[SKB]: __skb_queue_after(prev) = __skb_insert(prev, prev->next)
[linux-2.6/verdex.git] / include / linux / skbuff.h
blobbb107ab675fc29f1f325da5226f49a2e6ca58871
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
114 #endif
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
121 __u32 qlen;
122 spinlock_t lock;
125 struct sk_buff;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t;
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
184 SKB_GSO_TCPV6 = 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
259 union {
260 struct dst_entry *dst;
261 struct rtable *rtable;
263 struct sec_path *sp;
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
271 char cb[48];
273 unsigned int len,
274 data_len;
275 __u16 mac_len,
276 hdr_len;
277 union {
278 __wsum csum;
279 struct {
280 __u16 csum_start;
281 __u16 csum_offset;
284 __u32 priority;
285 __u8 local_df:1,
286 cloned:1,
287 ip_summed:2,
288 nohdr:1,
289 nfctinfo:3;
290 __u8 pkt_type:3,
291 fclone:2,
292 ipvs_property:1,
293 peeked:1,
294 nf_trace:1;
295 __be16 protocol;
297 void (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack *nfct;
300 struct sk_buff *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info *nf_bridge;
304 #endif
306 int iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308 __u16 queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 __u8 ndisc_nodetype:2;
318 #endif
319 /* 14 bit hole */
321 #ifdef CONFIG_NET_DMA
322 dma_cookie_t dma_cookie;
323 #endif
324 #ifdef CONFIG_NETWORK_SECMARK
325 __u32 secmark;
326 #endif
328 __u32 mark;
330 sk_buff_data_t transport_header;
331 sk_buff_data_t network_header;
332 sk_buff_data_t mac_header;
333 /* These elements must be at the end, see alloc_skb() for details. */
334 sk_buff_data_t tail;
335 sk_buff_data_t end;
336 unsigned char *head,
337 *data;
338 unsigned int truesize;
339 atomic_t users;
342 #ifdef __KERNEL__
344 * Handling routines are only of interest to the kernel
346 #include <linux/slab.h>
348 #include <asm/system.h>
350 extern void kfree_skb(struct sk_buff *skb);
351 extern void __kfree_skb(struct sk_buff *skb);
352 extern struct sk_buff *__alloc_skb(unsigned int size,
353 gfp_t priority, int fclone, int node);
354 static inline struct sk_buff *alloc_skb(unsigned int size,
355 gfp_t priority)
357 return __alloc_skb(size, priority, 0, -1);
360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
361 gfp_t priority)
363 return __alloc_skb(size, priority, 1, -1);
366 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
367 extern struct sk_buff *skb_clone(struct sk_buff *skb,
368 gfp_t priority);
369 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
370 gfp_t priority);
371 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
372 gfp_t gfp_mask);
373 extern int pskb_expand_head(struct sk_buff *skb,
374 int nhead, int ntail,
375 gfp_t gfp_mask);
376 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
377 unsigned int headroom);
378 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
379 int newheadroom, int newtailroom,
380 gfp_t priority);
381 extern int skb_to_sgvec(struct sk_buff *skb,
382 struct scatterlist *sg, int offset,
383 int len);
384 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
385 struct sk_buff **trailer);
386 extern int skb_pad(struct sk_buff *skb, int pad);
387 #define dev_kfree_skb(a) kfree_skb(a)
388 extern void skb_over_panic(struct sk_buff *skb, int len,
389 void *here);
390 extern void skb_under_panic(struct sk_buff *skb, int len,
391 void *here);
392 extern void skb_truesize_bug(struct sk_buff *skb);
394 static inline void skb_truesize_check(struct sk_buff *skb)
396 int len = sizeof(struct sk_buff) + skb->len;
398 if (unlikely((int)skb->truesize < len))
399 skb_truesize_bug(skb);
402 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
403 int getfrag(void *from, char *to, int offset,
404 int len,int odd, struct sk_buff *skb),
405 void *from, int length);
407 struct skb_seq_state
409 __u32 lower_offset;
410 __u32 upper_offset;
411 __u32 frag_idx;
412 __u32 stepped_offset;
413 struct sk_buff *root_skb;
414 struct sk_buff *cur_skb;
415 __u8 *frag_data;
418 extern void skb_prepare_seq_read(struct sk_buff *skb,
419 unsigned int from, unsigned int to,
420 struct skb_seq_state *st);
421 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
422 struct skb_seq_state *st);
423 extern void skb_abort_seq_read(struct skb_seq_state *st);
425 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
426 unsigned int to, struct ts_config *config,
427 struct ts_state *state);
429 #ifdef NET_SKBUFF_DATA_USES_OFFSET
430 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
432 return skb->head + skb->end;
434 #else
435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
437 return skb->end;
439 #endif
441 /* Internal */
442 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
445 * skb_queue_empty - check if a queue is empty
446 * @list: queue head
448 * Returns true if the queue is empty, false otherwise.
