[PATCH] W1: Add the DS2482 I2C-to-w1 bridge driver.
[linux-2.6/verdex.git] / include / asm-sh / io.h
blobb0b2937b6f8349f94244bb4204e45263378e7529
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
4 /*
5 * Convention:
6 * read{b,w,l}/write{b,w,l} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
14 * In addition, we have
15 * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 * which are processor specific.
20 * We follow the Alpha convention here:
21 * __inb expands to an inline function call (which calls via the mv)
22 * _inb is a real function call (note ___raw fns are _ version of __raw)
23 * inb by default expands to _inb, but the machine specific code may
24 * define it to __inb if it chooses.
26 #include <linux/config.h>
27 #include <asm/cache.h>
28 #include <asm/system.h>
29 #include <asm/addrspace.h>
30 #include <asm/machvec.h>
31 #include <asm/pgtable.h>
32 #include <asm-generic/iomap.h>
34 #ifdef __KERNEL__
37 * Depending on which platform we are running on, we need different
38 * I/O functions.
40 #define __IO_PREFIX generic
41 #include <asm/io_generic.h>
43 #define maybebadio(port) \
44 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
45 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
48 * Since boards are able to define their own set of I/O routines through
49 * their respective machine vector, we always wrap through the mv.
51 * Also, in the event that a board hasn't provided its own definition for
52 * a given routine, it will be wrapped to generic code at run-time.
55 #define __inb(p) sh_mv.mv_inb((p))
56 #define __inw(p) sh_mv.mv_inw((p))
57 #define __inl(p) sh_mv.mv_inl((p))
58 #define __outb(x,p) sh_mv.mv_outb((x),(p))
59 #define __outw(x,p) sh_mv.mv_outw((x),(p))
60 #define __outl(x,p) sh_mv.mv_outl((x),(p))
62 #define __inb_p(p) sh_mv.mv_inb_p((p))
63 #define __inw_p(p) sh_mv.mv_inw_p((p))
64 #define __inl_p(p) sh_mv.mv_inl_p((p))
65 #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
66 #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
67 #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
69 #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
70 #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
71 #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
72 #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
73 #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
74 #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
76 #define __readb(a) sh_mv.mv_readb((a))
77 #define __readw(a) sh_mv.mv_readw((a))
78 #define __readl(a) sh_mv.mv_readl((a))
79 #define __writeb(v,a) sh_mv.mv_writeb((v),(a))
80 #define __writew(v,a) sh_mv.mv_writew((v),(a))
81 #define __writel(v,a) sh_mv.mv_writel((v),(a))
83 #define inb __inb
84 #define inw __inw
85 #define inl __inl
86 #define outb __outb
87 #define outw __outw
88 #define outl __outl
90 #define inb_p __inb_p
91 #define inw_p __inw_p
92 #define inl_p __inl_p
93 #define outb_p __outb_p
94 #define outw_p __outw_p
95 #define outl_p __outl_p
97 #define insb __insb
98 #define insw __insw
99 #define insl __insl
100 #define outsb __outsb
101 #define outsw __outsw
102 #define outsl __outsl
104 #define __raw_readb(a) __readb((void __iomem *)(a))
105 #define __raw_readw(a) __readw((void __iomem *)(a))
106 #define __raw_readl(a) __readl((void __iomem *)(a))
107 #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
108 #define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
109 #define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
112 * The platform header files may define some of these macros to use
113 * the inlined versions where appropriate. These macros may also be
114 * redefined by userlevel programs.
