset, postreset, classes);
2567 return rc;
2570 static void ata_pr_blacklisted(const struct ata_port *ap,
2571 const struct ata_device *dev)
2573 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2574 ap->id, dev->devno);
2577 static const char * const ata_dma_blacklist [] = {
2578 "WDC AC11000H",
2579 "WDC AC22100H",
2580 "WDC AC32500H",
2581 "WDC AC33100H",
2582 "WDC AC31600H",
2583 "WDC AC32100H",
2584 "WDC AC23200L",
2585 "Compaq CRD-8241B",
2586 "CRD-8400B",
2587 "CRD-8480B",
2588 "CRD-8482B",
2589 "CRD-84",
2590 "SanDisk SDP3B",
2591 "SanDisk SDP3B-64",
2592 "SANYO CD-ROM CRD",
2593 "HITACHI CDR-8",
2594 "HITACHI CDR-8335",
2595 "HITACHI CDR-8435",
2596 "Toshiba CD-ROM XM-6202B",
2597 "TOSHIBA CD-ROM XM-1702BC",
2598 "CD-532E-A",
2599 "E-IDE CD-ROM CR-840",
2600 "CD-ROM Drive/F5A",
2601 "WPI CDD-820",
2602 "SAMSUNG CD-ROM SC-148C",
2603 "SAMSUNG CD-ROM SC",
2604 "SanDisk SDP3B-64",
2605 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2606 "_NEC DV5800A",
2609 static int ata_dma_blacklisted(const struct ata_device *dev)
2611 unsigned char model_num[40];
2612 char *s;
2613 unsigned int len;
2614 int i;
2616 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2617 sizeof(model_num));
2618 s = &model_num[0];
2619 len = strnlen(s, sizeof(model_num));
2621 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2622 while ((len > 0) && (s[len - 1] == ' ')) {
2623 len--;
2624 s[len] = 0;
2627 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2628 if (!strncmp(ata_dma_blacklist[i], s, len))
2629 return 1;
2631 return 0;
2634 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2636 const struct ata_device *master, *slave;
2637 unsigned int mask;
2639 master = &ap->device[0];
2640 slave = &ap->device[1];
2642 assert (ata_dev_present(master) || ata_dev_present(slave));
2644 if (shift == ATA_SHIFT_UDMA) {
2645 mask = ap->udma_mask;
2646 if (ata_dev_present(master)) {
2647 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2648 if (ata_dma_blacklisted(master)) {
2649 mask = 0;
2650 ata_pr_blacklisted(ap, master);
2653 if (ata_dev_present(slave)) {
2654 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2655 if (ata_dma_blacklisted(slave)) {
2656 mask = 0;
2657 ata_pr_blacklisted(ap, slave);
2661 else if (shift == ATA_SHIFT_MWDMA) {
2662 mask = ap->mwdma_mask;
2663 if (ata_dev_present(master)) {
2664 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2665 if (ata_dma_blacklisted(master)) {
2666 mask = 0;
2667 ata_pr_blacklisted(ap, master);
2670 if (ata_dev_present(slave)) {
2671 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2672 if (ata_dma_blacklisted(slave)) {
2673 mask = 0;
2674 ata_pr_blacklisted(ap, slave);
2678 else if (shift == ATA_SHIFT_PIO) {
2679 mask = ap->pio_mask;
2680 if (ata_dev_present(master)) {
2681 /* spec doesn't return explicit support for
2682 * PIO0-2, so we fake it
2684 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2685 tmp_mode <<= 3;
2686 tmp_mode |= 0x7;
2687 mask &= tmp_mode;
2689 if (ata_dev_present(slave)) {
2690 /* spec doesn't return explicit support for
2691 * PIO0-2, so we fake it
2693 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2694 tmp_mode <<= 3;
2695 tmp_mode |= 0x7;
2696 mask &= tmp_mode;
2699 else {
2700 mask = 0xffffffff; /* shut up compiler warning */
2701 BUG();
2704 return mask;
2707 /* find greatest bit */
2708 static int fgb(u32 bitmap)
2710 unsigned int i;
2711 int x = -1;
2713 for (i = 0; i < 32; i++)
2714 if (bitmap & (1 << i))
2715 x = i;
2717 return x;
2721 * ata_choose_xfer_mode - attempt to find best transfer mode
2722 * @ap: Port for which an xfer mode will be selected
2723 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2724 * @xfer_shift_out: (output) bit shift that selects this mode
2726 * Based on host and device capabilities, determine the
2727 * maximum transfer mode that is amenable to all.
2729 * LOCKING:
2730 * PCI/etc. bus probe sem.
2732 * RETURNS:
2733 * Zero on success, negative on error.
2736 static int ata_choose_xfer_mode(const struct ata_port *ap,
2737 u8 *xfer_mode_out,
2738 unsigned int *xfer_shift_out)
2740 unsigned int mask, shift;
2741 int x, i;
2743 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2744 shift = xfer_mode_classes[i].shift;
2745 mask = ata_get_mode_mask(ap, shift);
2747 x = fgb(mask);
2748 if (x >= 0) {
2749 *xfer_mode_out = xfer_mode_classes[i].base + x;
2750 *xfer_shift_out = shift;
2751 return 0;
2755 return -1;
2759 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2760 * @ap: Port associated with device @dev
2761 * @dev: Device to which command will be sent
2763 * Issue SET FEATURES - XFER MODE command to device @dev
2764 * on port @ap.
2766 * LOCKING:
2767 * PCI/etc. bus probe sem.
2770 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2772 struct ata_taskfile tf;
2774 /* set up set-features taskfile */
2775 DPRINTK("set features - xfer mode\n");
2777 ata_tf_init(ap, &tf, dev->devno);
2778 tf.command = ATA_CMD_SET_FEATURES;
2779 tf.feature = SETFEATURES_XFER;
2780 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2781 tf.protocol = ATA_PROT_NODATA;
2782 tf.nsect = dev->xfer_mode;
2784 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2785 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2786 ap->id);
2787 ata_port_disable(ap);
2790 DPRINTK("EXIT\n");
2794 * ata_dev_reread_id - Reread the device identify device info
2795 * @ap: port where the device is
2796 * @dev: device to reread the identify device info
2798 * LOCKING:
2801 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2803 struct ata_taskfile tf;
2805 ata_tf_init(ap, &tf, dev->devno);
2807 if (dev->class == ATA_DEV_ATA) {
2808 tf.command = ATA_CMD_ID_ATA;
2809 DPRINTK("do ATA identify\n");
2810 } else {
2811 tf.command = ATA_CMD_ID_ATAPI;
2812 DPRINTK("do ATAPI identify\n");
2815 tf.flags |= ATA_TFLAG_DEVICE;
2816 tf.protocol = ATA_PROT_PIO;
2818 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2819 dev->id, sizeof(dev->id)))
2820 goto err_out;
2822 swap_buf_le16(dev->id, ATA_ID_WORDS);
2824 ata_dump_id(dev);
2826 DPRINTK("EXIT\n");
2828 return;
2829 err_out:
2830 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2831 ata_port_disable(ap);
2835 * ata_dev_init_params - Issue INIT DEV PARAMS command
2836 * @ap: Port associated with device @dev
2837 * @dev: Device to which command will be sent
2839 * LOCKING:
2842 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2844 struct ata_taskfile tf;
2845 u16 sectors = dev->id[6];
2846 u16 heads = dev->id[3];
2848 /* Number of sectors per track 1-255. Number of heads 1-16 */
2849 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2850 return;
2852 /* set up init dev params taskfile */
2853 DPRINTK("init dev params \n");
2855 ata_tf_init(ap, &tf, dev->devno);
2856 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2857 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2858 tf.protocol = ATA_PROT_NODATA;
2859 tf.nsect = sectors;
2860 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2862 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2863 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2864 ap->id);
2865 ata_port_disable(ap);
2868 DPRINTK("EXIT\n");
2872 * ata_sg_clean - Unmap DMA memory associated with command
2873 * @qc: Command containing DMA memory to be released
2875 * Unmap all mapped DMA memory associated with this command.
2877 * LOCKING:
2878 * spin_lock_irqsave(host_set lock)
2881 static void ata_sg_clean(struct ata_queued_cmd *qc)
2883 struct ata_port *ap = qc->ap;
2884 struct scatterlist *sg = qc->__sg;
2885 int dir = qc->dma_dir;
2886 void *pad_buf = NULL;
2888 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2889 assert(sg != NULL);
2891 if (qc->flags & ATA_QCFLAG_SINGLE)
2892 assert(qc->n_elem == 1);
2894 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2896 /* if we padded the buffer out to 32-bit bound, and data
2897 * xfer direction is from-device, we must copy from the
2898 * pad buffer back into the supplied buffer
2900 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2901 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2903 if (qc->flags & ATA_QCFLAG_SG) {
2904 if (qc->n_elem)
2905 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2906 /* restore last sg */
2907 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2908 if (pad_buf) {
2909 struct scatterlist *psg = &qc->pad_sgent;
2910 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2911 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2912 kunmap_atomic(addr, KM_IRQ0);
2914 } else {
2915 if (sg_dma_len(&sg[0]) > 0)
2916 dma_unmap_single(ap->host_set->dev,
2917 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2918 dir);
2919 /* restore sg */
2920 sg->length += qc->pad_len;
2921 if (pad_buf)
2922 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2923 pad_buf, qc->pad_len);
2926 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2927 qc->__sg = NULL;
2931 * ata_fill_sg - Fill PCI IDE PRD table
2932 * @qc: Metadata associated with taskfile to be transferred
2934 * Fill PCI IDE PRD (scatter-gather) table with segments
2935 * associated with the current disk command.
2937 * LOCKING:
2938 * spin_lock_irqsave(host_set lock)
2941 static void ata_fill_sg(struct ata_queued_cmd *qc)
2943 struct ata_port *ap = qc->ap;
2944 struct scatterlist *sg;
2945 unsigned int idx;
2947 assert(qc->__sg != NULL);
2948 assert(qc->n_elem > 0);
2950 idx = 0;
2951 ata_for_each_sg(sg, qc) {
2952 u32 addr, offset;
2953 u32 sg_len, len;
2955 /* determine if physical DMA addr spans 64K boundary.