450 static inline int skb_queue_empty(const struct sk_buff_head *list)
452 return list->next == (struct sk_buff *)list;
456 * skb_get - reference buffer
457 * @skb: buffer to reference
459 * Makes another reference to a socket buffer and returns a pointer
460 * to the buffer.
462 static inline struct sk_buff *skb_get(struct sk_buff *skb)
464 atomic_inc(&skb->users);
465 return skb;
469 * If users == 1, we are the only owner and are can avoid redundant
470 * atomic change.
474 * skb_cloned - is the buffer a clone
475 * @skb: buffer to check
477 * Returns true if the buffer was generated with skb_clone() and is
478 * one of multiple shared copies of the buffer. Cloned buffers are
479 * shared data so must not be written to under normal circumstances.
481 static inline int skb_cloned(const struct sk_buff *skb)
483 return skb->cloned &&
484 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
488 * skb_header_cloned - is the header a clone
489 * @skb: buffer to check
491 * Returns true if modifying the header part of the buffer requires
492 * the data to be copied.
494 static inline int skb_header_cloned(const struct sk_buff *skb)
496 int dataref;
498 if (!skb->cloned)
499 return 0;
501 dataref = atomic_read(&skb_shinfo(skb)->dataref);
502 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
503 return dataref != 1;
507 * skb_header_release - release reference to header
508 * @skb: buffer to operate on
510 * Drop a reference to the header part of the buffer. This is done
511 * by acquiring a payload reference. You must not read from the header
512 * part of skb->data after this.
514 static inline void skb_header_release(struct sk_buff *skb)
516 BUG_ON(skb->nohdr);
517 skb->nohdr = 1;
518 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
522 * skb_shared - is the buffer shared
523 * @skb: buffer to check
525 * Returns true if more than one person has a reference to this
526 * buffer.
528 static inline int skb_shared(const struct sk_buff *skb)
530 return atomic_read(&skb->users) != 1;
534 * skb_share_check - check if buffer is shared and if so clone it
535 * @skb: buffer to check
536 * @pri: priority for memory allocation
538 * If the buffer is shared the buffer is cloned and the old copy
539 * drops a reference. A new clone with a single reference is returned.
540 * If the buffer is not shared the original buffer is returned. When
541 * being called from interrupt status or with spinlocks held pri must
542 * be GFP_ATOMIC.
544 * NULL is returned on a memory allocation failure.
546 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
547 gfp_t pri)
549 might_sleep_if(pri & __GFP_WAIT);
550 if (skb_shared(skb)) {
551 struct sk_buff *nskb = skb_clone(skb, pri);
552 kfree_skb(skb);
553 skb = nskb;
555 return skb;
559 * Copy shared buffers into a new sk_buff. We effectively do COW on
560 * packets to handle cases where we have a local reader and forward
561 * and a couple of other messy ones. The normal one is tcpdumping
562 * a packet thats being forwarded.
566 * skb_unshare - make a copy of a shared buffer
567 * @skb: buffer to check
568 * @pri: priority for memory allocation
570 * If the socket buffer is a clone then this function creates a new
571 * copy of the data, drops a reference count on the old copy and returns
572 * the new copy with the reference count at 1. If the buffer is not a clone
573 * the original buffer is returned. When called with a spinlock held or
574 * from interrupt state @pri must be %GFP_ATOMIC
576 * %NULL is returned on a memory allocation failure.