116 #ifdef __readb
117 # define readb(a) ({ unsigned long r_ = __raw_readb(a); mb(); r_; })
118 #endif
119 #ifdef __raw_readw
120 # define readw(a) ({ unsigned long r_ = __raw_readw(a); mb(); r_; })
121 #endif
122 #ifdef __raw_readl
123 # define readl(a) ({ unsigned long r_ = __raw_readl(a); mb(); r_; })
124 #endif
126 #ifdef __raw_writeb
127 # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
128 #endif
129 #ifdef __raw_writew
130 # define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
131 #endif
132 #ifdef __raw_writel
133 # define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
134 #endif
136 #define readb_relaxed(a) readb(a)
137 #define readw_relaxed(a) readw(a)
138 #define readl_relaxed(a) readl(a)
140 /* Simple MMIO */
141 #define ioread8(a) readb(a)
142 #define ioread16(a) readw(a)
143 #define ioread16be(a) be16_to_cpu(__raw_readw((a)))
144 #define ioread32(a) readl(a)
145 #define ioread32be(a) be32_to_cpu(__raw_readl((a)))
147 #define iowrite8(v,a) writeb((v),(a))
148 #define iowrite16(v,a) writew((v),(a))
149 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
150 #define iowrite32(v,a) writel((v),(a))
151 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
153 #define ioread8_rep(a,d,c) insb((a),(d),(c))
154 #define ioread16_rep(a,d,c) insw((a),(d),(c))
155 #define ioread32_rep(a,d,c) insl((a),(d),(c))
157 #define iowrite8_rep(a,s,c) outsb((a),(s),(c))
158 #define iowrite16_rep(a,s,c) outsw((a),(s),(c))
159 #define iowrite32_rep(a,s,c) outsl((a),(s),(c))
161 #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
164 * This function provides a method for the generic case where a board-specific
165 * ioport_map simply needs to return the port + some arbitrary port base.
167 * We use this at board setup time to implicitly set the port base, and
168 * as a result, we can use the generic ioport_map.
170 static inline void __set_io_port_base(unsigned long pbase)
172 extern unsigned long generic_io_base;
174 generic_io_base = pbase;
177 #define isa_readb(a) readb(ioport_map(a, 1))
178 #define isa_readw(a) readw(ioport_map(a, 2))
179 #define isa_readl(a) readl(ioport_map(a, 4))
180 #define isa_writeb(b,a) writeb(b,ioport_map(a, 1))
181 #define isa_writew(w,a) writew(w,ioport_map(a, 2))
182 #define isa_writel(l,a) writel(l,ioport_map(a, 4))
184 #define isa_memset_io(a,b,c) \
185 memset((void *)(ioport_map((unsigned long)(a), 1)),(b),(c))
186 #define isa_memcpy_fromio(a,b,c) \
187 memcpy((a),(void *)(ioport_map((unsigned long)(b), 1)),(c))
188 #define isa_memcpy_toio(a,b,c) \
189 memcpy((void *)(ioport_map((unsigned long)(a), 1)),(b),(c))
191 /* We really want to try and get these to memcpy etc */
192 extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
193 extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
194 extern void memset_io(volatile void __iomem *, int, unsigned long);
196 /* SuperH on-chip I/O functions */
197 static inline unsigned char ctrl_inb(unsigned long addr)
199 return *(volatile unsigned char*)addr;
202 static inline unsigned short ctrl_inw(unsigned long addr)
204 return *(volatile unsigned short*)addr;
207 static inline unsigned int ctrl_inl(unsigned long addr)
209 return *(volatile unsigned long*)addr;
212 static inline void ctrl_outb(unsigned char b, unsigned long addr)
214 *(volatile unsigned char*)addr = b;
217 static inline void ctrl_outw(unsigned short b, unsigned long addr)
219 *(volatile unsigned short*)addr = b;
222 static inline void ctrl_outl(unsigned int b, unsigned long addr)
224 *(volatile unsigned long*)addr = b;
227 #define IO_SPACE_LIMIT 0xffffffff
230 * Change virtual addresses to physical addresses and vv.
