2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
66 return generic_file_open(vi
, filp
);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
,
113 struct page
**cached_page
, struct pagevec
*lru_pvec
)
117 pgoff_t index
, end_index
;
119 struct inode
*vi
= VFS_I(ni
);
121 MFT_RECORD
*m
= NULL
;
123 ntfs_attr_search_ctx
*ctx
= NULL
;
124 struct address_space
*mapping
;
125 struct page
*page
= NULL
;
130 read_lock_irqsave(&ni
->size_lock
, flags
);
131 old_init_size
= ni
->initialized_size
;
132 old_i_size
= i_size_read(vi
);
133 BUG_ON(new_init_size
> ni
->allocated_size
);
134 read_unlock_irqrestore(&ni
->size_lock
, flags
);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
139 (unsigned long long)old_init_size
,
140 (unsigned long long)new_init_size
, old_i_size
);
144 base_ni
= ni
->ext
.base_ntfs_ino
;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni
))
147 goto do_non_resident_extend
;
148 BUG_ON(old_init_size
!= old_i_size
);
149 m
= map_mft_record(base_ni
);
155 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
156 if (unlikely(!ctx
)) {
160 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
161 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
169 BUG_ON(a
->non_resident
);
170 /* The total length of the attribute value. */
171 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
172 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
178 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
179 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni
->size_lock
, flags
);
182 i_size_write(vi
, new_init_size
);
183 ni
->initialized_size
= new_init_size
;
184 write_unlock_irqrestore(&ni
->size_lock
, flags
);
186 do_non_resident_extend
:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size
> old_i_size
) {
193 m
= map_mft_record(base_ni
);
199 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
200 if (unlikely(!ctx
)) {
204 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
205 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
213 BUG_ON(!a
->non_resident
);
214 BUG_ON(old_i_size
!= (loff_t
)
215 sle64_to_cpu(a
->data
.non_resident
.data_size
));
216 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
217 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
218 mark_mft_record_dirty(ctx
->ntfs_ino
);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi
, new_init_size
);
221 ntfs_attr_put_search_ctx(ctx
);
223 unmap_mft_record(base_ni
);
226 mapping
= vi
->i_mapping
;
227 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
228 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page
= read_cache_page(mapping
, index
,
235 (filler_t
*)mapping
->a_ops
->readpage
, NULL
);
240 wait_on_page_locked(page
);
241 if (unlikely(!PageUptodate(page
) || PageError(page
))) {
242 page_cache_release(page
);
247 * Update the initialized size in the ntfs inode. This is
248 * enough to make ntfs_writepage() work.
250 write_lock_irqsave(&ni
->size_lock
, flags
);
251 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
252 if (ni
->initialized_size
> new_init_size
)
253 ni
->initialized_size
= new_init_size
;
254 write_unlock_irqrestore(&ni
->size_lock
, flags
);
255 /* Set the page dirty so it gets written out. */
256 set_page_dirty(page
);
257 page_cache_release(page
);
259 * Play nice with the vm and the rest of the system. This is
260 * very much needed as we can potentially be modifying the
261 * initialised size from a very small value to a really huge
263 * f = open(somefile, O_TRUNC);
264 * truncate(f, 10GiB);
267 * And this would mean we would be marking dirty hundreds of
268 * thousands of pages or as in the above example more than
269 * two and a half million pages!
271 * TODO: For sparse pages could optimize this workload by using
272 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
273 * would be set in readpage for sparse pages and here we would
274 * not need to mark dirty any pages which have this bit set.
275 * The only caveat is that we have to clear the bit everywhere
276 * where we allocate any clusters that lie in the page or that
279 * TODO: An even greater optimization would be for us to only
280 * call readpage() on pages which are not in sparse regions as
281 * determined from the runlist. This would greatly reduce the
282 * number of pages we read and make dirty in the case of sparse
285 balance_dirty_pages_ratelimited(mapping
);
287 } while (++index
< end_index
);
288 read_lock_irqsave(&ni
->size_lock
, flags
);
289 BUG_ON(ni
->initialized_size
!= new_init_size
);
290 read_unlock_irqrestore(&ni
->size_lock
, flags
);
291 /* Now bring in sync the initialized_size in the mft record. */
292 m
= map_mft_record(base_ni
);
298 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
299 if (unlikely(!ctx
)) {
303 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
304 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
312 BUG_ON(!a
->non_resident
);
313 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
315 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
316 mark_mft_record_dirty(ctx
->ntfs_ino
);
318 ntfs_attr_put_search_ctx(ctx
);
320 unmap_mft_record(base_ni
);
321 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
322 (unsigned long long)new_init_size
, i_size_read(vi
));
325 write_lock_irqsave(&ni
->size_lock
, flags
);
326 ni
->initialized_size
= old_init_size
;
327 write_unlock_irqrestore(&ni
->size_lock
, flags
);
330 ntfs_attr_put_search_ctx(ctx
);
332 unmap_mft_record(base_ni
);
333 ntfs_debug("Failed. Returning error code %i.", err
);
338 * ntfs_fault_in_pages_readable -
340 * Fault a number of userspace pages into pagetables.
342 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
343 * with more than two userspace pages as well as handling the single page case
346 * If you find this difficult to understand, then think of the while loop being
347 * the following code, except that we do without the integer variable ret:
350 * ret = __get_user(c, uaddr);
351 * uaddr += PAGE_SIZE;
352 * } while (!ret && uaddr < end);
354 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
355 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
356 * this is only a read and not a write, and since it is still in the same page,
357 * it should not matter and this makes the code much simpler.
359 static inline void ntfs_fault_in_pages_readable(const char __user
*uaddr
,
362 const char __user
*end
;
365 /* Set @end to the first byte outside the last page we care about. */
366 end
= (const char __user
*)PAGE_ALIGN((ptrdiff_t __user
)uaddr
+ bytes
);
368 while (!__get_user(c
, uaddr
) && (uaddr
+= PAGE_SIZE
, uaddr
< end
))
373 * ntfs_fault_in_pages_readable_iovec -
375 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
377 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec
*iov
,
378 size_t iov_ofs
, int bytes
)
381 const char __user
*buf
;
384 buf
= iov
->iov_base
+ iov_ofs
;
385 len
= iov
->iov_len
- iov_ofs
;
388 ntfs_fault_in_pages_readable(buf
, len
);
396 * __ntfs_grab_cache_pages - obtain a number of locked pages
397 * @mapping: address space mapping from which to obtain page cache pages
398 * @index: starting index in @mapping at which to begin obtaining pages
399 * @nr_pages: number of page cache pages to obtain
400 * @pages: array of pages in which to return the obtained page cache pages
401 * @cached_page: allocated but as yet unused page
402 * @lru_pvec: lru-buffering pagevec of caller
404 * Obtain @nr_pages locked page cache pages from the mapping @maping and
405 * starting at index @index.
407 * If a page is newly created, increment its refcount and add it to the
408 * caller's lru-buffering pagevec @lru_pvec.
410 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
411 * are obtained at once instead of just one page and that 0 is returned on
412 * success and -errno on error.
414 * Note, the page locks are obtained in ascending page index order.