578 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
579 gfp_t pri)
581 might_sleep_if(pri & __GFP_WAIT);
582 if (skb_cloned(skb)) {
583 struct sk_buff *nskb = skb_copy(skb, pri);
584 kfree_skb(skb); /* Free our shared copy */
585 skb = nskb;
587 return skb;
591 * skb_peek
592 * @list_: list to peek at
594 * Peek an &sk_buff. Unlike most other operations you _MUST_
595 * be careful with this one. A peek leaves the buffer on the
596 * list and someone else may run off with it. You must hold
597 * the appropriate locks or have a private queue to do this.
599 * Returns %NULL for an empty list or a pointer to the head element.
600 * The reference count is not incremented and the reference is therefore
601 * volatile. Use with caution.
603 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
605 struct sk_buff *list = ((struct sk_buff *)list_)->next;
606 if (list == (struct sk_buff *)list_)
607 list = NULL;
608 return list;
612 * skb_peek_tail
613 * @list_: list to peek at
615 * Peek an &sk_buff. Unlike most other operations you _MUST_
616 * be careful with this one. A peek leaves the buffer on the
617 * list and someone else may run off with it. You must hold
618 * the appropriate locks or have a private queue to do this.
620 * Returns %NULL for an empty list or a pointer to the tail element.
621 * The reference count is not incremented and the reference is therefore
622 * volatile. Use with caution.
624 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
626 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
627 if (list == (struct sk_buff *)list_)
628 list = NULL;
629 return list;
633 * skb_queue_len - get queue length
634 * @list_: list to measure
636 * Return the length of an &sk_buff queue.
638 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
640 return list_->qlen;
644 * This function creates a split out lock class for each invocation;
645 * this is needed for now since a whole lot of users of the skb-queue
646 * infrastructure in drivers have different locking usage (in hardirq)
647 * than the networking core (in softirq only). In the long run either the
648 * network layer or drivers should need annotation to consolidate the
649 * main types of usage into 3 classes.
651 static inline void skb_queue_head_init(struct sk_buff_head *list)
653 spin_lock_init(&list->lock);
654 list->prev = list->next = (struct sk_buff *)list;
655 list->qlen = 0;
658 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
659 struct lock_class_key *class)
661 skb_queue_head_init(list);
662 lockdep_set_class(&list->lock, class);
666 * Insert an sk_buff on a list.
668 * The "__skb_xxxx()" functions are the non-atomic ones that
669 * can only be called with interrupts disabled.
671 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
672 static inline void __skb_insert(struct sk_buff *newsk,
673 struct sk_buff *prev, struct sk_buff *next,
674 struct sk_buff_head *list)
676 newsk->next = next;
677 newsk->prev = prev;
678 next->prev = prev->next = newsk;
679 list->qlen++;
683 * __skb_queue_after - queue a buffer at the list head
684 * @list: list to use
685 * @prev: place after this buffer
686 * @newsk: buffer to queue
688 * Queue a buffer int the middle of a list. This function takes no locks
689 * and you must therefore hold required locks before calling it.
691 * A buffer cannot be placed on two lists at the same time.
693 static inline void __skb_queue_after(struct sk_buff_head *list,
694 struct sk_buff *prev,
695 struct sk_buff *newsk)
697 __skb_insert(newsk, prev, prev->next, list);
701 * __skb_queue_head - queue a buffer at the list head
702 * @list: list to use
703 * @newsk: buffer to queue
705 * Queue a buffer at the start of a list. This function takes no locks
706 * and you must therefore hold required locks before calling it.
708 * A buffer cannot be placed on two lists at the same time.
710 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
711 static inline void __skb_queue_head(struct sk_buff_head *list,
712 struct sk_buff *newsk)
714 __skb_queue_after(list, (struct sk_buff *)list, newsk);
718 * __skb_queue_tail - queue a buffer at the list tail
719 * @list: list to use
720 * @newsk: buffer to queue
722 * Queue a buffer at the end of a list. This function takes no locks
723 * and you must therefore hold required locks before calling it.
725 * A buffer cannot be placed on two lists at the same time.
727 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
728 static inline void __skb_queue_tail(struct sk_buff_head *list,
729 struct sk_buff *newsk)
731 struct sk_buff *prev, *next;
733 list->qlen++;
734 next = (struct sk_buff *)list;
735 prev = next->prev;
736 newsk->next = next;
737 newsk->prev = prev;
738 next->prev = prev->next = newsk;
742 * Place a packet after a given packet in a list.