2956 * Note h/w doesn't support 64-bit, so we unconditionally
2957 * truncate dma_addr_t to u32.
2959 addr = (u32) sg_dma_address(sg);
2960 sg_len = sg_dma_len(sg);
2962 while (sg_len) {
2963 offset = addr & 0xffff;
2964 len = sg_len;
2965 if ((offset + sg_len) > 0x10000)
2966 len = 0x10000 - offset;
2968 ap->prd[idx].addr = cpu_to_le32(addr);
2969 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2970 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2972 idx++;
2973 sg_len -= len;
2974 addr += len;
2978 if (idx)
2979 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2982 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2983 * @qc: Metadata associated with taskfile to check
2985 * Allow low-level driver to filter ATA PACKET commands, returning
2986 * a status indicating whether or not it is OK to use DMA for the
2987 * supplied PACKET command.
2989 * LOCKING:
2990 * spin_lock_irqsave(host_set lock)
2992 * RETURNS: 0 when ATAPI DMA can be used
2993 * nonzero otherwise
2995 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2997 struct ata_port *ap = qc->ap;
2998 int rc = 0; /* Assume ATAPI DMA is OK by default */
3000 if (ap->ops->check_atapi_dma)
3001 rc = ap->ops->check_atapi_dma(qc);
3003 return rc;
3006 * ata_qc_prep - Prepare taskfile for submission
3007 * @qc: Metadata associated with taskfile to be prepared
3009 * Prepare ATA taskfile for submission.
3011 * LOCKING:
3012 * spin_lock_irqsave(host_set lock)
3014 void ata_qc_prep(struct ata_queued_cmd *qc)
3016 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3017 return;
3019 ata_fill_sg(qc);
3023 * ata_sg_init_one - Associate command with memory buffer
3024 * @qc: Command to be associated
3025 * @buf: Memory buffer
3026 * @buflen: Length of memory buffer, in bytes.
3028 * Initialize the data-related elements of queued_cmd @qc
3029 * to point to a single memory buffer, @buf of byte length @buflen.
3031 * LOCKING:
3032 * spin_lock_irqsave(host_set lock)
3035 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3037 struct scatterlist *sg;
3039 qc->flags |= ATA_QCFLAG_SINGLE;
3041 memset(&qc->sgent, 0, sizeof(qc->sgent));
3042 qc->__sg = &qc->sgent;
3043 qc->n_elem = 1;
3044 qc->orig_n_elem = 1;
3045 qc->buf_virt = buf;
3047 sg = qc->__sg;
3048 sg_init_one(sg, buf, buflen);
3052 * ata_sg_init - Associate command with scatter-gather table.
3053 * @qc: Command to be associated
3054 * @sg: Scatter-gather table.
3055 * @n_elem: Number of elements in s/g table.
3057 * Initialize the data-related elements of queued_cmd @qc
3058 * to point to a scatter-gather table @sg, containing @n_elem
3059 * elements.
3061 * LOCKING:
3062 * spin_lock_irqsave(host_set lock)
3065 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3066 unsigned int n_elem)
3068 qc->flags |= ATA_QCFLAG_SG;
3069 qc->__sg = sg;
3070 qc->n_elem = n_elem;
3071 qc->orig_n_elem = n_elem;
3075 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3076 * @qc: Command with memory buffer to be mapped.
3078 * DMA-map the memory buffer associated with queued_cmd @qc.
3080 * LOCKING:
3081 * spin_lock_irqsave(host_set lock)
3083 * RETURNS:
3084 * Zero on success, negative on error.
3087 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3089 struct ata_port *ap = qc->ap;
3090 int dir = qc->dma_dir;
3091 struct scatterlist *sg = qc->__sg;
3092 dma_addr_t dma_address;
3094 /* we must lengthen transfers to end on a 32-bit boundary */
3095 qc->pad_len = sg->length & 3;
3096 if (qc->pad_len) {
3097 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3098 struct scatterlist *psg = &qc->pad_sgent;
3100 assert(qc->dev->class == ATA_DEV_ATAPI);
3102 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3104 if (qc->tf.flags & ATA_TFLAG_WRITE)
3105 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3106 qc->pad_len);
3108 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3109 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3110 /* trim sg */
3111 sg->length -= qc->pad_len;
3113 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3114 sg->length, qc->pad_len);
3117 if (!sg->length) {
3118 sg_dma_address(sg) = 0;
3119 goto skip_map;
3122 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
3123 sg->length, dir);
3124 if (dma_mapping_error(dma_address)) {
3125 /* restore sg */
3126 sg->length += qc->pad_len;
3127 return -1;
3130 sg_dma_address(sg) = dma_address;
3131 skip_map:
3132 sg_dma_len(sg) = sg->length;
3134 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3135 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3137 return 0;
3141 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3142 * @qc: Command with scatter-gather table to be mapped.
3144 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3146 * LOCKING:
3147 * spin_lock_irqsave(host_set lock)
3149 * RETURNS:
3150 * Zero on success, negative on error.
3154 static int ata_sg_setup(struct ata_queued_cmd *qc)
3156 struct ata_port *ap = qc->ap;
3157 struct scatterlist *sg = qc->__sg;
3158 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3159 int n_elem, pre_n_elem, dir, trim_sg = 0;
3161 VPRINTK("ENTER, ata%u\n", ap->id);
3162 assert(qc->flags & ATA_QCFLAG_SG);
3164 /* we must lengthen transfers to end on a 32-bit boundary */
3165 qc->pad_len = lsg->length & 3;
3166 if (qc->pad_len) {
3167 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3168 struct scatterlist *psg = &qc->pad_sgent;
3169 unsigned int offset;
3171 assert(qc->dev->class == ATA_DEV_ATAPI);
3173 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3176 * psg->page/offset are used to copy to-be-written
3177 * data in this function or read data in ata_sg_clean.
3179 offset = lsg->offset + lsg->length - qc->pad_len;
3180 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3181 psg->offset = offset_in_page(offset);
3183 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3184 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3185 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3186 kunmap_atomic(addr, KM_IRQ0);
3189 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3190 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3191 /* trim last sg */
3192 lsg->length -= qc->pad_len;
3193 if (lsg->length == 0)
3194 trim_sg = 1;
3196 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3197 qc->n_elem - 1, lsg->length, qc->pad_len);
3200 pre_n_elem = qc->n_elem;
3201 if (trim_sg && pre_n_elem)
3202 pre_n_elem--;
3204 if (!pre_n_elem) {
3205 n_elem = 0;
3206 goto skip_map;
3209 dir = qc->dma_dir;
3210 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
3211 if (n_elem < 1) {
3212 /* restore last sg */
3213 lsg->length += qc->pad_len;
3214 return -1;
3217 DPRINTK("%d sg elements mapped\n", n_elem);
3219 skip_map:
3220 qc->n_elem = n_elem;
3222 return 0;
3226 * ata_poll_qc_complete - turn irq back on and finish qc
3227 * @qc: Command to complete
3228 * @err_mask: ATA status register content
3230 * LOCKING:
3231 * None. (grabs host lock)
3234 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3236 struct ata_port *ap = qc->ap;
3237 unsigned long flags;
3239 spin_lock_irqsave(&ap->host_set->lock, flags);
3240 ap->flags &= ~ATA_FLAG_NOINTR;
3241 ata_irq_on(ap);
3242 ata_qc_complete(qc);
3243 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3247 * ata_pio_poll - poll using PIO, depending on current state
3248 * @ap: the target ata_port
3250 * LOCKING:
3251 * None. (executing in kernel thread context)
3253 * RETURNS:
3254 * timeout value to use
3257 static unsigned long ata_pio_poll(struct ata_port *ap)
3259 struct ata_queued_cmd *qc;
3260 u8 status;
3261 unsigned int poll_state = HSM_ST_UNKNOWN;
3262 unsigned int reg_state = HSM_ST_UNKNOWN;
3264 qc = ata_qc_from_tag(ap, ap->active_tag);
3265 assert(qc != NULL);
3267 switch (ap->hsm_task_state) {
3268 case HSM_ST:
3269 case HSM_ST_POLL:
3270 poll_state = HSM_ST_POLL;
3271 reg_state = HSM_ST;
3272 break;
3273 case HSM_ST_LAST:
3274 case HSM_ST_LAST_POLL:
3275 poll_state = HSM_ST_LAST_POLL;
3276 reg_state = HSM_ST_LAST;
3277 break;
3278 default:
3279 BUG();
3280 break;
3283 status = ata_chk_status(ap);
3284 if (status & ATA_BUSY) {
3285 if (time_after(jiffies, ap->pio_task_timeout)) {
3286 qc->err_mask |= AC_ERR_TIMEOUT;
3287 ap->hsm_task_state = HSM_ST_TMOUT;
3288 return 0;
3290 ap->hsm_task_state = poll_state;
3291 return ATA_SHORT_PAUSE;
3294 ap->hsm_task_state = reg_state;
3295 return 0;
3299 * ata_pio_complete - check if drive is busy or idle
3300 * @ap: the target ata_port
3302 * LOCKING:
3303 * None. (executing in kernel thread context)
3305 * RETURNS:
3306 * Non-zero if qc completed, zero otherwise.
3309 static int ata_pio_complete (struct ata_port *ap)
3311 struct ata_queued_cmd *qc;
3312 u8 drv_stat;
3315 * This is purely heuristic. This is a fast path. Sometimes when
3316 * we enter, BSY will be cleared in a chk-status or two. If not,
3317 * the drive is probably seeking or something. Snooze for a couple
3318 * msecs, then chk-status again. If still busy, fall back to
3319 * HSM_ST_POLL state.