416 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
417 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
418 struct page
**cached_page
, struct pagevec
*lru_pvec
)
425 pages
[nr
] = find_lock_page(mapping
, index
);
428 *cached_page
= page_cache_alloc(mapping
);
429 if (unlikely(!*cached_page
)) {
434 err
= add_to_page_cache(*cached_page
, mapping
, index
,
441 pages
[nr
] = *cached_page
;
442 page_cache_get(*cached_page
);
443 if (unlikely(!pagevec_add(lru_pvec
, *cached_page
)))
444 __pagevec_lru_add(lru_pvec
);
449 } while (nr
< nr_pages
);
454 unlock_page(pages
[--nr
]);
455 page_cache_release(pages
[nr
]);
460 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
464 bh
->b_end_io
= end_buffer_read_sync
;
465 return submit_bh(READ
, bh
);
469 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
470 * @pages: array of destination pages
471 * @nr_pages: number of pages in @pages
472 * @pos: byte position in file at which the write begins
473 * @bytes: number of bytes to be written
475 * This is called for non-resident attributes from ntfs_file_buffered_write()
476 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
477 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
478 * data has not yet been copied into the @pages.
480 * Need to fill any holes with actual clusters, allocate buffers if necessary,
481 * ensure all the buffers are mapped, and bring uptodate any buffers that are
482 * only partially being written to.
484 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
485 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
486 * the same cluster and that they are the entirety of that cluster, and that
487 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
489 * i_size is not to be modified yet.
491 * Return 0 on success or -errno on error.
493 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
494 unsigned nr_pages
, s64 pos
, size_t bytes
)
496 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
498 s64 bh_pos
, vcn_len
, end
, initialized_size
;
502 ntfs_inode
*ni
, *base_ni
= NULL
;
504 runlist_element
*rl
, *rl2
;
505 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
506 ntfs_attr_search_ctx
*ctx
= NULL
;
507 MFT_RECORD
*m
= NULL
;
508 ATTR_RECORD
*a
= NULL
;
510 u32 attr_rec_len
= 0;
511 unsigned blocksize
, u
;
513 BOOL rl_write_locked
, was_hole
, is_retry
;
514 unsigned char blocksize_bits
;
517 u8 mft_attr_mapped
:1;
520 } status
= { 0, 0, 0, 0 };
525 vi
= pages
[0]->mapping
->host
;
528 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
529 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
530 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
531 (long long)pos
, bytes
);
532 blocksize
= vol
->sb
->s_blocksize
;
533 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
536 struct page
*page
= pages
[u
];
538 * create_empty_buffers() will create uptodate/dirty buffers if
539 * the page is uptodate/dirty.
541 if (!page_has_buffers(page
)) {
542 create_empty_buffers(page
, blocksize
, 0);
543 if (unlikely(!page_has_buffers(page
)))
546 } while (++u
< nr_pages
);
547 rl_write_locked
= FALSE
;
554 cpos
= pos
>> vol
->cluster_size_bits
;
556 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
558 * Loop over each page and for each page over each buffer. Use goto to
559 * reduce indentation.
564 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
565 bh
= head
= page_buffers(page
);
571 /* Clear buffer_new on all buffers to reinitialise state. */
573 clear_buffer_new(bh
);
574 bh_end
= bh_pos
+ blocksize
;
575 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
576 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
577 if (buffer_mapped(bh
)) {
579 * The buffer is already mapped. If it is uptodate,
582 if (buffer_uptodate(bh
))
585 * The buffer is not uptodate. If the page is uptodate
586 * set the buffer uptodate and otherwise ignore it.
588 if (PageUptodate(page
)) {
589 set_buffer_uptodate(bh
);
593 * Neither the page nor the buffer are uptodate. If
594 * the buffer is only partially being written to, we
595 * need to read it in before the write, i.e. now.
597 if ((bh_pos
< pos
&& bh_end
> pos
) ||
598 (bh_pos
< end
&& bh_end
> end
)) {
600 * If the buffer is fully or partially within
601 * the initialized size, do an actual read.
602 * Otherwise, simply zero the buffer.
604 read_lock_irqsave(&ni
->size_lock
, flags
);
605 initialized_size
= ni
->initialized_size
;
606 read_unlock_irqrestore(&ni
->size_lock
, flags
);
607 if (bh_pos
< initialized_size
) {
608 ntfs_submit_bh_for_read(bh
);
611 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
612 memset(kaddr
+ bh_offset(bh
), 0,
614 kunmap_atomic(kaddr
, KM_USER0
);
615 flush_dcache_page(page
);
616 set_buffer_uptodate(bh
);
621 /* Unmapped buffer. Need to map it. */
622 bh
->b_bdev
= vol
->sb
->s_bdev
;
624 * If the current buffer is in the same clusters as the map
625 * cache, there is no need to check the runlist again. The
626 * map cache is made up of @vcn, which is the first cached file
627 * cluster, @vcn_len which is the number of cached file
628 * clusters, @lcn is the device cluster corresponding to @vcn,
629 * and @lcn_block is the block number corresponding to @lcn.
631 cdelta
= bh_cpos
- vcn
;
632 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
635 bh
->b_blocknr
= lcn_block
+
636 (cdelta
<< (vol
->cluster_size_bits
-
638 (bh_cofs
>> blocksize_bits
);
639 set_buffer_mapped(bh
);
641 * If the page is uptodate so is the buffer. If the
642 * buffer is fully outside the write, we ignore it if
643 * it was already allocated and we mark it dirty so it
644 * gets written out if we allocated it. On the other
645 * hand, if we allocated the buffer but we are not
646 * marking it dirty we set buffer_new so we can do
649 if (PageUptodate(page
)) {
650 if (!buffer_uptodate(bh
))
651 set_buffer_uptodate(bh
);
652 if (unlikely(was_hole
)) {
653 /* We allocated the buffer. */
654 unmap_underlying_metadata(bh
->b_bdev
,
656 if (bh_end
<= pos
|| bh_pos
>= end
)
657 mark_buffer_dirty(bh
);
663 /* Page is _not_ uptodate. */
664 if (likely(!was_hole
)) {
666 * Buffer was already allocated. If it is not
667 * uptodate and is only partially being written
668 * to, we need to read it in before the write,
671 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
676 * If the buffer is fully or partially
677 * within the initialized size, do an
678 * actual read. Otherwise, simply zero
681 read_lock_irqsave(&ni
->size_lock
,
683 initialized_size
= ni
->initialized_size
;
684 read_unlock_irqrestore(&ni
->size_lock
,
686 if (bh_pos
< initialized_size
) {
687 ntfs_submit_bh_for_read(bh
);
690 u8
*kaddr
= kmap_atomic(page
,
692 memset(kaddr
+ bh_offset(bh
),
694 kunmap_atomic(kaddr
, KM_USER0
);
695 flush_dcache_page(page
);
696 set_buffer_uptodate(bh
);
701 /* We allocated the buffer. */
702 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
704 * If the buffer is fully outside the write, zero it,
705 * set it uptodate, and mark it dirty so it gets
706 * written out. If it is partially being written to,
707 * zero region surrounding the write but leave it to
708 * commit write to do anything else. Finally, if the
709 * buffer is fully being overwritten, do nothing.