744 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
745 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
747 __skb_insert(newsk, old, old->next, list);
751 * remove sk_buff from list. _Must_ be called atomically, and with
752 * the list known..
754 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
755 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
757 struct sk_buff *next, *prev;
759 list->qlen--;
760 next = skb->next;
761 prev = skb->prev;
762 skb->next = skb->prev = NULL;
763 next->prev = prev;
764 prev->next = next;
768 * __skb_dequeue - remove from the head of the queue
769 * @list: list to dequeue from
771 * Remove the head of the list. This function does not take any locks
772 * so must be used with appropriate locks held only. The head item is
773 * returned or %NULL if the list is empty.
775 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
776 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
778 struct sk_buff *skb = skb_peek(list);
779 if (skb)
780 __skb_unlink(skb, list);
781 return skb;
785 * __skb_dequeue_tail - remove from the tail of the queue
786 * @list: list to dequeue from
788 * Remove the tail of the list. This function does not take any locks
789 * so must be used with appropriate locks held only. The tail item is
790 * returned or %NULL if the list is empty.
792 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
793 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
795 struct sk_buff *skb = skb_peek_tail(list);
796 if (skb)
797 __skb_unlink(skb, list);
798 return skb;
802 static inline int skb_is_nonlinear(const struct sk_buff *skb)
804 return skb->data_len;
807 static inline unsigned int skb_headlen(const struct sk_buff *skb)
809 return skb->len - skb->data_len;
812 static inline int skb_pagelen(const struct sk_buff *skb)
814 int i, len = 0;
816 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
817 len += skb_shinfo(skb)->frags[i].size;
818 return len + skb_headlen(skb);
821 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
822 struct page *page, int off, int size)
824 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
826 frag->page = page;
827 frag->page_offset = off;
828 frag->size = size;
829 skb_shinfo(skb)->nr_frags = i + 1;
832 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
833 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
834 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
836 #ifdef NET_SKBUFF_DATA_USES_OFFSET
837 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
839 return skb->head + skb->tail;
842 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
844 skb->tail = skb->data - skb->head;
847 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
849 skb_reset_tail_pointer(skb);
850 skb->tail += offset;
852 #else /* NET_SKBUFF_DATA_USES_OFFSET */
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
855 return skb->tail;
858 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
860 skb->tail = skb->data;
863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
865 skb->tail = skb->data + offset;
868 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
871 * Add data to an sk_buff
873 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
874 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
876 unsigned char *tmp = skb_tail_pointer(skb);
877 SKB_LINEAR_ASSERT(skb);
878 skb->tail += len;
879 skb->len += len;
880 return tmp;
883 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
884 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
886 skb->data -= len;
887 skb->len += len;
888 return skb->data;
891 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
892 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
894 skb->len -= len;
895 BUG_ON(skb->len < skb->data_len);
896 return skb->data += len;
899 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
901 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
903 if (len > skb_headlen(skb) &&
904 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
905 return NULL;
906 skb->len -= len;
907 return skb->data += len;
910 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
912 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
915 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
917 if (likely(len <= skb_headlen(skb)))
918 return 1;
919 if (unlikely(len > skb->len))
920 return 0;
921 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
925 * skb_headroom - bytes at buffer head
926 * @skb: buffer to check
928 * Return the number of bytes of free space at the head of an &sk_buff.
930 static inline unsigned int skb_headroom(const struct sk_buff *skb)
932 return skb->data - skb->head;
936 * skb_tailroom - bytes at buffer end
937 * @skb: buffer to check
939 * Return the number of bytes of free space at the tail of an sk_buff
941 static inline int skb_tailroom(const struct sk_buff *skb)
943 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
947 * skb_reserve - adjust headroom
948 * @skb: buffer to alter
949 * @len: bytes to move
951 * Increase the headroom of an empty &sk_buff by reducing the tail
952 * room. This is only allowed for an empty buffer.