3321 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3322 if (drv_stat & ATA_BUSY) {
3323 msleep(2);
3324 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3325 if (drv_stat & ATA_BUSY) {
3326 ap->hsm_task_state = HSM_ST_LAST_POLL;
3327 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3328 return 0;
3332 qc = ata_qc_from_tag(ap, ap->active_tag);
3333 assert(qc != NULL);
3335 drv_stat = ata_wait_idle(ap);
3336 if (!ata_ok(drv_stat)) {
3337 qc->err_mask |= __ac_err_mask(drv_stat);
3338 ap->hsm_task_state = HSM_ST_ERR;
3339 return 0;
3342 ap->hsm_task_state = HSM_ST_IDLE;
3344 assert(qc->err_mask == 0);
3345 ata_poll_qc_complete(qc);
3347 /* another command may start at this point */
3349 return 1;
3354 * swap_buf_le16 - swap halves of 16-bit words in place
3355 * @buf: Buffer to swap
3356 * @buf_words: Number of 16-bit words in buffer.
3358 * Swap halves of 16-bit words if needed to convert from
3359 * little-endian byte order to native cpu byte order, or
3360 * vice-versa.
3362 * LOCKING:
3363 * Inherited from caller.
3365 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3367 #ifdef __BIG_ENDIAN
3368 unsigned int i;
3370 for (i = 0; i < buf_words; i++)
3371 buf[i] = le16_to_cpu(buf[i]);
3372 #endif /* __BIG_ENDIAN */
3376 * ata_mmio_data_xfer - Transfer data by MMIO
3377 * @ap: port to read/write
3378 * @buf: data buffer
3379 * @buflen: buffer length
3380 * @write_data: read/write
3382 * Transfer data from/to the device data register by MMIO.
3384 * LOCKING:
3385 * Inherited from caller.
3388 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3389 unsigned int buflen, int write_data)
3391 unsigned int i;
3392 unsigned int words = buflen >> 1;
3393 u16 *buf16 = (u16 *) buf;
3394 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3396 /* Transfer multiple of 2 bytes */
3397 if (write_data) {
3398 for (i = 0; i < words; i++)
3399 writew(le16_to_cpu(buf16[i]), mmio);
3400 } else {
3401 for (i = 0; i < words; i++)
3402 buf16[i] = cpu_to_le16(readw(mmio));
3405 /* Transfer trailing 1 byte, if any. */
3406 if (unlikely(buflen & 0x01)) {
3407 u16 align_buf[1] = { 0 };
3408 unsigned char *trailing_buf = buf + buflen - 1;
3410 if (write_data) {
3411 memcpy(align_buf, trailing_buf, 1);
3412 writew(le16_to_cpu(align_buf[0]), mmio);
3413 } else {
3414 align_buf[0] = cpu_to_le16(readw(mmio));
3415 memcpy(trailing_buf, align_buf, 1);
3421 * ata_pio_data_xfer - Transfer data by PIO
3422 * @ap: port to read/write
3423 * @buf: data buffer
3424 * @buflen: buffer length
3425 * @write_data: read/write
3427 * Transfer data from/to the device data register by PIO.
3429 * LOCKING:
3430 * Inherited from caller.
3433 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3434 unsigned int buflen, int write_data)
3436 unsigned int words = buflen >> 1;
3438 /* Transfer multiple of 2 bytes */
3439 if (write_data)
3440 outsw(ap->ioaddr.data_addr, buf, words);
3441 else
3442 insw(ap->ioaddr.data_addr, buf, words);
3444 /* Transfer trailing 1 byte, if any. */
3445 if (unlikely(buflen & 0x01)) {
3446 u16 align_buf[1] = { 0 };
3447 unsigned char *trailing_buf = buf + buflen - 1;
3449 if (write_data) {
3450 memcpy(align_buf, trailing_buf, 1);
3451 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3452 } else {
3453 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3454 memcpy(trailing_buf, align_buf, 1);
3460 * ata_data_xfer - Transfer data from/to the data register.
3461 * @ap: port to read/write
3462 * @buf: data buffer
3463 * @buflen: buffer length
3464 * @do_write: read/write
3466 * Transfer data from/to the device data register.
3468 * LOCKING:
3469 * Inherited from caller.
3472 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3473 unsigned int buflen, int do_write)
3475 /* Make the crap hardware pay the costs not the good stuff */
3476 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3477 unsigned long flags;
3478 local_irq_save(flags);
3479 if (ap->flags & ATA_FLAG_MMIO)
3480 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3481 else
3482 ata_pio_data_xfer(ap, buf, buflen, do_write);
3483 local_irq_restore(flags);
3484 } else {
3485 if (ap->flags & ATA_FLAG_MMIO)
3486 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3487 else
3488 ata_pio_data_xfer(ap, buf, buflen, do_write);
3493 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3494 * @qc: Command on going
3496 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3498 * LOCKING:
3499 * Inherited from caller.
3502 static void ata_pio_sector(struct ata_queued_cmd *qc)
3504 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3505 struct scatterlist *sg = qc->__sg;
3506 struct ata_port *ap = qc->ap;
3507 struct page *page;
3508 unsigned int offset;
3509 unsigned char *buf;
3511 if (qc->cursect == (qc->nsect - 1))
3512 ap->hsm_task_state = HSM_ST_LAST;
3514 page = sg[qc->cursg].page;
3515 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3517 /* get the current page and offset */
3518 page = nth_page(page, (offset >> PAGE_SHIFT));
3519 offset %= PAGE_SIZE;
3521 buf = kmap(page) + offset;
3523 qc->cursect++;
3524 qc->cursg_ofs++;
3526 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3527 qc->cursg++;
3528 qc->cursg_ofs = 0;
3531 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3533 /* do the actual data transfer */
3534 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3535 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3537 kunmap(page);
3541 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3542 * @qc: Command on going
3543 * @bytes: number of bytes
3545 * Transfer Transfer data from/to the ATAPI device.
3547 * LOCKING:
3548 * Inherited from caller.
3552 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3554 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3555 struct scatterlist *sg = qc->__sg;
3556 struct ata_port *ap = qc->ap;
3557 struct page *page;
3558 unsigned char *buf;
3559 unsigned int offset, count;
3561 if (qc->curbytes + bytes >= qc->nbytes)
3562 ap->hsm_task_state = HSM_ST_LAST;
3564 next_sg:
3565 if (unlikely(qc->cursg >= qc->n_elem)) {
3567 * The end of qc->sg is reached and the device expects
3568 * more data to transfer. In order not to overrun qc->sg
3569 * and fulfill length specified in the byte count register,
3570 * - for read case, discard trailing data from the device
3571 * - for write case, padding zero data to the device
3573 u16 pad_buf[1] = { 0 };
3574 unsigned int words = bytes >> 1;
3575 unsigned int i;
3577 if (words) /* warning if bytes > 1 */
3578 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3579 ap->id, bytes);
3581 for (i = 0; i < words; i++)
3582 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3584 ap->hsm_task_state = HSM_ST_LAST;
3585 return;
3588 sg = &qc->__sg[qc->cursg];
3590 page = sg->page;
3591 offset = sg->offset + qc->cursg_ofs;
3593 /* get the current page and offset */
3594 page = nth_page(page, (offset >> PAGE_SHIFT));
3595 offset %= PAGE_SIZE;
3597 /* don't overrun current sg */
3598 count = min(sg->length - qc->cursg_ofs, bytes);
3600 /* don't cross page boundaries */
3601 count = min(count, (unsigned int)PAGE_SIZE - offset);
3603 buf = kmap(page) + offset;
3605 bytes -= count;
3606 qc->curbytes += count;
3607 qc->cursg_ofs += count;
3609 if (qc->cursg_ofs == sg->length) {
3610 qc->cursg++;
3611 qc->cursg_ofs = 0;
3614 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3616 /* do the actual data transfer */
3617 ata_data_xfer(ap, buf, count, do_write);
3619 kunmap(page);
3621 if (bytes)
3622 goto next_sg;
3626 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3627 * @qc: Command on going
3629 * Transfer Transfer data from/to the ATAPI device.
3631 * LOCKING:
3632 * Inherited from caller.
3635 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3637 struct ata_port *ap = qc->ap;
3638 struct ata_device *dev = qc->dev;
3639 unsigned int ireason, bc_lo, bc_hi, bytes;
3640 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3642 ap->ops->tf_read(ap, &qc->tf);
3643 ireason = qc->tf.nsect;
3644 bc_lo = qc->tf.lbam;
3645 bc_hi = qc->tf.lbah;
3646 bytes = (bc_hi << 8) | bc_lo;
3648 /* shall be cleared to zero, indicating xfer of data */
3649 if (ireason & (1 << 0))
3650 goto err_out;
3652 /* make sure transfer direction matches expected */
3653 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3654 if (do_write != i_write)
3655 goto err_out;
3657 __atapi_pio_bytes(qc, bytes);
3659 return;
3661 err_out:
3662 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3663 ap->id, dev->devno);
3664 qc->err_mask |= AC_ERR_HSM;
3665 ap->hsm_task_state = HSM_ST_ERR;
3669 * ata_pio_block - start PIO on a block
3670 * @ap: the target ata_port
3672 * LOCKING:
3673 * None. (executing in kernel thread context)
3676 static void ata_pio_block(struct ata_port *ap)
3678 struct ata_queued_cmd *qc;
3679 u8 status;
3682 * This is purely heuristic. This is a fast path.
3683 * Sometimes when we enter, BSY will be cleared in
3684 * a chk-status or two. If not, the drive is probably seeking
3685 * or something. Snooze for a couple msecs, then
3686 * chk-status again. If still busy, fall back to
3687 * HSM_ST_POLL state.