711 if (bh_end
<= pos
|| bh_pos
>= end
) {
712 if (!buffer_uptodate(bh
)) {
713 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
714 memset(kaddr
+ bh_offset(bh
), 0,
716 kunmap_atomic(kaddr
, KM_USER0
);
717 flush_dcache_page(page
);
718 set_buffer_uptodate(bh
);
720 mark_buffer_dirty(bh
);
724 if (!buffer_uptodate(bh
) &&
725 (bh_pos
< pos
|| bh_end
> end
)) {
729 kaddr
= kmap_atomic(page
, KM_USER0
);
731 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
732 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
735 pofs
= end
& ~PAGE_CACHE_MASK
;
736 memset(kaddr
+ pofs
, 0, bh_end
- end
);
738 kunmap_atomic(kaddr
, KM_USER0
);
739 flush_dcache_page(page
);
744 * Slow path: this is the first buffer in the cluster. If it
745 * is outside allocated size and is not uptodate, zero it and
748 read_lock_irqsave(&ni
->size_lock
, flags
);
749 initialized_size
= ni
->allocated_size
;
750 read_unlock_irqrestore(&ni
->size_lock
, flags
);
751 if (bh_pos
> initialized_size
) {
752 if (PageUptodate(page
)) {
753 if (!buffer_uptodate(bh
))
754 set_buffer_uptodate(bh
);
755 } else if (!buffer_uptodate(bh
)) {
756 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
757 memset(kaddr
+ bh_offset(bh
), 0, blocksize
);
758 kunmap_atomic(kaddr
, KM_USER0
);
759 flush_dcache_page(page
);
760 set_buffer_uptodate(bh
);
766 down_read(&ni
->runlist
.lock
);
770 if (likely(rl
!= NULL
)) {
771 /* Seek to element containing target cluster. */
772 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
774 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
775 if (likely(lcn
>= 0)) {
777 * Successful remap, setup the map cache and
778 * use that to deal with the buffer.
782 vcn_len
= rl
[1].vcn
- vcn
;
783 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
787 * If the number of remaining clusters touched
788 * by the write is smaller or equal to the
789 * number of cached clusters, unlock the
790 * runlist as the map cache will be used from
793 if (likely(vcn
+ vcn_len
>= cend
)) {
794 if (rl_write_locked
) {
795 up_write(&ni
->runlist
.lock
);
796 rl_write_locked
= FALSE
;
798 up_read(&ni
->runlist
.lock
);
801 goto map_buffer_cached
;
804 lcn
= LCN_RL_NOT_MAPPED
;
806 * If it is not a hole and not out of bounds, the runlist is
807 * probably unmapped so try to map it now.
809 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
810 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
811 /* Attempt to map runlist. */
812 if (!rl_write_locked
) {
814 * We need the runlist locked for
815 * writing, so if it is locked for
816 * reading relock it now and retry in
817 * case it changed whilst we dropped
820 up_read(&ni
->runlist
.lock
);
821 down_write(&ni
->runlist
.lock
);
822 rl_write_locked
= TRUE
;
825 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
832 * If @vcn is out of bounds, pretend @lcn is
833 * LCN_ENOENT. As long as the buffer is out
834 * of bounds this will work fine.
836 if (err
== -ENOENT
) {
839 goto rl_not_mapped_enoent
;
843 /* Failed to map the buffer, even after retrying. */
845 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
846 "attribute type 0x%x, vcn 0x%llx, "
847 "vcn offset 0x%x, because its "
848 "location on disk could not be "
849 "determined%s (error code %i).",
850 ni
->mft_no
, ni
->type
,
851 (unsigned long long)bh_cpos
,
853 vol
->cluster_size_mask
,
854 is_retry
? " even after retrying" : "",
858 rl_not_mapped_enoent
:
860 * The buffer is in a hole or out of bounds. We need to fill
861 * the hole, unless the buffer is in a cluster which is not
862 * touched by the write, in which case we just leave the buffer
863 * unmapped. This can only happen when the cluster size is
864 * less than the page cache size.
866 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
867 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
868 vol
->cluster_size_bits
;
869 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
872 * If the buffer is uptodate we skip it. If it
873 * is not but the page is uptodate, we can set
874 * the buffer uptodate. If the page is not
875 * uptodate, we can clear the buffer and set it
876 * uptodate. Whether this is worthwhile is
877 * debatable and this could be removed.
879 if (PageUptodate(page
)) {
880 if (!buffer_uptodate(bh
))
881 set_buffer_uptodate(bh
);
882 } else if (!buffer_uptodate(bh
)) {
883 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
884 memset(kaddr
+ bh_offset(bh
), 0,
886 kunmap_atomic(kaddr
, KM_USER0
);
887 flush_dcache_page(page
);
888 set_buffer_uptodate(bh
);
894 * Out of bounds buffer is invalid if it was not really out of
897 BUG_ON(lcn
!= LCN_HOLE
);
899 * We need the runlist locked for writing, so if it is locked
900 * for reading relock it now and retry in case it changed
901 * whilst we dropped the lock.
904 if (!rl_write_locked
) {
905 up_read(&ni
->runlist
.lock
);
906 down_write(&ni
->runlist
.lock
);
907 rl_write_locked
= TRUE
;
910 /* Find the previous last allocated cluster. */
911 BUG_ON(rl
->lcn
!= LCN_HOLE
);
914 while (--rl2
>= ni
->runlist
.rl
) {
916 lcn
= rl2
->lcn
+ rl2
->length
;
920 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
924 ntfs_debug("Failed to allocate cluster, error code %i.",
929 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
934 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
935 ntfs_error(vol
->sb
, "Failed to release "
936 "allocated cluster in error "
937 "code path. Run chkdsk to "
938 "recover the lost cluster.");
945 status
.runlist_merged
= 1;
946 ntfs_debug("Allocated cluster, lcn 0x%llx.",
947 (unsigned long long)lcn
);
948 /* Map and lock the mft record and get the attribute record. */
952 base_ni
= ni
->ext
.base_ntfs_ino
;
953 m
= map_mft_record(base_ni
);
958 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
959 if (unlikely(!ctx
)) {
961 unmap_mft_record(base_ni
);
964 status
.mft_attr_mapped
= 1;
965 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
966 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
975 * Find the runlist element with which the attribute extent
976 * starts. Note, we cannot use the _attr_ version because we
977 * have mapped the mft record. That is ok because we know the
978 * runlist fragment must be mapped already to have ever gotten
979 * here, so we can just use the _rl_ version.
981 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
982 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
984 BUG_ON(!rl2
->length
);
985 BUG_ON(rl2
->lcn
< LCN_HOLE
);
986 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
988 * If @highest_vcn is zero, calculate the real highest_vcn
989 * (which can really be zero).
992 highest_vcn
= (sle64_to_cpu(
993 a
->data
.non_resident
.allocated_size
) >>
994 vol
->cluster_size_bits
) - 1;
996 * Determine the size of the mapping pairs array for the new
997 * extent, i.e. the old extent with the hole filled.
999 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
1001 if (unlikely(mp_size
<= 0)) {
1002 if (!(err
= mp_size
))
1004 ntfs_debug("Failed to get size for mapping pairs "
1005 "array, error code %i.", err
);
1009 * Resize the attribute record to fit the new mapping pairs
1012 attr_rec_len
= le32_to_cpu(a
->length
);
1013 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
1014 a
->data
.non_resident
.mapping_pairs_offset
));
1015 if (unlikely(err
)) {
1016 BUG_ON(err
!= -ENOSPC
);
1017 // TODO: Deal with this by using the current attribute
1018 // and fill it with as much of the mapping pairs
1019 // array as possible. Then loop over each attribute
1020 // extent rewriting the mapping pairs arrays as we go
1021 // along and if when we reach the end we have not
1022 // enough space, try to resize the last attribute
1023 // extent and if even that fails, add a new attribute
1025 // We could also try to resize at each step in the hope
1026 // that we will not need to rewrite every single extent.