954 static inline void skb_reserve(struct sk_buff *skb, int len)
956 skb->data += len;
957 skb->tail += len;
960 #ifdef NET_SKBUFF_DATA_USES_OFFSET
961 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
963 return skb->head + skb->transport_header;
966 static inline void skb_reset_transport_header(struct sk_buff *skb)
968 skb->transport_header = skb->data - skb->head;
971 static inline void skb_set_transport_header(struct sk_buff *skb,
972 const int offset)
974 skb_reset_transport_header(skb);
975 skb->transport_header += offset;
978 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
980 return skb->head + skb->network_header;
983 static inline void skb_reset_network_header(struct sk_buff *skb)
985 skb->network_header = skb->data - skb->head;
988 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
990 skb_reset_network_header(skb);
991 skb->network_header += offset;
994 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
996 return skb->head + skb->mac_header;
999 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1001 return skb->mac_header != ~0U;
1004 static inline void skb_reset_mac_header(struct sk_buff *skb)
1006 skb->mac_header = skb->data - skb->head;
1009 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1011 skb_reset_mac_header(skb);
1012 skb->mac_header += offset;
1015 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1017 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1019 return skb->transport_header;
1022 static inline void skb_reset_transport_header(struct sk_buff *skb)
1024 skb->transport_header = skb->data;
1027 static inline void skb_set_transport_header(struct sk_buff *skb,
1028 const int offset)
1030 skb->transport_header = skb->data + offset;
1033 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1035 return skb->network_header;
1038 static inline void skb_reset_network_header(struct sk_buff *skb)
1040 skb->network_header = skb->data;
1043 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1045 skb->network_header = skb->data + offset;
1048 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1050 return skb->mac_header;
1053 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1055 return skb->mac_header != NULL;
1058 static inline void skb_reset_mac_header(struct sk_buff *skb)
1060 skb->mac_header = skb->data;
1063 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1065 skb->mac_header = skb->data + offset;
1067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1069 static inline int skb_transport_offset(const struct sk_buff *skb)
1071 return skb_transport_header(skb) - skb->data;
1074 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1076 return skb->transport_header - skb->network_header;
1079 static inline int skb_network_offset(const struct sk_buff *skb)
1081 return skb_network_header(skb) - skb->data;
1085 * CPUs often take a performance hit when accessing unaligned memory
1086 * locations. The actual performance hit varies, it can be small if the
1087 * hardware handles it or large if we have to take an exception and fix it
1088 * in software.
1090 * Since an ethernet header is 14 bytes network drivers often end up with
1091 * the IP header at an unaligned offset. The IP header can be aligned by
1092 * shifting the start of the packet by 2 bytes. Drivers should do this
1093 * with:
1095 * skb_reserve(NET_IP_ALIGN);
1097 * The downside to this alignment of the IP header is that the DMA is now
1098 * unaligned. On some architectures the cost of an unaligned DMA is high
1099 * and this cost outweighs the gains made by aligning the IP header.
1101 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1102 * to be overridden.
1104 #ifndef NET_IP_ALIGN
1105 #define NET_IP_ALIGN 2
1106 #endif
1109 * The networking layer reserves some headroom in skb data (via
1110 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1111 * the header has to grow. In the default case, if the header has to grow
1112 * 16 bytes or less we avoid the reallocation.
1114 * Unfortunately this headroom changes the DMA alignment of the resulting
1115 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1116 * on some architectures. An architecture can override this value,
1117 * perhaps setting it to a cacheline in size (since that will maintain
1118 * cacheline alignment of the DMA). It must be a power of 2.
1120 * Various parts of the networking layer expect at least 16 bytes of
1121 * headroom, you should not reduce this.
1123 #ifndef NET_SKB_PAD
1124 #define NET_SKB_PAD 16
1125 #endif
1127 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1129 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1131 if (unlikely(skb->data_len)) {
1132 WARN_ON(1);
1133 return;
1135 skb->len = len;
1136 skb_set_tail_pointer(skb, len);
1139 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1141 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1143 if (skb->data_len)
1144 return ___pskb_trim(skb, len);
1145 __skb_trim(skb, len);
1146 return 0;
1149 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1151 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1155 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1156 * @skb: buffer to alter
1157 * @len: new length
1159 * This is identical to pskb_trim except that the caller knows that
1160 * the skb is not cloned so we should never get an error due to out-
1161 * of-memory.