3689 status = ata_busy_wait(ap, ATA_BUSY, 5);
3690 if (status & ATA_BUSY) {
3691 msleep(2);
3692 status = ata_busy_wait(ap, ATA_BUSY, 10);
3693 if (status & ATA_BUSY) {
3694 ap->hsm_task_state = HSM_ST_POLL;
3695 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3696 return;
3700 qc = ata_qc_from_tag(ap, ap->active_tag);
3701 assert(qc != NULL);
3703 /* check error */
3704 if (status & (ATA_ERR | ATA_DF)) {
3705 qc->err_mask |= AC_ERR_DEV;
3706 ap->hsm_task_state = HSM_ST_ERR;
3707 return;
3710 /* transfer data if any */
3711 if (is_atapi_taskfile(&qc->tf)) {
3712 /* DRQ=0 means no more data to transfer */
3713 if ((status & ATA_DRQ) == 0) {
3714 ap->hsm_task_state = HSM_ST_LAST;
3715 return;
3718 atapi_pio_bytes(qc);
3719 } else {
3720 /* handle BSY=0, DRQ=0 as error */
3721 if ((status & ATA_DRQ) == 0) {
3722 qc->err_mask |= AC_ERR_HSM;
3723 ap->hsm_task_state = HSM_ST_ERR;
3724 return;
3727 ata_pio_sector(qc);
3731 static void ata_pio_error(struct ata_port *ap)
3733 struct ata_queued_cmd *qc;
3735 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3737 qc = ata_qc_from_tag(ap, ap->active_tag);
3738 assert(qc != NULL);
3740 /* make sure qc->err_mask is available to
3741 * know what's wrong and recover
3743 assert(qc->err_mask);
3745 ap->hsm_task_state = HSM_ST_IDLE;
3747 ata_poll_qc_complete(qc);
3750 static void ata_pio_task(void *_data)
3752 struct ata_port *ap = _data;
3753 unsigned long timeout;
3754 int qc_completed;
3756 fsm_start:
3757 timeout = 0;
3758 qc_completed = 0;
3760 switch (ap->hsm_task_state) {
3761 case HSM_ST_IDLE:
3762 return;
3764 case HSM_ST:
3765 ata_pio_block(ap);
3766 break;
3768 case HSM_ST_LAST:
3769 qc_completed = ata_pio_complete(ap);
3770 break;
3772 case HSM_ST_POLL:
3773 case HSM_ST_LAST_POLL:
3774 timeout = ata_pio_poll(ap);
3775 break;
3777 case HSM_ST_TMOUT:
3778 case HSM_ST_ERR:
3779 ata_pio_error(ap);
3780 return;
3783 if (timeout)
3784 ata_queue_delayed_pio_task(ap, timeout);
3785 else if (!qc_completed)
3786 goto fsm_start;
3790 * ata_qc_timeout - Handle timeout of queued command
3791 * @qc: Command that timed out
3793 * Some part of the kernel (currently, only the SCSI layer)
3794 * has noticed that the active command on port @ap has not
3795 * completed after a specified length of time. Handle this
3796 * condition by disabling DMA (if necessary) and completing
3797 * transactions, with error if necessary.
3799 * This also handles the case of the "lost interrupt", where
3800 * for some reason (possibly hardware bug, possibly driver bug)
3801 * an interrupt was not delivered to the driver, even though the
3802 * transaction completed successfully.
3804 * LOCKING:
3805 * Inherited from SCSI layer (none, can sleep)
3808 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3810 struct ata_port *ap = qc->ap;
3811 struct ata_host_set *host_set = ap->host_set;
3812 u8 host_stat = 0, drv_stat;
3813 unsigned long flags;
3815 DPRINTK("ENTER\n");
3817 ata_flush_pio_tasks(ap);
3818 ap->hsm_task_state = HSM_ST_IDLE;
3820 spin_lock_irqsave(&host_set->lock, flags);
3822 switch (qc->tf.protocol) {
3824 case ATA_PROT_DMA:
3825 case ATA_PROT_ATAPI_DMA:
3826 host_stat = ap->ops->bmdma_status(ap);
3828 /* before we do anything else, clear DMA-Start bit */
3829 ap->ops->bmdma_stop(qc);
3831 /* fall through */
3833 default:
3834 ata_altstatus(ap);
3835 drv_stat = ata_chk_status(ap);
3837 /* ack bmdma irq events */
3838 ap->ops->irq_clear(ap);
3840 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3841 ap->id, qc->tf.command, drv_stat, host_stat);
3843 /* complete taskfile transaction */
3844 qc->err_mask |= ac_err_mask(drv_stat);
3845 break;
3848 spin_unlock_irqrestore(&host_set->lock, flags);
3850 ata_eh_qc_complete(qc);
3852 DPRINTK("EXIT\n");
3856 * ata_eng_timeout - Handle timeout of queued command
3857 * @ap: Port on which timed-out command is active
3859 * Some part of the kernel (currently, only the SCSI layer)
3860 * has noticed that the active command on port @ap has not
3861 * completed after a specified length of time. Handle this
3862 * condition by disabling DMA (if necessary) and completing
3863 * transactions, with error if necessary.
3865 * This also handles the case of the "lost interrupt", where
3866 * for some reason (possibly hardware bug, possibly driver bug)
3867 * an interrupt was not delivered to the driver, even though the
3868 * transaction completed successfully.
3870 * LOCKING:
3871 * Inherited from SCSI layer (none, can sleep)
3874 void ata_eng_timeout(struct ata_port *ap)
3876 struct ata_queued_cmd *qc;
3878 DPRINTK("ENTER\n");
3880 qc = ata_qc_from_tag(ap, ap->active_tag);
3881 if (qc)
3882 ata_qc_timeout(qc);
3883 else {
3884 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3885 ap->id);
3886 goto out;
3889 out:
3890 DPRINTK("EXIT\n");
3894 * ata_qc_new - Request an available ATA command, for queueing
3895 * @ap: Port associated with device @dev
3896 * @dev: Device from whom we request an available command structure
3898 * LOCKING:
3899 * None.
3902 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3904 struct ata_queued_cmd *qc = NULL;
3905 unsigned int i;
3907 for (i = 0; i < ATA_MAX_QUEUE; i++)
3908 if (!test_and_set_bit(i, &ap->qactive)) {
3909 qc = ata_qc_from_tag(ap, i);
3910 break;
3913 if (qc)
3914 qc->tag = i;
3916 return qc;
3920 * ata_qc_new_init - Request an available ATA command, and initialize it
3921 * @ap: Port associated with device @dev
3922 * @dev: Device from whom we request an available command structure
3924 * LOCKING:
3925 * None.
3928 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3929 struct ata_device *dev)
3931 struct ata_queued_cmd *qc;
3933 qc = ata_qc_new(ap);
3934 if (qc) {
3935 qc->scsicmd = NULL;
3936 qc->ap = ap;
3937 qc->dev = dev;
3939 ata_qc_reinit(qc);
3942 return qc;
3946 * ata_qc_free - free unused ata_queued_cmd
3947 * @qc: Command to complete
3949 * Designed to free unused ata_queued_cmd object
3950 * in case something prevents using it.
3952 * LOCKING:
3953 * spin_lock_irqsave(host_set lock)
3955 void ata_qc_free(struct ata_queued_cmd *qc)
3957 struct ata_port *ap = qc->ap;
3958 unsigned int tag;
3960 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3962 qc->flags = 0;
3963 tag = qc->tag;
3964 if (likely(ata_tag_valid(tag))) {
3965 if (tag == ap->active_tag)
3966 ap->active_tag = ATA_TAG_POISON;
3967 qc->tag = ATA_TAG_POISON;
3968 clear_bit(tag, &ap->qactive);
3973 * ata_qc_complete - Complete an active ATA command
3974 * @qc: Command to complete
3975 * @err_mask: ATA Status register contents
3977 * Indicate to the mid and upper layers that an ATA
3978 * command has completed, with either an ok or not-ok status.
3980 * LOCKING:
3981 * spin_lock_irqsave(host_set lock)
3984 void ata_qc_complete(struct ata_queued_cmd *qc)
3986 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3987 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3989 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3990 ata_sg_clean(qc);
3992 /* atapi: mark qc as inactive to prevent the interrupt handler
3993 * from completing the command twice later, before the error handler
3994 * is called. (when rc != 0 and atapi request sense is needed)
3996 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3998 /* call completion callback */
3999 qc->complete_fn(qc);
4002 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4004 struct ata_port *ap = qc->ap;
4006 switch (qc->tf.protocol) {
4007 case ATA_PROT_DMA:
4008 case ATA_PROT_ATAPI_DMA:
4009 return 1;
4011 case ATA_PROT_ATAPI:
4012 case ATA_PROT_PIO:
4013 case ATA_PROT_PIO_MULT:
4014 if (ap->flags & ATA_FLAG_PIO_DMA)
4015 return 1;
4017 /* fall through */
4019 default:
4020 return 0;
4023 /* never reached */
4027 * ata_qc_issue - issue taskfile to device
4028 * @qc: command to issue to device
4030 * Prepare an ATA command to submission to device.
4031 * This includes mapping the data into a DMA-able
4032 * area, filling in the S/G table, and finally
4033 * writing the taskfile to hardware, starting the command.
4035 * LOCKING:
4036 * spin_lock_irqsave(host_set lock)
4038 * RETURNS:
4039 * Zero on success, AC_ERR_* mask on failure
4042 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
4044 struct ata_port *ap = qc->ap;
4046 if (ata_should_dma_map(qc)) {
4047 if (qc->flags & ATA_QCFLAG_SG) {
4048 if (ata_sg_setup(qc))
4049 goto sg_err;
4050 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4051 if (ata_sg_setup_one(qc))
4052 goto sg_err;
4054 } else {
4055 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4058 ap->ops->qc_prep(qc);
4060 qc->ap->active_tag = qc->tag;
4061 qc->flags |= ATA_QCFLAG_ACTIVE;
4063 return ap->ops->qc_issue(qc);
4065 sg_err:
4066 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4067 return AC_ERR_SYSTEM;
4072 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4073 * @qc: command to issue to device
4075 * Using various libata functions and hooks, this function
4076 * starts an ATA command. ATA commands are grouped into
4077 * classes called "protocols", and issuing each type of protocol
4078 * is slightly different.