1027 // Note, we may need to decompress some extents to fill
1028 // the runlist as we are walking the extents...
1029 ntfs_error(vol
->sb
, "Not enough space in the mft "
1030 "record for the extended attribute "
1031 "record. This case is not "
1032 "implemented yet.");
1036 status
.mp_rebuilt
= 1;
1038 * Generate the mapping pairs array directly into the attribute
1041 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1042 a
->data
.non_resident
.mapping_pairs_offset
),
1043 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1044 if (unlikely(err
)) {
1045 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1046 "attribute type 0x%x, because building "
1047 "the mapping pairs failed with error "
1048 "code %i.", vi
->i_ino
,
1049 (unsigned)le32_to_cpu(ni
->type
), err
);
1053 /* Update the highest_vcn but only if it was not set. */
1054 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1055 a
->data
.non_resident
.highest_vcn
=
1056 cpu_to_sle64(highest_vcn
);
1058 * If the attribute is sparse/compressed, update the compressed
1059 * size in the ntfs_inode structure and the attribute record.
1061 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1063 * If we are not in the first attribute extent, switch
1064 * to it, but first ensure the changes will make it to
1067 if (a
->data
.non_resident
.lowest_vcn
) {
1068 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1069 mark_mft_record_dirty(ctx
->ntfs_ino
);
1070 ntfs_attr_reinit_search_ctx(ctx
);
1071 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1072 ni
->name_len
, CASE_SENSITIVE
,
1074 if (unlikely(err
)) {
1075 status
.attr_switched
= 1;
1078 /* @m is not used any more so do not set it. */
1081 write_lock_irqsave(&ni
->size_lock
, flags
);
1082 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1083 a
->data
.non_resident
.compressed_size
=
1084 cpu_to_sle64(ni
->itype
.compressed
.size
);
1085 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1087 /* Ensure the changes make it to disk. */
1088 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1089 mark_mft_record_dirty(ctx
->ntfs_ino
);
1090 ntfs_attr_put_search_ctx(ctx
);
1091 unmap_mft_record(base_ni
);
1092 /* Successfully filled the hole. */
1093 status
.runlist_merged
= 0;
1094 status
.mft_attr_mapped
= 0;
1095 status
.mp_rebuilt
= 0;
1096 /* Setup the map cache and use that to deal with the buffer. */
1100 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1103 * If the number of remaining clusters in the @pages is smaller
1104 * or equal to the number of cached clusters, unlock the
1105 * runlist as the map cache will be used from now on.
1107 if (likely(vcn
+ vcn_len
>= cend
)) {
1108 up_write(&ni
->runlist
.lock
);
1109 rl_write_locked
= FALSE
;
1112 goto map_buffer_cached
;
1113 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1114 /* If there are no errors, do the next page. */
1115 if (likely(!err
&& ++u
< nr_pages
))
1117 /* If there are no errors, release the runlist lock if we took it. */
1119 if (unlikely(rl_write_locked
)) {
1120 up_write(&ni
->runlist
.lock
);
1121 rl_write_locked
= FALSE
;
1122 } else if (unlikely(rl
))
1123 up_read(&ni
->runlist
.lock
);
1126 /* If we issued read requests, let them complete. */
1127 read_lock_irqsave(&ni
->size_lock
, flags
);
1128 initialized_size
= ni
->initialized_size
;
1129 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1130 while (wait_bh
> wait
) {
1133 if (likely(buffer_uptodate(bh
))) {
1135 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1138 * If the buffer overflows the initialized size, need
1139 * to zero the overflowing region.
1141 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1145 if (likely(bh_pos
< initialized_size
))
1146 ofs
= initialized_size
- bh_pos
;
1147 kaddr
= kmap_atomic(page
, KM_USER0
);
1148 memset(kaddr
+ bh_offset(bh
) + ofs
, 0,
1150 kunmap_atomic(kaddr
, KM_USER0
);
1151 flush_dcache_page(page
);
1153 } else /* if (unlikely(!buffer_uptodate(bh))) */
1157 /* Clear buffer_new on all buffers. */
1160 bh
= head
= page_buffers(pages
[u
]);
1163 clear_buffer_new(bh
);
1164 } while ((bh
= bh
->b_this_page
) != head
);
1165 } while (++u
< nr_pages
);
1166 ntfs_debug("Done.");
1169 if (status
.attr_switched
) {
1170 /* Get back to the attribute extent we modified. */
1171 ntfs_attr_reinit_search_ctx(ctx
);
1172 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1173 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1174 ntfs_error(vol
->sb
, "Failed to find required "
1175 "attribute extent of attribute in "
1176 "error code path. Run chkdsk to "
1178 write_lock_irqsave(&ni
->size_lock
, flags
);
1179 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1180 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1181 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1182 mark_mft_record_dirty(ctx
->ntfs_ino
);
1184 * The only thing that is now wrong is the compressed
1185 * size of the base attribute extent which chkdsk
1186 * should be able to fix.
1192 status
.attr_switched
= 0;
1196 * If the runlist has been modified, need to restore it by punching a
1197 * hole into it and we then need to deallocate the on-disk cluster as
1198 * well. Note, we only modify the runlist if we are able to generate a
1199 * new mapping pairs array, i.e. only when the mapped attribute extent
1202 if (status
.runlist_merged
&& !status
.attr_switched
) {
1203 BUG_ON(!rl_write_locked
);
1204 /* Make the file cluster we allocated sparse in the runlist. */
1205 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1206 ntfs_error(vol
->sb
, "Failed to punch hole into "
1207 "attribute runlist in error code "
1208 "path. Run chkdsk to recover the "
1211 } else /* if (success) */ {
1212 status
.runlist_merged
= 0;
1214 * Deallocate the on-disk cluster we allocated but only
1215 * if we succeeded in punching its vcn out of the
1218 down_write(&vol
->lcnbmp_lock
);
1219 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1220 ntfs_error(vol
->sb
, "Failed to release "
1221 "allocated cluster in error "
1222 "code path. Run chkdsk to "
1223 "recover the lost cluster.");
1226 up_write(&vol
->lcnbmp_lock
);
1230 * Resize the attribute record to its old size and rebuild the mapping
1231 * pairs array. Note, we only can do this if the runlist has been
1232 * restored to its old state which also implies that the mapped
1233 * attribute extent is not switched.
1235 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1236 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1237 ntfs_error(vol
->sb
, "Failed to restore attribute "
1238 "record in error code path. Run "
1239 "chkdsk to recover.");
1241 } else /* if (success) */ {
1242 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1243 le16_to_cpu(a
->data
.non_resident
.
1244 mapping_pairs_offset
), attr_rec_len
-
1245 le16_to_cpu(a
->data
.non_resident
.
1246 mapping_pairs_offset
), ni
->runlist
.rl
,
1247 vcn
, highest_vcn
, NULL
)) {
1248 ntfs_error(vol
->sb
, "Failed to restore "
1249 "mapping pairs array in error "
1250 "code path. Run chkdsk to "
1254 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1255 mark_mft_record_dirty(ctx
->ntfs_ino
);
1258 /* Release the mft record and the attribute. */
1259 if (status
.mft_attr_mapped
) {
1260 ntfs_attr_put_search_ctx(ctx
);
1261 unmap_mft_record(base_ni
);
1263 /* Release the runlist lock. */
1264 if (rl_write_locked
)
1265 up_write(&ni
->runlist
.lock
);
1267 up_read(&ni
->runlist
.lock
);
1269 * Zero out any newly allocated blocks to avoid exposing stale data.