1163 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1165 int err = pskb_trim(skb, len);
1166 BUG_ON(err);
1170 * skb_orphan - orphan a buffer
1171 * @skb: buffer to orphan
1173 * If a buffer currently has an owner then we call the owner's
1174 * destructor function and make the @skb unowned. The buffer continues
1175 * to exist but is no longer charged to its former owner.
1177 static inline void skb_orphan(struct sk_buff *skb)
1179 if (skb->destructor)
1180 skb->destructor(skb);
1181 skb->destructor = NULL;
1182 skb->sk = NULL;
1186 * __skb_queue_purge - empty a list
1187 * @list: list to empty
1189 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1190 * the list and one reference dropped. This function does not take the
1191 * list lock and the caller must hold the relevant locks to use it.
1193 extern void skb_queue_purge(struct sk_buff_head *list);
1194 static inline void __skb_queue_purge(struct sk_buff_head *list)
1196 struct sk_buff *skb;
1197 while ((skb = __skb_dequeue(list)) != NULL)
1198 kfree_skb(skb);
1202 * __dev_alloc_skb - allocate an skbuff for receiving
1203 * @length: length to allocate
1204 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1206 * Allocate a new &sk_buff and assign it a usage count of one. The
1207 * buffer has unspecified headroom built in. Users should allocate
1208 * the headroom they think they need without accounting for the
1209 * built in space. The built in space is used for optimisations.
1211 * %NULL is returned if there is no free memory.
1213 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1214 gfp_t gfp_mask)
1216 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1217 if (likely(skb))
1218 skb_reserve(skb, NET_SKB_PAD);
1219 return skb;
1222 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1224 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1225 unsigned int length, gfp_t gfp_mask);
1228 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1229 * @dev: network device to receive on
1230 * @length: length to allocate
1232 * Allocate a new &sk_buff and assign it a usage count of one. The
1233 * buffer has unspecified headroom built in. Users should allocate
1234 * the headroom they think they need without accounting for the
1235 * built in space. The built in space is used for optimisations.
1237 * %NULL is returned if there is no free memory. Although this function
1238 * allocates memory it can be called from an interrupt.
1240 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1241 unsigned int length)
1243 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1247 * skb_clone_writable - is the header of a clone writable
1248 * @skb: buffer to check
1249 * @len: length up to which to write
1251 * Returns true if modifying the header part of the cloned buffer
1252 * does not requires the data to be copied.
1254 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1256 return !skb_header_cloned(skb) &&
1257 skb_headroom(skb) + len <= skb->hdr_len;
1260 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1261 int cloned)
1263 int delta = 0;
1265 if (headroom < NET_SKB_PAD)
1266 headroom = NET_SKB_PAD;
1267 if (headroom > skb_headroom(skb))
1268 delta = headroom - skb_headroom(skb);
1270 if (delta || cloned)
1271 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1272 GFP_ATOMIC);
1273 return 0;
1277 * skb_cow - copy header of skb when it is required
1278 * @skb: buffer to cow
1279 * @headroom: needed headroom
1281 * If the skb passed lacks sufficient headroom or its data part
1282 * is shared, data is reallocated. If reallocation fails, an error
1283 * is returned and original skb is not changed.
1285 * The result is skb with writable area skb->head...skb->tail
1286 * and at least @headroom of space at head.
1288 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1290 return __skb_cow(skb, headroom, skb_cloned(skb));
1294 * skb_cow_head - skb_cow but only making the head writable
1295 * @skb: buffer to cow
1296 * @headroom: needed headroom
1298 * This function is identical to skb_cow except that we replace the
1299 * skb_cloned check by skb_header_cloned. It should be used when
1300 * you only need to push on some header and do not need to modify
1301 * the data.
1303 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1305 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1309 * skb_padto - pad an skbuff up to a minimal size
1310 * @skb: buffer to pad
1311 * @len: minimal length
1313 * Pads up a buffer to ensure the trailing bytes exist and are
1314 * blanked. If the buffer already contains sufficient data it
1315 * is untouched. Otherwise it is extended. Returns zero on
1316 * success. The skb is freed on error.