4080 * May be used as the qc_issue() entry in ata_port_operations.
4082 * LOCKING:
4083 * spin_lock_irqsave(host_set lock)
4085 * RETURNS:
4086 * Zero on success, AC_ERR_* mask on failure
4089 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4091 struct ata_port *ap = qc->ap;
4093 ata_dev_select(ap, qc->dev->devno, 1, 0);
4095 switch (qc->tf.protocol) {
4096 case ATA_PROT_NODATA:
4097 ata_tf_to_host(ap, &qc->tf);
4098 break;
4100 case ATA_PROT_DMA:
4101 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4102 ap->ops->bmdma_setup(qc); /* set up bmdma */
4103 ap->ops->bmdma_start(qc); /* initiate bmdma */
4104 break;
4106 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4107 ata_qc_set_polling(qc);
4108 ata_tf_to_host(ap, &qc->tf);
4109 ap->hsm_task_state = HSM_ST;
4110 ata_queue_pio_task(ap);
4111 break;
4113 case ATA_PROT_ATAPI:
4114 ata_qc_set_polling(qc);
4115 ata_tf_to_host(ap, &qc->tf);
4116 ata_queue_packet_task(ap);
4117 break;
4119 case ATA_PROT_ATAPI_NODATA:
4120 ap->flags |= ATA_FLAG_NOINTR;
4121 ata_tf_to_host(ap, &qc->tf);
4122 ata_queue_packet_task(ap);
4123 break;
4125 case ATA_PROT_ATAPI_DMA:
4126 ap->flags |= ATA_FLAG_NOINTR;
4127 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4128 ap->ops->bmdma_setup(qc); /* set up bmdma */
4129 ata_queue_packet_task(ap);
4130 break;
4132 default:
4133 WARN_ON(1);
4134 return AC_ERR_SYSTEM;
4137 return 0;
4141 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
4142 * @qc: Info associated with this ATA transaction.
4144 * LOCKING:
4145 * spin_lock_irqsave(host_set lock)
4148 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4150 struct ata_port *ap = qc->ap;
4151 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4152 u8 dmactl;
4153 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4155 /* load PRD table addr. */
4156 mb(); /* make sure PRD table writes are visible to controller */
4157 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4159 /* specify data direction, triple-check start bit is clear */
4160 dmactl = readb(mmio + ATA_DMA_CMD);
4161 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4162 if (!rw)
4163 dmactl |= ATA_DMA_WR;
4164 writeb(dmactl, mmio + ATA_DMA_CMD);
4166 /* issue r/w command */
4167 ap->ops->exec_command(ap, &qc->tf);
4171 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
4172 * @qc: Info associated with this ATA transaction.
4174 * LOCKING:
4175 * spin_lock_irqsave(host_set lock)
4178 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4180 struct ata_port *ap = qc->ap;
4181 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4182 u8 dmactl;
4184 /* start host DMA transaction */
4185 dmactl = readb(mmio + ATA_DMA_CMD);
4186 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4188 /* Strictly, one may wish to issue a readb() here, to
4189 * flush the mmio write. However, control also passes
4190 * to the hardware at this point, and it will interrupt
4191 * us when we are to resume control. So, in effect,
4192 * we don't care when the mmio write flushes.
4193 * Further, a read of the DMA status register _immediately_
4194 * following the write may not be what certain flaky hardware
4195 * is expected, so I think it is best to not add a readb()
4196 * without first all the MMIO ATA cards/mobos.
4197 * Or maybe I'm just being paranoid.
4202 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4203 * @qc: Info associated with this ATA transaction.
4205 * LOCKING:
4206 * spin_lock_irqsave(host_set lock)
4209 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4211 struct ata_port *ap = qc->ap;
4212 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4213 u8 dmactl;
4215 /* load PRD table addr. */
4216 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4218 /* specify data direction, triple-check start bit is clear */
4219 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4220 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4221 if (!rw)
4222 dmactl |= ATA_DMA_WR;
4223 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4225 /* issue r/w command */
4226 ap->ops->exec_command(ap, &qc->tf);
4230 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4231 * @qc: Info associated with this ATA transaction.
4233 * LOCKING:
4234 * spin_lock_irqsave(host_set lock)
4237 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4239 struct ata_port *ap = qc->ap;
4240 u8 dmactl;
4242 /* start host DMA transaction */
4243 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4244 outb(dmactl | ATA_DMA_START,
4245 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4250 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4251 * @qc: Info associated with this ATA transaction.
4253 * Writes the ATA_DMA_START flag to the DMA command register.
4255 * May be used as the bmdma_start() entry in ata_port_operations.
4257 * LOCKING:
4258 * spin_lock_irqsave(host_set lock)
4260 void ata_bmdma_start(struct ata_queued_cmd *qc)
4262 if (qc->ap->flags & ATA_FLAG_MMIO)
4263 ata_bmdma_start_mmio(qc);
4264 else
4265 ata_bmdma_start_pio(qc);
4270 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4271 * @qc: Info associated with this ATA transaction.
4273 * Writes address of PRD table to device's PRD Table Address
4274 * register, sets the DMA control register, and calls
4275 * ops->exec_command() to start the transfer.
4277 * May be used as the bmdma_setup() entry in ata_port_operations.
4279 * LOCKING:
4280 * spin_lock_irqsave(host_set lock)
4282 void ata_bmdma_setup(struct ata_queued_cmd *qc)
4284 if (qc->ap->flags & ATA_FLAG_MMIO)
4285 ata_bmdma_setup_mmio(qc);
4286 else
4287 ata_bmdma_setup_pio(qc);
4292 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
4293 * @ap: Port associated with this ATA transaction.
4295 * Clear interrupt and error flags in DMA status register.
4297 * May be used as the irq_clear() entry in ata_port_operations.
4299 * LOCKING:
4300 * spin_lock_irqsave(host_set lock)
4303 void ata_bmdma_irq_clear(struct ata_port *ap)
4305 if (ap->flags & ATA_FLAG_MMIO) {
4306 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4307 writeb(readb(mmio), mmio);
4308 } else {
4309 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4310 outb(inb(addr), addr);
4317 * ata_bmdma_status - Read PCI IDE BMDMA status
4318 * @ap: Port associated with this ATA transaction.
4320 * Read and return BMDMA status register.
4322 * May be used as the bmdma_status() entry in ata_port_operations.
4324 * LOCKING:
4325 * spin_lock_irqsave(host_set lock)
4328 u8 ata_bmdma_status(struct ata_port *ap)
4330 u8 host_stat;
4331 if (ap->flags & ATA_FLAG_MMIO) {
4332 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4333 host_stat = readb(mmio + ATA_DMA_STATUS);
4334 } else
4335 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4336 return host_stat;
4341 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4342 * @qc: Command we are ending DMA for
4344 * Clears the ATA_DMA_START flag in the dma control register
4346 * May be used as the bmdma_stop() entry in ata_port_operations.
4348 * LOCKING:
4349 * spin_lock_irqsave(host_set lock)
4352 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4354 struct ata_port *ap = qc->ap;
4355 if (ap->flags & ATA_FLAG_MMIO) {
4356 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4358 /* clear start/stop bit */
4359 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4360 mmio + ATA_DMA_CMD);
4361 } else {
4362 /* clear start/stop bit */
4363 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4364 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4367 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4368 ata_altstatus(ap); /* dummy read */
4372 * ata_host_intr - Handle host interrupt for given (port, task)
4373 * @ap: Port on which interrupt arrived (possibly...)
4374 * @qc: Taskfile currently active in engine
4376 * Handle host interrupt for given queued command. Currently,
4377 * only DMA interrupts are handled. All other commands are
4378 * handled via polling with interrupts disabled (nIEN bit).
4380 * LOCKING:
4381 * spin_lock_irqsave(host_set lock)
4383 * RETURNS:
4384 * One if interrupt was handled, zero if not (shared irq).
4387 inline unsigned int ata_host_intr (struct ata_port *ap,
4388 struct ata_queued_cmd *qc)
4390 u8 status, host_stat;
4392 switch (qc->tf.protocol) {
4394 case ATA_PROT_DMA:
4395 case ATA_PROT_ATAPI_DMA:
4396 case ATA_PROT_ATAPI:
4397 /* check status of DMA engine */
4398 host_stat = ap->ops->bmdma_status(ap);
4399 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4401 /* if it's not our irq... */
4402 if (!(host_stat & ATA_DMA_INTR))
4403 goto idle_irq;
4405 /* before we do anything else, clear DMA-Start bit */
4406 ap->ops->bmdma_stop(qc);
4408 /* fall through */
4410 case ATA_PROT_ATAPI_NODATA:
4411 case ATA_PROT_NODATA:
4412 /* check altstatus */
4413 status = ata_altstatus(ap);
4414 if (status & ATA_BUSY)
4415 goto idle_irq;
4417 /* check main status, clearing INTRQ */
4418 status = ata_chk_status(ap);
4419 if (unlikely(status & ATA_BUSY))
4420 goto idle_irq;
4421 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4422 ap->id, qc->tf.protocol, status);
4424 /* ack bmdma irq events */
4425 ap->ops->irq_clear(ap);
4427 /* complete taskfile transaction */
4428 qc->err_mask |= ac_err_mask(status);
4429 ata_qc_complete(qc);
4430 break;
4432 default:
4433 goto idle_irq;
4436 return 1; /* irq handled */
4438 idle_irq:
4439 ap->stats.idle_irq++;
4441 #ifdef ATA_IRQ_TRAP
4442 if ((ap->stats.idle_irq % 1000) == 0) {
4443 handled = 1;
4444 ata_irq_ack(ap, 0); /* debug trap */
4445 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4447 #endif
4448 return 0; /* irq not handled */
4452 * ata_interrupt - Default ATA host interrupt handler
4453 * @irq: irq line (unused)
4454 * @dev_instance: pointer to our ata_host_set information structure
4455 * @regs: unused
4457 * Default interrupt handler for PCI IDE devices. Calls
4458 * ata_host_intr() for each port that is not disabled.