1270 * If BH_New is set, we know that the block was newly allocated above
1271 * and that it has not been fully zeroed and marked dirty yet.
1275 end
= bh_cpos
<< vol
->cluster_size_bits
;
1278 bh
= head
= page_buffers(page
);
1280 if (u
== nr_pages
&&
1281 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1282 bh_offset(bh
) >= end
)
1284 if (!buffer_new(bh
))
1286 clear_buffer_new(bh
);
1287 if (!buffer_uptodate(bh
)) {
1288 if (PageUptodate(page
))
1289 set_buffer_uptodate(bh
);
1291 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
1292 memset(kaddr
+ bh_offset(bh
), 0,
1294 kunmap_atomic(kaddr
, KM_USER0
);
1295 flush_dcache_page(page
);
1296 set_buffer_uptodate(bh
);
1299 mark_buffer_dirty(bh
);
1300 } while ((bh
= bh
->b_this_page
) != head
);
1301 } while (++u
<= nr_pages
);
1302 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1307 * Copy as much as we can into the pages and return the number of bytes which
1308 * were sucessfully copied. If a fault is encountered then clear the pages
1309 * out to (ofs + bytes) and return the number of bytes which were copied.
1311 static inline size_t ntfs_copy_from_user(struct page
**pages
,
1312 unsigned nr_pages
, unsigned ofs
, const char __user
*buf
,
1315 struct page
**last_page
= pages
+ nr_pages
;
1322 len
= PAGE_CACHE_SIZE
- ofs
;
1325 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1326 left
= __copy_from_user_inatomic(kaddr
+ ofs
, buf
, len
);
1327 kunmap_atomic(kaddr
, KM_USER0
);
1328 if (unlikely(left
)) {
1329 /* Do it the slow way. */
1330 kaddr
= kmap(*pages
);
1331 left
= __copy_from_user(kaddr
+ ofs
, buf
, len
);
1342 } while (++pages
< last_page
);
1346 total
+= len
- left
;
1347 /* Zero the rest of the target like __copy_from_user(). */
1348 while (++pages
< last_page
) {
1352 len
= PAGE_CACHE_SIZE
;
1355 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1356 memset(kaddr
, 0, len
);
1357 kunmap_atomic(kaddr
, KM_USER0
);
1362 static size_t __ntfs_copy_from_user_iovec(char *vaddr
,
1363 const struct iovec
*iov
, size_t iov_ofs
, size_t bytes
)
1368 const char __user
*buf
= iov
->iov_base
+ iov_ofs
;
1372 len
= iov
->iov_len
- iov_ofs
;
1375 left
= __copy_from_user_inatomic(vaddr
, buf
, len
);
1379 if (unlikely(left
)) {
1381 * Zero the rest of the target like __copy_from_user().
1383 memset(vaddr
, 0, bytes
);
1395 static inline void ntfs_set_next_iovec(const struct iovec
**iovp
,
1396 size_t *iov_ofsp
, size_t bytes
)
1398 const struct iovec
*iov
= *iovp
;
1399 size_t iov_ofs
= *iov_ofsp
;
1404 len
= iov
->iov_len
- iov_ofs
;
1409 if (iov
->iov_len
== iov_ofs
) {
1415 *iov_ofsp
= iov_ofs
;
1419 * This has the same side-effects and return value as ntfs_copy_from_user().
1420 * The difference is that on a fault we need to memset the remainder of the
1421 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1422 * single-segment behaviour.
1424 * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
1425 * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
1426 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1427 * fact, the only difference between __copy_from_user_inatomic() and
1428 * __copy_from_user() is that the latter calls might_sleep(). And on many
1429 * architectures __copy_from_user_inatomic() is just defined to
1430 * __copy_from_user() so it makes no difference at all on those architectures.
1432 static inline size_t ntfs_copy_from_user_iovec(struct page
**pages
,
1433 unsigned nr_pages
, unsigned ofs
, const struct iovec
**iov
,
1434 size_t *iov_ofs
, size_t bytes
)
1436 struct page
**last_page
= pages
+ nr_pages
;
1438 size_t copied
, len
, total
= 0;
1441 len
= PAGE_CACHE_SIZE
- ofs
;
1444 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1445 copied
= __ntfs_copy_from_user_iovec(kaddr
+ ofs
,
1446 *iov
, *iov_ofs
, len
);
1447 kunmap_atomic(kaddr
, KM_USER0
);
1448 if (unlikely(copied
!= len
)) {
1449 /* Do it the slow way. */
1450 kaddr
= kmap(*pages
);
1451 copied
= __ntfs_copy_from_user_iovec(kaddr
+ ofs
,
1452 *iov
, *iov_ofs
, len
);
1454 if (unlikely(copied
!= len
))
1461 ntfs_set_next_iovec(iov
, iov_ofs
, len
);
1463 } while (++pages
< last_page
);
1468 /* Zero the rest of the target like __copy_from_user(). */
1469 while (++pages
< last_page
) {
1473 len
= PAGE_CACHE_SIZE
;
1476 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1477 memset(kaddr
, 0, len
);
1478 kunmap_atomic(kaddr
, KM_USER0
);
1483 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1489 * Warning: Do not do the decrement at the same time as the
1490 * call because flush_dcache_page() is a NULL macro on i386
1491 * and hence the decrement never happens.
1493 flush_dcache_page(pages
[nr_pages
]);
1494 } while (--nr_pages
> 0);
1498 * ntfs_commit_pages_after_non_resident_write - commit the received data
1499 * @pages: array of destination pages
1500 * @nr_pages: number of pages in @pages
1501 * @pos: byte position in file at which the write begins
1502 * @bytes: number of bytes to be written
1504 * See description of ntfs_commit_pages_after_write(), below.