1319 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1321 unsigned int size = skb->len;
1322 if (likely(size >= len))
1323 return 0;
1324 return skb_pad(skb, len-size);
1327 static inline int skb_add_data(struct sk_buff *skb,
1328 char __user *from, int copy)
1330 const int off = skb->len;
1332 if (skb->ip_summed == CHECKSUM_NONE) {
1333 int err = 0;
1334 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1335 copy, 0, &err);
1336 if (!err) {
1337 skb->csum = csum_block_add(skb->csum, csum, off);
1338 return 0;
1340 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1341 return 0;
1343 __skb_trim(skb, off);
1344 return -EFAULT;
1347 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1348 struct page *page, int off)
1350 if (i) {
1351 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1353 return page == frag->page &&
1354 off == frag->page_offset + frag->size;
1356 return 0;
1359 static inline int __skb_linearize(struct sk_buff *skb)
1361 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1365 * skb_linearize - convert paged skb to linear one
1366 * @skb: buffer to linarize
1368 * If there is no free memory -ENOMEM is returned, otherwise zero
1369 * is returned and the old skb data released.
1371 static inline int skb_linearize(struct sk_buff *skb)
1373 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1377 * skb_linearize_cow - make sure skb is linear and writable
1378 * @skb: buffer to process
1380 * If there is no free memory -ENOMEM is returned, otherwise zero
1381 * is returned and the old skb data released.
1383 static inline int skb_linearize_cow(struct sk_buff *skb)
1385 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1386 __skb_linearize(skb) : 0;
1390 * skb_postpull_rcsum - update checksum for received skb after pull
1391 * @skb: buffer to update
1392 * @start: start of data before pull
1393 * @len: length of data pulled
1395 * After doing a pull on a received packet, you need to call this to
1396 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1397 * CHECKSUM_NONE so that it can be recomputed from scratch.
1400 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1401 const void *start, unsigned int len)
1403 if (skb->ip_summed == CHECKSUM_COMPLETE)
1404 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1407 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1410 * pskb_trim_rcsum - trim received skb and update checksum
1411 * @skb: buffer to trim
1412 * @len: new length
1414 * This is exactly the same as pskb_trim except that it ensures the
1415 * checksum of received packets are still valid after the operation.
1418 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1420 if (likely(len >= skb->len))
1421 return 0;
1422 if (skb->ip_summed == CHECKSUM_COMPLETE)
1423 skb->ip_summed = CHECKSUM_NONE;
1424 return __pskb_trim(skb, len);
1427 #define skb_queue_walk(queue, skb) \
1428 for (skb = (queue)->next; \
1429 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1430 skb = skb->next)
1432 #define skb_queue_walk_safe(queue, skb, tmp) \
1433 for (skb = (queue)->next, tmp = skb->next; \
1434 skb != (struct sk_buff *)(queue); \
1435 skb = tmp, tmp = skb->next)
1437 #define skb_queue_reverse_walk(queue, skb) \
1438 for (skb = (queue)->prev; \
1439 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1440 skb = skb->prev)
1443 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1444 int *peeked, int *err);
1445 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1446 int noblock, int *err);
1447 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1448 struct poll_table_struct *wait);
1449 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1450 int offset, struct iovec *to,
1451 int size);
1452 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1453 int hlen,
1454 struct iovec *iov);
1455 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1456 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1457 unsigned int flags);
1458 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1459 int len, __wsum csum);
1460 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1461 void *to, int len);
1462 extern int skb_store_bits(struct sk_buff *skb, int offset,
1463 const void *from, int len);
1464 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1465 int offset, u8 *to, int len,
1466 __wsum csum);
1467 extern int skb_splice_bits(struct sk_buff *skb,
1468 unsigned int offset,
1469 struct pipe_inode_info *pipe,
1470 unsigned int len,
1471 unsigned int flags);
1472 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1473 extern void skb_split(struct sk_buff *skb,
1474 struct sk_buff *skb1, const u32 len);
1476 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1478 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1479 int len, void *buffer)
1481 int hlen = skb_headlen(skb);
1483 if (hlen - offset >= len)
1484 return skb->data + offset;
1486 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1487 return NULL;
1489 return buffer;
1492 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1493 void *to,
1494 const unsigned int len)
1496 memcpy(to, skb->data, len);
1499 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1500 const int offset, void *to,
1501 const unsigned int len)
1503 memcpy(to, skb->data + offset, len);
1506 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1507 const void *from,
1508 const unsigned int len)
1510 memcpy(skb->data, from, len);
1513 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1514 const int offset,
1515 const void *from,
1516 const unsigned int len)
1518 memcpy(skb->data + offset, from, len);
1521 extern void skb_init(void);
1524 * skb_get_timestamp - get timestamp from a skb
1525 * @skb: skb to get stamp from
1526 * @stamp: pointer to struct timeval to store stamp in
1528 * Timestamps are stored in the skb as offsets to a base timestamp.