4460 * LOCKING:
4461 * Obtains host_set lock during operation.
4463 * RETURNS:
4464 * IRQ_NONE or IRQ_HANDLED.
4467 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4469 struct ata_host_set *host_set = dev_instance;
4470 unsigned int i;
4471 unsigned int handled = 0;
4472 unsigned long flags;
4474 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4475 spin_lock_irqsave(&host_set->lock, flags);
4477 for (i = 0; i < host_set->n_ports; i++) {
4478 struct ata_port *ap;
4480 ap = host_set->ports[i];
4481 if (ap &&
4482 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4483 struct ata_queued_cmd *qc;
4485 qc = ata_qc_from_tag(ap, ap->active_tag);
4486 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4487 (qc->flags & ATA_QCFLAG_ACTIVE))
4488 handled |= ata_host_intr(ap, qc);
4492 spin_unlock_irqrestore(&host_set->lock, flags);
4494 return IRQ_RETVAL(handled);
4498 * atapi_packet_task - Write CDB bytes to hardware
4499 * @_data: Port to which ATAPI device is attached.
4501 * When device has indicated its readiness to accept
4502 * a CDB, this function is called. Send the CDB.
4503 * If DMA is to be performed, exit immediately.
4504 * Otherwise, we are in polling mode, so poll
4505 * status under operation succeeds or fails.
4507 * LOCKING:
4508 * Kernel thread context (may sleep)
4511 static void atapi_packet_task(void *_data)
4513 struct ata_port *ap = _data;
4514 struct ata_queued_cmd *qc;
4515 u8 status;
4517 qc = ata_qc_from_tag(ap, ap->active_tag);
4518 assert(qc != NULL);
4519 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4521 /* sleep-wait for BSY to clear */
4522 DPRINTK("busy wait\n");
4523 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4524 qc->err_mask |= AC_ERR_TIMEOUT;
4525 goto err_out;
4528 /* make sure DRQ is set */
4529 status = ata_chk_status(ap);
4530 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4531 qc->err_mask |= AC_ERR_HSM;
4532 goto err_out;
4535 /* send SCSI cdb */
4536 DPRINTK("send cdb\n");
4537 assert(ap->cdb_len >= 12);
4539 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4540 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4541 unsigned long flags;
4543 /* Once we're done issuing command and kicking bmdma,
4544 * irq handler takes over. To not lose irq, we need
4545 * to clear NOINTR flag before sending cdb, but
4546 * interrupt handler shouldn't be invoked before we're
4547 * finished. Hence, the following locking.
4549 spin_lock_irqsave(&ap->host_set->lock, flags);
4550 ap->flags &= ~ATA_FLAG_NOINTR;
4551 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4552 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4553 ap->ops->bmdma_start(qc); /* initiate bmdma */
4554 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4555 } else {
4556 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4558 /* PIO commands are handled by polling */
4559 ap->hsm_task_state = HSM_ST;
4560 ata_queue_pio_task(ap);
4563 return;
4565 err_out:
4566 ata_poll_qc_complete(qc);
4571 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4572 * without filling any other registers
4574 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4575 u8 cmd)
4577 struct ata_taskfile tf;
4578 int err;
4580 ata_tf_init(ap, &tf, dev->devno);
4582 tf.command = cmd;
4583 tf.flags |= ATA_TFLAG_DEVICE;
4584 tf.protocol = ATA_PROT_NODATA;
4586 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4587 if (err)
4588 printk(KERN_ERR "%s: ata command failed: %d\n",
4589 __FUNCTION__, err);
4591 return err;
4594 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4596 u8 cmd;
4598 if (!ata_try_flush_cache(dev))
4599 return 0;
4601 if (ata_id_has_flush_ext(dev->id))
4602 cmd = ATA_CMD_FLUSH_EXT;
4603 else
4604 cmd = ATA_CMD_FLUSH;
4606 return ata_do_simple_cmd(ap, dev, cmd);
4609 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4611 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4614 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4616 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4620 * ata_device_resume - wakeup a previously suspended devices
4621 * @ap: port the device is connected to
4622 * @dev: the device to resume
4624 * Kick the drive back into action, by sending it an idle immediate
4625 * command and making sure its transfer mode matches between drive
4626 * and host.
4629 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4631 if (ap->flags & ATA_FLAG_SUSPENDED) {
4632 ap->flags &= ~ATA_FLAG_SUSPENDED;
4633 ata_set_mode(ap);
4635 if (!ata_dev_present(dev))
4636 return 0;
4637 if (dev->class == ATA_DEV_ATA)
4638 ata_start_drive(ap, dev);
4640 return 0;
4644 * ata_device_suspend - prepare a device for suspend
4645 * @ap: port the device is connected to
4646 * @dev: the device to suspend
4648 * Flush the cache on the drive, if appropriate, then issue a
4649 * standbynow command.
4651 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4653 if (!ata_dev_present(dev))
4654 return 0;
4655 if (dev->class == ATA_DEV_ATA)
4656 ata_flush_cache(ap, dev);
4658 ata_standby_drive(ap, dev);
4659 ap->flags |= ATA_FLAG_SUSPENDED;
4660 return 0;
4664 * ata_port_start - Set port up for dma.
4665 * @ap: Port to initialize
4667 * Called just after data structures for each port are
4668 * initialized. Allocates space for PRD table.
4670 * May be used as the port_start() entry in ata_port_operations.
4672 * LOCKING:
4673 * Inherited from caller.
4676 int ata_port_start (struct ata_port *ap)
4678 struct device *dev = ap->host_set->dev;
4679 int rc;
4681 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4682 if (!ap->prd)
4683 return -ENOMEM;
4685 rc = ata_pad_alloc(ap, dev);
4686 if (rc) {
4687 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4688 return rc;
4691 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4693 return 0;
4698 * ata_port_stop - Undo ata_port_start()
4699 * @ap: Port to shut down
4701 * Frees the PRD table.
4703 * May be used as the port_stop() entry in ata_port_operations.
4705 * LOCKING:
4706 * Inherited from caller.
4709 void ata_port_stop (struct ata_port *ap)
4711 struct device *dev = ap->host_set->dev;
4713 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4714 ata_pad_free(ap, dev);
4717 void ata_host_stop (struct ata_host_set *host_set)
4719 if (host_set->mmio_base)
4720 iounmap(host_set->mmio_base);
4725 * ata_host_remove - Unregister SCSI host structure with upper layers
4726 * @ap: Port to unregister
4727 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4729 * LOCKING:
4730 * Inherited from caller.
4733 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4735 struct Scsi_Host *sh = ap->host;
4737 DPRINTK("ENTER\n");
4739 if (do_unregister)
4740 scsi_remove_host(sh);
4742 ap->ops->port_stop(ap);
4746 * ata_host_init - Initialize an ata_port structure
4747 * @ap: Structure to initialize
4748 * @host: associated SCSI mid-layer structure
4749 * @host_set: Collection of hosts to which @ap belongs
4750 * @ent: Probe information provided by low-level driver
4751 * @port_no: Port number associated with this ata_port
4753 * Initialize a new ata_port structure, and its associated
4754 * scsi_host.
4756 * LOCKING:
4757 * Inherited from caller.
4760 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4761 struct ata_host_set *host_set,
4762 const struct ata_probe_ent *ent, unsigned int port_no)
4764 unsigned int i;
4766 host->max_id = 16;
4767 host->max_lun = 1;
4768 host->max_channel = 1;
4769 host->unique_id = ata_unique_id++;
4770 host->max_cmd_len = 12;
4772 ap->flags = ATA_FLAG_PORT_DISABLED;
4773 ap->id = host->unique_id;
4774 ap->host = host;
4775 ap->ctl = ATA_DEVCTL_OBS;
4776 ap->host_set = host_set;
4777 ap->port_no = port_no;
4778 ap->hard_port_no =
4779 ent->legacy_mode ? ent->hard_port_no : port_no;
4780 ap->pio_mask = ent->pio_mask;
4781 ap->mwdma_mask = ent->mwdma_mask;
4782 ap->udma_mask = ent->udma_mask;
4783 ap->flags |= ent->host_flags;
4784 ap->ops = ent->port_ops;
4785 ap->cbl = ATA_CBL_NONE;
4786 ap->active_tag = ATA_TAG_POISON;
4787 ap->last_ctl = 0xFF;
4789 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4790 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4791 INIT_LIST_HEAD(&ap->eh_done_q);
4793 for (i = 0; i < ATA_MAX_DEVICES; i++)
4794 ap->device[i].devno = i;
4796 #ifdef ATA_IRQ_TRAP
4797 ap->stats.unhandled_irq = 1;
4798 ap->stats.idle_irq = 1;
4799 #endif
4801 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4805 * ata_host_add - Attach low-level ATA driver to system
4806 * @ent: Information provided by low-level driver
4807 * @host_set: Collections of ports to which we add
4808 * @port_no: Port number associated with this host
4810 * Attach low-level ATA driver to system.
4812 * LOCKING:
4813 * PCI/etc. bus probe sem.
4815 * RETURNS:
4816 * New ata_port on success, for NULL on error.
4819 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4820 struct ata_host_set *host_set,
4821 unsigned int port_no)
4823 struct Scsi_Host *host;
4824 struct ata_port *ap;
4825 int rc;
4827 DPRINTK("ENTER\n");
4828 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4829 if (!host)
4830 return NULL;
4832 ap = (struct ata_port *) &host->hostdata[0];
4834 ata_host_init(ap, host, host_set, ent, port_no);
4836 rc = ap->ops->port_start(ap);
4837 if (rc)
4838 goto err_out;
4840 return ap;
4842 err_out:
4843 scsi_host_put(host);
4844 return NULL;
4848 * ata_device_add - Register hardware device with ATA and SCSI layers
4849 * @ent: Probe information describing hardware device to be registered
4851 * This function processes the information provided in the probe
4852 * information struct @ent, allocates the necessary ATA and SCSI
4853 * host information structures, initializes them, and registers
4854 * everything with requisite kernel subsystems.