1506 static inline int ntfs_commit_pages_after_non_resident_write(
1507 struct page
**pages
, const unsigned nr_pages
,
1508 s64 pos
, size_t bytes
)
1510 s64 end
, initialized_size
;
1512 ntfs_inode
*ni
, *base_ni
;
1513 struct buffer_head
*bh
, *head
;
1514 ntfs_attr_search_ctx
*ctx
;
1517 unsigned long flags
;
1518 unsigned blocksize
, u
;
1521 vi
= pages
[0]->mapping
->host
;
1523 blocksize
= vi
->i_sb
->s_blocksize
;
1532 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1533 bh
= head
= page_buffers(page
);
1538 bh_end
= bh_pos
+ blocksize
;
1539 if (bh_end
<= pos
|| bh_pos
>= end
) {
1540 if (!buffer_uptodate(bh
))
1543 set_buffer_uptodate(bh
);
1544 mark_buffer_dirty(bh
);
1546 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1548 * If all buffers are now uptodate but the page is not, set the
1551 if (!partial
&& !PageUptodate(page
))
1552 SetPageUptodate(page
);
1553 } while (++u
< nr_pages
);
1555 * Finally, if we do not need to update initialized_size or i_size we
1558 read_lock_irqsave(&ni
->size_lock
, flags
);
1559 initialized_size
= ni
->initialized_size
;
1560 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1561 if (end
<= initialized_size
) {
1562 ntfs_debug("Done.");
1566 * Update initialized_size/i_size as appropriate, both in the inode and
1572 base_ni
= ni
->ext
.base_ntfs_ino
;
1573 /* Map, pin, and lock the mft record. */
1574 m
= map_mft_record(base_ni
);
1581 BUG_ON(!NInoNonResident(ni
));
1582 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1583 if (unlikely(!ctx
)) {
1587 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1588 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1589 if (unlikely(err
)) {
1595 BUG_ON(!a
->non_resident
);
1596 write_lock_irqsave(&ni
->size_lock
, flags
);
1597 BUG_ON(end
> ni
->allocated_size
);
1598 ni
->initialized_size
= end
;
1599 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1600 if (end
> i_size_read(vi
)) {
1601 i_size_write(vi
, end
);
1602 a
->data
.non_resident
.data_size
=
1603 a
->data
.non_resident
.initialized_size
;
1605 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1606 /* Mark the mft record dirty, so it gets written back. */
1607 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1608 mark_mft_record_dirty(ctx
->ntfs_ino
);
1609 ntfs_attr_put_search_ctx(ctx
);
1610 unmap_mft_record(base_ni
);
1611 ntfs_debug("Done.");
1615 ntfs_attr_put_search_ctx(ctx
);
1617 unmap_mft_record(base_ni
);
1618 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1621 NVolSetErrors(ni
->vol
);
1626 * ntfs_commit_pages_after_write - commit the received data
1627 * @pages: array of destination pages
1628 * @nr_pages: number of pages in @pages
1629 * @pos: byte position in file at which the write begins
1630 * @bytes: number of bytes to be written
1632 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1633 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1634 * locked but not kmap()ped. The source data has already been copied into the
1635 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1636 * the data was copied (for non-resident attributes only) and it returned
1639 * Need to set uptodate and mark dirty all buffers within the boundary of the
1640 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1642 * Setting the buffers dirty ensures that they get written out later when
1643 * ntfs_writepage() is invoked by the VM.
1645 * Finally, we need to update i_size and initialized_size as appropriate both
1646 * in the inode and the mft record.
1648 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1649 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1650 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1651 * that case, it also marks the inode dirty.
1653 * If things have gone as outlined in
1654 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1655 * content modifications here for non-resident attributes. For resident
1656 * attributes we need to do the uptodate bringing here which we combine with
1657 * the copying into the mft record which means we save one atomic kmap.
1659 * Return 0 on success or -errno on error.
1661 static int ntfs_commit_pages_after_write(struct page
**pages
,
1662 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1664 s64 end
, initialized_size
;
1667 ntfs_inode
*ni
, *base_ni
;
1669 ntfs_attr_search_ctx
*ctx
;
1672 char *kattr
, *kaddr
;
1673 unsigned long flags
;
1681 vi
= page
->mapping
->host
;
1683 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1684 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1685 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1686 (long long)pos
, bytes
);
1687 if (NInoNonResident(ni
))
1688 return ntfs_commit_pages_after_non_resident_write(pages
,
1689 nr_pages
, pos
, bytes
);
1690 BUG_ON(nr_pages
> 1);
1692 * Attribute is resident, implying it is not compressed, encrypted, or
1698 base_ni
= ni
->ext
.base_ntfs_ino
;
1699 BUG_ON(NInoNonResident(ni
));
1700 /* Map, pin, and lock the mft record. */
1701 m
= map_mft_record(base_ni
);
1708 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1709 if (unlikely(!ctx
)) {
1713 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1714 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1715 if (unlikely(err
)) {
1721 BUG_ON(a
->non_resident
);
1722 /* The total length of the attribute value. */
1723 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1724 i_size
= i_size_read(vi
);
1725 BUG_ON(attr_len
!= i_size
);
1726 BUG_ON(pos
> attr_len
);
1728 BUG_ON(end
> le32_to_cpu(a
->length
) -
1729 le16_to_cpu(a
->data
.resident
.value_offset
));
1730 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1731 kaddr
= kmap_atomic(page
, KM_USER0
);
1732 /* Copy the received data from the page to the mft record. */
1733 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1734 /* Update the attribute length if necessary. */
1735 if (end
> attr_len
) {
1737 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1740 * If the page is not uptodate, bring the out of bounds area(s)
1741 * uptodate by copying data from the mft record to the page.
1743 if (!PageUptodate(page
)) {
1745 memcpy(kaddr
, kattr
, pos
);
1747 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1748 /* Zero the region outside the end of the attribute value. */
1749 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1750 flush_dcache_page(page
);
1751 SetPageUptodate(page
);
1753 kunmap_atomic(kaddr
, KM_USER0
);
1754 /* Update initialized_size/i_size if necessary. */
1755 read_lock_irqsave(&ni
->size_lock
, flags
);
1756 initialized_size
= ni
->initialized_size
;
1757 BUG_ON(end
> ni
->allocated_size
);
1758 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1759 BUG_ON(initialized_size
!= i_size
);
1760 if (end
> initialized_size
) {
1761 unsigned long flags
;
1763 write_lock_irqsave(&ni
->size_lock
, flags
);
1764 ni
->initialized_size
= end
;
1765 i_size_write(vi
, end
);
1766 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1768 /* Mark the mft record dirty, so it gets written back. */
1769 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1770 mark_mft_record_dirty(ctx
->ntfs_ino
);
1771 ntfs_attr_put_search_ctx(ctx
);
1772 unmap_mft_record(base_ni
);
1773 ntfs_debug("Done.");
1776 if (err
== -ENOMEM
) {
1777 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1778 "commit the write.");
1779 if (PageUptodate(page
)) {
1780 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1781 "dirty so the write will be retried "
1782 "later on by the VM.");
1784 * Put the page on mapping->dirty_pages, but leave its
1785 * buffers' dirty state as-is.
1787 __set_page_dirty_nobuffers(page
);
1790 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1791 "data has been lost.");
1793 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1794 "with error %i.", err
);
1795 NVolSetErrors(ni
->vol
);
1798 ntfs_attr_put_search_ctx(ctx
);
1800 unmap_mft_record(base_ni
);
1805 * ntfs_file_buffered_write -
1807 * Locking: The vfs is holding ->i_mutex on the inode.
1809 static ssize_t
ntfs_file_buffered_write(struct kiocb
*iocb
,
1810 const struct iovec
*iov
, unsigned long nr_segs
,
1811 loff_t pos
, loff_t
*ppos
, size_t count
)
1813 struct file
*file
= iocb
->ki_filp
;
1814 struct address_space
*mapping
= file
->f_mapping
;
1815 struct inode
*vi
= mapping
->host
;
1816 ntfs_inode
*ni
= NTFS_I(vi
);
1817 ntfs_volume
*vol
= ni
->vol
;
1818 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1819 struct page
*cached_page
= NULL
;
1820 char __user
*buf
= NULL
;
1824 unsigned long flags
;
1825 size_t bytes
, iov_ofs
= 0; /* Offset in the current iovec. */
1826 ssize_t status
, written
;
1829 struct pagevec lru_pvec
;
1831 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1832 "pos 0x%llx, count 0x%lx.",
1833 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
1834 (unsigned long long)pos
, (unsigned long)count
);
1835 if (unlikely(!count
))
1837 BUG_ON(NInoMstProtected(ni
));
1839 * If the attribute is not an index root and it is encrypted or
1840 * compressed, we cannot write to it yet. Note we need to check for
1841 * AT_INDEX_ALLOCATION since this is the type of both directory and
1844 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1845 /* If file is encrypted, deny access, just like NT4. */
1846 if (NInoEncrypted(ni
)) {
1848 * Reminder for later: Encrypted files are _always_
1849 * non-resident so that the content can always be
1852 ntfs_debug("Denying write access to encrypted file.");
1855 if (NInoCompressed(ni
)) {
1856 /* Only unnamed $DATA attribute can be compressed. */
1857 BUG_ON(ni
->type
!= AT_DATA
);
1858 BUG_ON(ni
->name_len
);
1860 * Reminder for later: If resident, the data is not
1861 * actually compressed. Only on the switch to non-
1862 * resident does compression kick in. This is in
1863 * contrast to encrypted files (see above).