231 * These are trivial on the 1:1 Linux/SuperH mapping
233 static inline unsigned long virt_to_phys(volatile void *address)
235 return PHYSADDR(address);
238 static inline void *phys_to_virt(unsigned long address)
240 return (void *)P1SEGADDR(address);
243 #define virt_to_bus virt_to_phys
244 #define bus_to_virt phys_to_virt
245 #define page_to_bus page_to_phys
248 * readX/writeX() are used to access memory mapped devices. On some
249 * architectures the memory mapped IO stuff needs to be accessed
250 * differently. On the x86 architecture, we just read/write the
251 * memory location directly.
253 * On SH, we traditionally have the whole physical address space mapped
254 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
255 * need to do anything but place the address in the proper segment. This
256 * is true for P1 and P2 addresses, as well as some P3 ones. However,
257 * most of the P3 addresses and newer cores using extended addressing
258 * need to map through page tables, so the ioremap() implementation
259 * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
260 * additional notes on this.
262 * We cheat a bit and always return uncachable areas until we've fixed
263 * the drivers to handle caching properly.
265 #ifdef CONFIG_MMU
266 void __iomem *__ioremap(unsigned long offset, unsigned long size,
267 unsigned long flags);
268 void __iounmap(void __iomem *addr);
269 #else
270 #define __ioremap(offset, size, flags) ((void __iomem *)(offset))
271 #define __iounmap(addr) do { } while (0)
272 #endif /* CONFIG_MMU */
274 static inline void __iomem *
275 __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
277 unsigned long last_addr = offset + size - 1;
280 * For P1 and P2 space this is trivial, as everything is already
281 * mapped. Uncached access for P1 addresses are done through P2.
282 * In the P3 case or for addresses outside of the 29-bit space,
283 * mapping must be done by the PMB or by using page tables.
285 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
286 if (unlikely(flags & _PAGE_CACHABLE))
287 return (void __iomem *)P1SEGADDR(offset);
289 return (void __iomem *)P2SEGADDR(offset);
292 return __ioremap(offset, size, flags);
295 #define ioremap(offset, size) \
296 __ioremap_mode((offset), (size), 0)
297 #define ioremap_nocache(offset, size) \
298 __ioremap_mode((offset), (size), 0)
299 #define ioremap_cache(offset, size) \
300 __ioremap_mode((offset), (size), _PAGE_CACHABLE)
301 #define p3_ioremap(offset, size, flags) \
302 __ioremap((offset), (size), (flags))
303 #define iounmap(addr) \
304 __iounmap((addr))
306 static inline int check_signature(char __iomem *io_addr,
307 const unsigned char *signature, int length)
309 int retval = 0;
310 do {
311 if (readb(io_addr) != *signature)
312 goto out;
313 io_addr++;
314 signature++;
315 length--;
316 } while (length);
317 retval = 1;
318 out:
319 return retval;
323 * The caches on some architectures aren't dma-coherent and have need to
324 * handle this in software. There are three types of operations that
325 * can be applied to dma buffers.
327 * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
328 * writing the content of the caches back to memory, if necessary.
329 * The function also invalidates the affected part of the caches as
330 * necessary before DMA transfers from outside to memory.
331 * - dma_cache_inv(start, size) invalidates the affected parts of the
332 * caches. Dirty lines of the caches may be written back or simply
333 * be discarded. This operation is necessary before dma operations
334 * to the memory.
335 * - dma_cache_wback(start, size) writes back any dirty lines but does
336 * not invalidate the cache. This can be used before DMA reads from
337 * memory,
340 #define dma_cache_wback_inv(_start,_size) \
341 __flush_purge_region(_start,_size)
342 #define dma_cache_inv(_start,_size) \
343 __flush_invalidate_region(_start,_size)
344 #define dma_cache_wback(_start,_size) \
345 __flush_wback_region(_start,_size)
348 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
349 * access
351 #define xlate_dev_mem_ptr(p) __va(p)
354 * Convert a virtual cached pointer to an uncached pointer
356 #define xlate_dev_kmem_ptr(p) p
358 #endif /* __KERNEL__ */
360 #endif /* __ASM_SH_IO_H */