4856 * This function requests irqs, probes the ATA bus, and probes
4857 * the SCSI bus.
4859 * LOCKING:
4860 * PCI/etc. bus probe sem.
4862 * RETURNS:
4863 * Number of ports registered. Zero on error (no ports registered).
4866 int ata_device_add(const struct ata_probe_ent *ent)
4868 unsigned int count = 0, i;
4869 struct device *dev = ent->dev;
4870 struct ata_host_set *host_set;
4872 DPRINTK("ENTER\n");
4873 /* alloc a container for our list of ATA ports (buses) */
4874 host_set = kzalloc(sizeof(struct ata_host_set) +
4875 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4876 if (!host_set)
4877 return 0;
4878 spin_lock_init(&host_set->lock);
4880 host_set->dev = dev;
4881 host_set->n_ports = ent->n_ports;
4882 host_set->irq = ent->irq;
4883 host_set->mmio_base = ent->mmio_base;
4884 host_set->private_data = ent->private_data;
4885 host_set->ops = ent->port_ops;
4887 /* register each port bound to this device */
4888 for (i = 0; i < ent->n_ports; i++) {
4889 struct ata_port *ap;
4890 unsigned long xfer_mode_mask;
4892 ap = ata_host_add(ent, host_set, i);
4893 if (!ap)
4894 goto err_out;
4896 host_set->ports[i] = ap;
4897 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4898 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4899 (ap->pio_mask << ATA_SHIFT_PIO);
4901 /* print per-port info to dmesg */
4902 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4903 "bmdma 0x%lX irq %lu\n",
4904 ap->id,
4905 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4906 ata_mode_string(xfer_mode_mask),
4907 ap->ioaddr.cmd_addr,
4908 ap->ioaddr.ctl_addr,
4909 ap->ioaddr.bmdma_addr,
4910 ent->irq);
4912 ata_chk_status(ap);
4913 host_set->ops->irq_clear(ap);
4914 count++;
4917 if (!count)
4918 goto err_free_ret;
4920 /* obtain irq, that is shared between channels */
4921 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4922 DRV_NAME, host_set))
4923 goto err_out;
4925 /* perform each probe synchronously */
4926 DPRINTK("probe begin\n");
4927 for (i = 0; i < count; i++) {
4928 struct ata_port *ap;
4929 int rc;
4931 ap = host_set->ports[i];
4933 DPRINTK("ata%u: bus probe begin\n", ap->id);
4934 rc = ata_bus_probe(ap);
4935 DPRINTK("ata%u: bus probe end\n", ap->id);
4937 if (rc) {
4938 /* FIXME: do something useful here?
4939 * Current libata behavior will
4940 * tear down everything when
4941 * the module is removed
4942 * or the h/w is unplugged.
4946 rc = scsi_add_host(ap->host, dev);
4947 if (rc) {
4948 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4949 ap->id);
4950 /* FIXME: do something useful here */
4951 /* FIXME: handle unconditional calls to
4952 * scsi_scan_host and ata_host_remove, below,
4953 * at the very least
4958 /* probes are done, now scan each port's disk(s) */
4959 DPRINTK("host probe begin\n");
4960 for (i = 0; i < count; i++) {
4961 struct ata_port *ap = host_set->ports[i];
4963 ata_scsi_scan_host(ap);
4966 dev_set_drvdata(dev, host_set);
4968 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4969 return ent->n_ports; /* success */
4971 err_out:
4972 for (i = 0; i < count; i++) {
4973 ata_host_remove(host_set->ports[i], 1);
4974 scsi_host_put(host_set->ports[i]->host);
4976 err_free_ret:
4977 kfree(host_set);
4978 VPRINTK("EXIT, returning 0\n");
4979 return 0;
4983 * ata_host_set_remove - PCI layer callback for device removal
4984 * @host_set: ATA host set that was removed
4986 * Unregister all objects associated with this host set. Free those
4987 * objects.
4989 * LOCKING:
4990 * Inherited from calling layer (may sleep).
4993 void ata_host_set_remove(struct ata_host_set *host_set)
4995 struct ata_port *ap;
4996 unsigned int i;
4998 for (i = 0; i < host_set->n_ports; i++) {
4999 ap = host_set->ports[i];
5000 scsi_remove_host(ap->host);
5003 free_irq(host_set->irq, host_set);
5005 for (i = 0; i < host_set->n_ports; i++) {
5006 ap = host_set->ports[i];
5008 ata_scsi_release(ap->host);
5010 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5011 struct ata_ioports *ioaddr = &ap->ioaddr;
5013 if (ioaddr->cmd_addr == 0x1f0)
5014 release_region(0x1f0, 8);
5015 else if (ioaddr->cmd_addr == 0x170)
5016 release_region(0x170, 8);
5019 scsi_host_put(ap->host);
5022 if (host_set->ops->host_stop)
5023 host_set->ops->host_stop(host_set);
5025 kfree(host_set);
5029 * ata_scsi_release - SCSI layer callback hook for host unload
5030 * @host: libata host to be unloaded
5032 * Performs all duties necessary to shut down a libata port...
5033 * Kill port kthread, disable port, and release resources.
5035 * LOCKING:
5036 * Inherited from SCSI layer.
5038 * RETURNS:
5039 * One.
5042 int ata_scsi_release(struct Scsi_Host *host)
5044 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
5046 DPRINTK("ENTER\n");
5048 ap->ops->port_disable(ap);
5049 ata_host_remove(ap, 0);
5051 DPRINTK("EXIT\n");
5052 return 1;
5056 * ata_std_ports - initialize ioaddr with standard port offsets.
5057 * @ioaddr: IO address structure to be initialized
5059 * Utility function which initializes data_addr, error_addr,
5060 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5061 * device_addr, status_addr, and command_addr to standard offsets
5062 * relative to cmd_addr.
5064 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5067 void ata_std_ports(struct ata_ioports *ioaddr)
5069 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5070 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5071 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5072 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5073 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5074 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5075 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5076 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5077 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5078 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5081 static struct ata_probe_ent *
5082 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5084 struct ata_probe_ent *probe_ent;
5086 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5087 if (!probe_ent) {
5088 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5089 kobject_name(&(dev->kobj)));
5090 return NULL;
5093 INIT_LIST_HEAD(&probe_ent->node);
5094 probe_ent->dev = dev;
5096 probe_ent->sht = port->sht;
5097 probe_ent->host_flags = port->host_flags;
5098 probe_ent->pio_mask = port->pio_mask;
5099 probe_ent->mwdma_mask = port->mwdma_mask;
5100 probe_ent->udma_mask = port->udma_mask;
5101 probe_ent->port_ops = port->port_ops;
5103 return probe_ent;
5108 #ifdef CONFIG_PCI
5110 void ata_pci_host_stop (struct ata_host_set *host_set)
5112 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5114 pci_iounmap(pdev, host_set->mmio_base);
5118 * ata_pci_init_native_mode - Initialize native-mode driver
5119 * @pdev: pci device to be initialized
5120 * @port: array[2] of pointers to port info structures.
5121 * @ports: bitmap of ports present
5123 * Utility function which allocates and initializes an
5124 * ata_probe_ent structure for a standard dual-port
5125 * PIO-based IDE controller. The returned ata_probe_ent
5126 * structure can be passed to ata_device_add(). The returned
5127 * ata_probe_ent structure should then be freed with kfree().
5129 * The caller need only pass the address of the primary port, the
5130 * secondary will be deduced automatically. If the device has non
5131 * standard secondary port mappings this function can be called twice,
5132 * once for each interface.
5135 struct ata_probe_ent *
5136 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
5138 struct ata_probe_ent *probe_ent =
5139 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
5140 int p = 0;
5142 if (!probe_ent)
5143 return NULL;
5145 probe_ent->irq = pdev->irq;
5146 probe_ent->irq_flags = SA_SHIRQ;
5147 probe_ent->private_data = port[0]->private_data;
5149 if (ports & ATA_PORT_PRIMARY) {
5150 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
5151 probe_ent->port[p].altstatus_addr =
5152 probe_ent->port[p].ctl_addr =
5153 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
5154 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
5155 ata_std_ports(&probe_ent->port[p]);
5156 p++;
5159 if (ports & ATA_PORT_SECONDARY) {
5160 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
5161 probe_ent->port[p].altstatus_addr =
5162 probe_ent->port[p].ctl_addr =
5163 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
5164 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
5165 ata_std_ports(&probe_ent->port[p]);
5166 p++;
5169 probe_ent->n_ports = p;
5170 return probe_ent;
5173 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
5175 struct ata_probe_ent *probe_ent;
5177 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
5178 if (!probe_ent)
5179 return NULL;
5181 probe_ent->legacy_mode = 1;
5182 probe_ent->n_ports = 1;
5183 probe_ent->hard_port_no = port_num;
5184 probe_ent->private_data = port->private_data;
5186 switch(port_num)
5188 case 0:
5189 probe_ent->irq = 14;
5190 probe_ent->port[0].cmd_addr = 0x1f0;
5191 probe_ent->port[0].altstatus_addr =
5192 probe_ent->port[0].ctl_addr = 0x3f6;
5193 break;
5194 case 1:
5195 probe_ent->irq = 15;
5196 probe_ent->port[0].cmd_addr = 0x170;
5197 probe_ent->port[0].altstatus_addr =
5198 probe_ent->port[0].ctl_addr = 0x376;
5199 break;
5201 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
5202 ata_std_ports(&probe_ent->port[0]);
5203 return probe_ent;
5207 * ata_pci_init_one - Initialize/register PCI IDE host controller
5208 * @pdev: Controller to be initialized
5209 * @port_info: Information from low-level host driver
5210 * @n_ports: Number of ports attached to host controller
5212 * This is a helper function which can be called from a driver's
5213 * xxx_init_one() probe function if the hardware uses traditional
5214 * IDE taskfile registers.