1865 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1866 "not implemented yet. Sorry.");
1871 * If a previous ntfs_truncate() failed, repeat it and abort if it
1874 if (unlikely(NInoTruncateFailed(ni
))) {
1875 down_write(&vi
->i_alloc_sem
);
1876 err
= ntfs_truncate(vi
);
1877 up_write(&vi
->i_alloc_sem
);
1878 if (err
|| NInoTruncateFailed(ni
)) {
1881 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1882 "0x%lx, attribute type 0x%x, because "
1883 "ntfs_truncate() failed (error code "
1885 (unsigned)le32_to_cpu(ni
->type
), err
);
1889 /* The first byte after the write. */
1892 * If the write goes beyond the allocated size, extend the allocation
1893 * to cover the whole of the write, rounded up to the nearest cluster.
1895 read_lock_irqsave(&ni
->size_lock
, flags
);
1896 ll
= ni
->allocated_size
;
1897 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1899 /* Extend the allocation without changing the data size. */
1900 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
1901 if (likely(ll
>= 0)) {
1903 /* If the extension was partial truncate the write. */
1905 ntfs_debug("Truncating write to inode 0x%lx, "
1906 "attribute type 0x%x, because "
1907 "the allocation was only "
1908 "partially extended.",
1909 vi
->i_ino
, (unsigned)
1910 le32_to_cpu(ni
->type
));
1916 read_lock_irqsave(&ni
->size_lock
, flags
);
1917 ll
= ni
->allocated_size
;
1918 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1919 /* Perform a partial write if possible or fail. */
1921 ntfs_debug("Truncating write to inode 0x%lx, "
1922 "attribute type 0x%x, because "
1923 "extending the allocation "
1924 "failed (error code %i).",
1925 vi
->i_ino
, (unsigned)
1926 le32_to_cpu(ni
->type
), err
);
1930 ntfs_error(vol
->sb
, "Cannot perform write to "
1931 "inode 0x%lx, attribute type "
1932 "0x%x, because extending the "
1933 "allocation failed (error "
1934 "code %i).", vi
->i_ino
,
1936 le32_to_cpu(ni
->type
), err
);
1941 pagevec_init(&lru_pvec
, 0);
1944 * If the write starts beyond the initialized size, extend it up to the
1945 * beginning of the write and initialize all non-sparse space between
1946 * the old initialized size and the new one. This automatically also
1947 * increments the vfs inode->i_size to keep it above or equal to the
1950 read_lock_irqsave(&ni
->size_lock
, flags
);
1951 ll
= ni
->initialized_size
;
1952 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1954 err
= ntfs_attr_extend_initialized(ni
, pos
, &cached_page
,
1957 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1958 "0x%lx, attribute type 0x%x, because "
1959 "extending the initialized size "
1960 "failed (error code %i).", vi
->i_ino
,
1961 (unsigned)le32_to_cpu(ni
->type
), err
);
1967 * Determine the number of pages per cluster for non-resident
1971 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1972 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1973 /* Finally, perform the actual write. */
1975 if (likely(nr_segs
== 1))
1976 buf
= iov
->iov_base
;
1979 pgoff_t idx
, start_idx
;
1980 unsigned ofs
, do_pages
, u
;
1983 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1984 ofs
= pos
& ~PAGE_CACHE_MASK
;
1985 bytes
= PAGE_CACHE_SIZE
- ofs
;
1988 vcn
= pos
>> vol
->cluster_size_bits
;
1989 if (vcn
!= last_vcn
) {
1992 * Get the lcn of the vcn the write is in. If
1993 * it is a hole, need to lock down all pages in
1996 down_read(&ni
->runlist
.lock
);
1997 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1998 vol
->cluster_size_bits
, FALSE
);
1999 up_read(&ni
->runlist
.lock
);
2000 if (unlikely(lcn
< LCN_HOLE
)) {
2002 if (lcn
== LCN_ENOMEM
)
2005 ntfs_error(vol
->sb
, "Cannot "
2008 "attribute type 0x%x, "
2009 "because the attribute "
2011 vi
->i_ino
, (unsigned)
2012 le32_to_cpu(ni
->type
));
2015 if (lcn
== LCN_HOLE
) {
2016 start_idx
= (pos
& ~(s64
)
2017 vol
->cluster_size_mask
)
2018 >> PAGE_CACHE_SHIFT
;
2019 bytes
= vol
->cluster_size
- (pos
&
2020 vol
->cluster_size_mask
);
2021 do_pages
= nr_pages
;
2028 * Bring in the user page(s) that we will copy from _first_.
2029 * Otherwise there is a nasty deadlock on copying from the same
2030 * page(s) as we are writing to, without it/them being marked
2031 * up-to-date. Note, at present there is nothing to stop the
2032 * pages being swapped out between us bringing them into memory
2033 * and doing the actual copying.
2035 if (likely(nr_segs
== 1))
2036 ntfs_fault_in_pages_readable(buf
, bytes
);
2038 ntfs_fault_in_pages_readable_iovec(iov
, iov_ofs
, bytes
);
2039 /* Get and lock @do_pages starting at index @start_idx. */
2040 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
2041 pages
, &cached_page
, &lru_pvec
);
2042 if (unlikely(status
))
2045 * For non-resident attributes, we need to fill any holes with
2046 * actual clusters and ensure all bufferes are mapped. We also
2047 * need to bring uptodate any buffers that are only partially
2050 if (NInoNonResident(ni
)) {
2051 status
= ntfs_prepare_pages_for_non_resident_write(
2052 pages
, do_pages
, pos
, bytes
);
2053 if (unlikely(status
)) {
2057 unlock_page(pages
[--do_pages
]);
2058 page_cache_release(pages
[do_pages
]);
2061 * The write preparation may have instantiated
2062 * allocated space outside i_size. Trim this
2063 * off again. We can ignore any errors in this
2064 * case as we will just be waisting a bit of
2065 * allocated space, which is not a disaster.