5216 * This function calls pci_enable_device(), reserves its register
5217 * regions, sets the dma mask, enables bus master mode, and calls
5218 * ata_device_add()
5220 * LOCKING:
5221 * Inherited from PCI layer (may sleep).
5223 * RETURNS:
5224 * Zero on success, negative on errno-based value on error.
5227 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
5228 unsigned int n_ports)
5230 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
5231 struct ata_port_info *port[2];
5232 u8 tmp8, mask;
5233 unsigned int legacy_mode = 0;
5234 int disable_dev_on_err = 1;
5235 int rc;
5237 DPRINTK("ENTER\n");
5239 port[0] = port_info[0];
5240 if (n_ports > 1)
5241 port[1] = port_info[1];
5242 else
5243 port[1] = port[0];
5245 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
5246 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
5247 /* TODO: What if one channel is in native mode ... */
5248 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
5249 mask = (1 << 2) | (1 << 0);
5250 if ((tmp8 & mask) != mask)
5251 legacy_mode = (1 << 3);
5254 /* FIXME... */
5255 if ((!legacy_mode) && (n_ports > 2)) {
5256 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
5257 n_ports = 2;
5258 /* For now */
5261 /* FIXME: Really for ATA it isn't safe because the device may be
5262 multi-purpose and we want to leave it alone if it was already
5263 enabled. Secondly for shared use as Arjan says we want refcounting
5265 Checking dev->is_enabled is insufficient as this is not set at
5266 boot for the primary video which is BIOS enabled
5269 rc = pci_enable_device(pdev);
5270 if (rc)
5271 return rc;
5273 rc = pci_request_regions(pdev, DRV_NAME);
5274 if (rc) {
5275 disable_dev_on_err = 0;
5276 goto err_out;
5279 /* FIXME: Should use platform specific mappers for legacy port ranges */
5280 if (legacy_mode) {
5281 if (!request_region(0x1f0, 8, "libata")) {
5282 struct resource *conflict, res;
5283 res.start = 0x1f0;
5284 res.end = 0x1f0 + 8 - 1;
5285 conflict = ____request_resource(&ioport_resource, &res);
5286 if (!strcmp(conflict->name, "libata"))
5287 legacy_mode |= (1 << 0);
5288 else {
5289 disable_dev_on_err = 0;
5290 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
5292 } else
5293 legacy_mode |= (1 << 0);
5295 if (!request_region(0x170, 8, "libata")) {
5296 struct resource *conflict, res;
5297 res.start = 0x170;
5298 res.end = 0x170 + 8 - 1;
5299 conflict = ____request_resource(&ioport_resource, &res);
5300 if (!strcmp(conflict->name, "libata"))
5301 legacy_mode |= (1 << 1);
5302 else {
5303 disable_dev_on_err = 0;
5304 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
5306 } else
5307 legacy_mode |= (1 << 1);
5310 /* we have legacy mode, but all ports are unavailable */
5311 if (legacy_mode == (1 << 3)) {
5312 rc = -EBUSY;
5313 goto err_out_regions;
5316 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
5317 if (rc)
5318 goto err_out_regions;
5319 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
5320 if (rc)
5321 goto err_out_regions;
5323 if (legacy_mode) {
5324 if (legacy_mode & (1 << 0))
5325 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
5326 if (legacy_mode & (1 << 1))
5327 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
5328 } else {
5329 if (n_ports == 2)
5330 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
5331 else
5332 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
5334 if (!probe_ent && !probe_ent2) {
5335 rc = -ENOMEM;
5336 goto err_out_regions;
5339 pci_set_master(pdev);
5341 /* FIXME: check ata_device_add return */
5342 if (legacy_mode) {
5343 if (legacy_mode & (1 << 0))
5344 ata_device_add(probe_ent);
5345 if (legacy_mode & (1 << 1))
5346 ata_device_add(probe_ent2);
5347 } else
5348 ata_device_add(probe_ent);
5350 kfree(probe_ent);
5351 kfree(probe_ent2);
5353 return 0;
5355 err_out_regions:
5356 if (legacy_mode & (1 << 0))
5357 release_region(0x1f0, 8);
5358 if (legacy_mode & (1 << 1))
5359 release_region(0x170, 8);
5360 pci_release_regions(pdev);
5361 err_out:
5362 if (disable_dev_on_err)
5363 pci_disable_device(pdev);
5364 return rc;
5368 * ata_pci_remove_one - PCI layer callback for device removal
5369 * @pdev: PCI device that was removed
5371 * PCI layer indicates to libata via this hook that
5372 * hot-unplug or module unload event has occurred.
5373 * Handle this by unregistering all objects associated
5374 * with this PCI device. Free those objects. Then finally
5375 * release PCI resources and disable device.
5377 * LOCKING:
5378 * Inherited from PCI layer (may sleep).
5381 void ata_pci_remove_one (struct pci_dev *pdev)
5383 struct device *dev = pci_dev_to_dev(pdev);
5384 struct ata_host_set *host_set = dev_get_drvdata(dev);
5386 ata_host_set_remove(host_set);
5387 pci_release_regions(pdev);
5388 pci_disable_device(pdev);
5389 dev_set_drvdata(dev, NULL);
5392 /* move to PCI subsystem */
5393 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5395 unsigned long tmp = 0;
5397 switch (bits->width) {
5398 case 1: {
5399 u8 tmp8 = 0;
5400 pci_read_config_byte(pdev, bits->reg, &tmp8);
5401 tmp = tmp8;
5402 break;
5404 case 2: {
5405 u16 tmp16 = 0;
5406 pci_read_config_word(pdev, bits->reg, &tmp16);
5407 tmp = tmp16;
5408 break;
5410 case 4: {
5411 u32 tmp32 = 0;
5412 pci_read_config_dword(pdev, bits->reg, &tmp32);
5413 tmp = tmp32;
5414 break;
5417 default:
5418 return -EINVAL;
5421 tmp &= bits->mask;
5423 return (tmp == bits->val) ? 1 : 0;
5426 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5428 pci_save_state(pdev);
5429 pci_disable_device(pdev);
5430 pci_set_power_state(pdev, PCI_D3hot);
5431 return 0;
5434 int ata_pci_device_resume(struct pci_dev *pdev)
5436 pci_set_power_state(pdev, PCI_D0);
5437 pci_restore_state(pdev);
5438 pci_enable_device(pdev);
5439 pci_set_master(pdev);
5440 return 0;
5442 #endif /* CONFIG_PCI */
5445 static int __init ata_init(void)
5447 ata_wq = create_workqueue("ata");
5448 if (!ata_wq)
5449 return -ENOMEM;
5451 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5452 return 0;
5455 static void __exit ata_exit(void)
5457 destroy_workqueue(ata_wq);
5460 module_init(ata_init);
5461 module_exit(ata_exit);
5463 static unsigned long ratelimit_time;
5464 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5466 int ata_ratelimit(void)
5468 int rc;
5469 unsigned long flags;
5471 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5473 if (time_after(jiffies, ratelimit_time)) {
5474 rc = 1;
5475 ratelimit_time = jiffies + (HZ/5);
5476 } else
5477 rc = 0;
5479 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5481 return rc;
5485 * libata is essentially a library of internal helper functions for
5486 * low-level ATA host controller drivers. As such, the API/ABI is
5487 * likely to change as new drivers are added and updated.
5488 * Do not depend on ABI/API stability.
5491 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5492 EXPORT_SYMBOL_GPL(ata_std_ports);
5493 EXPORT_SYMBOL_GPL(ata_device_add);
5494 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5495 EXPORT_SYMBOL_GPL(ata_sg_init);
5496 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5497 EXPORT_SYMBOL_GPL(ata_qc_complete);
5498 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5499 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5500 EXPORT_SYMBOL_GPL(ata_tf_load);
5501 EXPORT_SYMBOL_GPL(ata_tf_read);
5502 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5503 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5504 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5505 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5506 EXPORT_SYMBOL_GPL(ata_check_status);
5507 EXPORT_SYMBOL_GPL(ata_altstatus);
5508 EXPORT_SYMBOL_GPL(ata_exec_command);
5509 EXPORT_SYMBOL_GPL(ata_port_start);
5510 EXPORT_SYMBOL_GPL(ata_port_stop);
5511 EXPORT_SYMBOL_GPL(ata_host_stop);
5512 EXPORT_SYMBOL_GPL(ata_interrupt);
5513 EXPORT_SYMBOL_GPL(ata_qc_prep);
5514 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5515 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5516 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5517 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5518 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5519 EXPORT_SYMBOL_GPL(ata_port_probe);
5520 EXPORT_SYMBOL_GPL(sata_phy_reset);
5521 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5522 EXPORT_SYMBOL_GPL(ata_bus_reset);
5523 EXPORT_SYMBOL_GPL(ata_std_softreset);
5524 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5525 EXPORT_SYMBOL_GPL(ata_std_postreset);
5526 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5527 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5528 EXPORT_SYMBOL_GPL(ata_port_disable);
5529 EXPORT_SYMBOL_GPL(ata_ratelimit);
5530 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5531 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5532 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5533 EXPORT_SYMBOL_GPL(ata_scsi_error);
5534 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5535 EXPORT_SYMBOL_GPL(ata_scsi_release);
5536 EXPORT_SYMBOL_GPL(ata_host_intr);
5537 EXPORT_SYMBOL_GPL(ata_dev_classify);
5538 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5539 EXPORT_SYMBOL_GPL(ata_dev_config);
5540 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5541 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5542 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5544 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5545 EXPORT_SYMBOL_GPL(ata_timing_compute);
5546 EXPORT_SYMBOL_GPL(ata_timing_merge);
5548 #ifdef CONFIG_PCI
5549 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5550 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5551 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5552 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5553 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5554 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5555 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5556 #endif /* CONFIG_PCI */
5558 EXPORT_SYMBOL_GPL(ata_device_suspend);
5559 EXPORT_SYMBOL_GPL(ata_device_resume);
5560 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5561 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);