2067 i_size
= i_size_read(vi
);
2068 if (pos
+ bytes
> i_size
)
2069 vmtruncate(vi
, i_size
);
2073 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
2074 if (likely(nr_segs
== 1)) {
2075 copied
= ntfs_copy_from_user(pages
+ u
, do_pages
- u
,
2079 copied
= ntfs_copy_from_user_iovec(pages
+ u
,
2080 do_pages
- u
, ofs
, &iov
, &iov_ofs
,
2082 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
2083 status
= ntfs_commit_pages_after_write(pages
, do_pages
, pos
,
2085 if (likely(!status
)) {
2089 if (unlikely(copied
!= bytes
))
2093 unlock_page(pages
[--do_pages
]);
2094 mark_page_accessed(pages
[do_pages
]);
2095 page_cache_release(pages
[do_pages
]);
2097 if (unlikely(status
))
2099 balance_dirty_pages_ratelimited(mapping
);
2105 page_cache_release(cached_page
);
2106 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2107 if (likely(!status
)) {
2108 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(vi
))) {
2109 if (!mapping
->a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2110 status
= generic_osync_inode(vi
, mapping
,
2111 OSYNC_METADATA
|OSYNC_DATA
);
2114 pagevec_lru_add(&lru_pvec
);
2115 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2116 written
? "written" : "status", (unsigned long)written
,
2118 return written
? written
: status
;
2122 * ntfs_file_aio_write_nolock -
2124 static ssize_t
ntfs_file_aio_write_nolock(struct kiocb
*iocb
,
2125 const struct iovec
*iov
, unsigned long nr_segs
, loff_t
*ppos
)
2127 struct file
*file
= iocb
->ki_filp
;
2128 struct address_space
*mapping
= file
->f_mapping
;
2129 struct inode
*inode
= mapping
->host
;
2132 size_t count
; /* after file limit checks */
2133 ssize_t written
, err
;
2136 for (seg
= 0; seg
< nr_segs
; seg
++) {
2137 const struct iovec
*iv
= &iov
[seg
];
2139 * If any segment has a negative length, or the cumulative
2140 * length ever wraps negative then return -EINVAL.
2142 count
+= iv
->iov_len
;
2143 if (unlikely((ssize_t
)(count
|iv
->iov_len
) < 0))
2145 if (access_ok(VERIFY_READ
, iv
->iov_base
, iv
->iov_len
))
2150 count
-= iv
->iov_len
; /* This segment is no good */
2154 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2155 /* We can write back this queue in page reclaim. */
2156 current
->backing_dev_info
= mapping
->backing_dev_info
;
2158 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2163 err
= remove_suid(file
->f_dentry
);
2166 file_update_time(file
);
2167 written
= ntfs_file_buffered_write(iocb
, iov
, nr_segs
, pos
, ppos
,
2170 current
->backing_dev_info
= NULL
;
2171 return written
? written
: err
;
2175 * ntfs_file_aio_write -
2177 static ssize_t
ntfs_file_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
2178 size_t count
, loff_t pos
)
2180 struct file
*file
= iocb
->ki_filp
;
2181 struct address_space
*mapping
= file
->f_mapping
;
2182 struct inode
*inode
= mapping
->host
;
2184 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2187 BUG_ON(iocb
->ki_pos
!= pos
);
2189 mutex_lock(&inode
->i_mutex
);
2190 ret
= ntfs_file_aio_write_nolock(iocb
, &local_iov
, 1, &iocb
->ki_pos
);
2191 mutex_unlock(&inode
->i_mutex
);
2192 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2193 int err
= sync_page_range(inode
, mapping
, pos
, ret
);
2201 * ntfs_file_writev -
2203 * Basically the same as generic_file_writev() except that it ends up calling
2204 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2206 static ssize_t
ntfs_file_writev(struct file
*file
, const struct iovec
*iov
,
2207 unsigned long nr_segs
, loff_t
*ppos
)
2209 struct address_space
*mapping
= file
->f_mapping
;
2210 struct inode
*inode
= mapping
->host
;
2214 mutex_lock(&inode
->i_mutex
);
2215 init_sync_kiocb(&kiocb
, file
);
2216 ret
= ntfs_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2217 if (ret
== -EIOCBQUEUED
)
2218 ret
= wait_on_sync_kiocb(&kiocb
);
2219 mutex_unlock(&inode
->i_mutex
);
2220 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2221 int err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2229 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2231 static ssize_t
ntfs_file_write(struct file
*file
, const char __user
*buf
,
2232 size_t count
, loff_t
*ppos
)
2234 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2237 return ntfs_file_writev(file
, &local_iov
, 1, ppos
);
2241 * ntfs_file_fsync - sync a file to disk
2242 * @filp: file to be synced
2243 * @dentry: dentry describing the file to sync
2244 * @datasync: if non-zero only flush user data and not metadata
2246 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2247 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2249 * If @datasync is false, write the mft record and all associated extent mft
2250 * records as well as the $DATA attribute and then sync the block device.
2252 * If @datasync is true and the attribute is non-resident, we skip the writing
2253 * of the mft record and all associated extent mft records (this might still
2254 * happen due to the write_inode_now() call).
2256 * Also, if @datasync is true, we do not wait on the inode to be written out
2257 * but we always wait on the page cache pages to be written out.
2259 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2262 * Locking: Caller must hold i_mutex on the inode.
2264 * TODO: We should probably also write all attribute/index inodes associated
2265 * with this inode but since we have no simple way of getting to them we ignore
2266 * this problem for now.
2268 static int ntfs_file_fsync(struct file
*filp
, struct dentry
*dentry
,
2271 struct inode
*vi
= dentry
->d_inode
;
2274 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2275 BUG_ON(S_ISDIR(vi
->i_mode
));
2276 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2277 ret
= ntfs_write_inode(vi
, 1);
2278 write_inode_now(vi
, !datasync
);
2280 * NOTE: If we were to use mapping->private_list (see ext2 and
2281 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2282 * sync_mapping_buffers(vi->i_mapping).
2284 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2285 if (unlikely(err
&& !ret
))
2288 ntfs_debug("Done.");
2290 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2291 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2295 #endif /* NTFS_RW */
2297 const struct file_operations ntfs_file_ops
= {
2298 .llseek
= generic_file_llseek
, /* Seek inside file. */
2299 .read
= generic_file_read
, /* Read from file. */
2300 .aio_read
= generic_file_aio_read
, /* Async read from file. */
2301 .readv
= generic_file_readv
, /* Read from file. */
2303 .write
= ntfs_file_write
, /* Write to file. */
2304 .aio_write
= ntfs_file_aio_write
, /* Async write to file. */
2305 .writev
= ntfs_file_writev
, /* Write to file. */
2306 /*.release = ,*/ /* Last file is closed. See
2308 ext2_release_file() for
2309 how to use this to discard
2310 preallocated space for
2311 write opened files. */
2312 .fsync
= ntfs_file_fsync
, /* Sync a file to disk. */
2313 /*.aio_fsync = ,*/ /* Sync all outstanding async
2316 #endif /* NTFS_RW */
2317 /*.ioctl = ,*/ /* Perform function on the
2318 mounted filesystem. */
2319 .mmap
= generic_file_mmap
, /* Mmap file. */
2320 .open
= ntfs_file_open
, /* Open file. */
2321 .sendfile
= generic_file_sendfile
, /* Zero-copy data send with
2322 the data source being on
2323 the ntfs partition. We do
2324 not need to care about the
2325 data destination. */
2326 /*.sendpage = ,*/ /* Zero-copy data send with
2327 the data destination being
2328 on the ntfs partition. We
2329 do not need to care about
2333 struct inode_operations ntfs_file_inode_ops
= {
2335 .truncate
= ntfs_truncate_vfs
,
2336 .setattr
= ntfs_setattr
,
2337 #endif /* NTFS_RW */
2340 const struct file_operations ntfs_empty_file_ops
= {};
2342 struct inode_operations ntfs_empty_inode_ops
= {};