1529 * This function converts the offset back to a struct timeval and stores
1530 * it in stamp.
1532 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1534 *stamp = ktime_to_timeval(skb->tstamp);
1537 static inline void __net_timestamp(struct sk_buff *skb)
1539 skb->tstamp = ktime_get_real();
1542 static inline ktime_t net_timedelta(ktime_t t)
1544 return ktime_sub(ktime_get_real(), t);
1547 static inline ktime_t net_invalid_timestamp(void)
1549 return ktime_set(0, 0);
1552 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1553 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1555 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1557 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1561 * skb_checksum_complete - Calculate checksum of an entire packet
1562 * @skb: packet to process
1564 * This function calculates the checksum over the entire packet plus
1565 * the value of skb->csum. The latter can be used to supply the
1566 * checksum of a pseudo header as used by TCP/UDP. It returns the
1567 * checksum.
1569 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1570 * this function can be used to verify that checksum on received
1571 * packets. In that case the function should return zero if the
1572 * checksum is correct. In particular, this function will return zero
1573 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1574 * hardware has already verified the correctness of the checksum.
1576 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1578 return skb_csum_unnecessary(skb) ?
1579 0 : __skb_checksum_complete(skb);
1582 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1583 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1584 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1586 if (nfct && atomic_dec_and_test(&nfct->use))
1587 nf_conntrack_destroy(nfct);
1589 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1591 if (nfct)
1592 atomic_inc(&nfct->use);
1594 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1596 if (skb)
1597 atomic_inc(&skb->users);
1599 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1601 if (skb)
1602 kfree_skb(skb);
1604 #endif
1605 #ifdef CONFIG_BRIDGE_NETFILTER
1606 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1608 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1609 kfree(nf_bridge);
1611 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1613 if (nf_bridge)
1614 atomic_inc(&nf_bridge->use);
1616 #endif /* CONFIG_BRIDGE_NETFILTER */
1617 static inline void nf_reset(struct sk_buff *skb)
1619 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1620 nf_conntrack_put(skb->nfct);
1621 skb->nfct = NULL;
1622 nf_conntrack_put_reasm(skb->nfct_reasm);
1623 skb->nfct_reasm = NULL;
1624 #endif
1625 #ifdef CONFIG_BRIDGE_NETFILTER
1626 nf_bridge_put(skb->nf_bridge);
1627 skb->nf_bridge = NULL;
1628 #endif
1631 /* Note: This doesn't put any conntrack and bridge info in dst. */
1632 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1634 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1635 dst->nfct = src->nfct;
1636 nf_conntrack_get(src->nfct);
1637 dst->nfctinfo = src->nfctinfo;
1638 dst->nfct_reasm = src->nfct_reasm;
1639 nf_conntrack_get_reasm(src->nfct_reasm);
1640 #endif
1641 #ifdef CONFIG_BRIDGE_NETFILTER
1642 dst->nf_bridge = src->nf_bridge;
1643 nf_bridge_get(src->nf_bridge);
1644 #endif
1647 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1649 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1650 nf_conntrack_put(dst->nfct);
1651 nf_conntrack_put_reasm(dst->nfct_reasm);
1652 #endif
1653 #ifdef CONFIG_BRIDGE_NETFILTER
1654 nf_bridge_put(dst->nf_bridge);
1655 #endif
1656 __nf_copy(dst, src);
1659 #ifdef CONFIG_NETWORK_SECMARK
1660 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1662 to->secmark = from->secmark;
1665 static inline void skb_init_secmark(struct sk_buff *skb)
1667 skb->secmark = 0;
1669 #else
1670 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1673 static inline void skb_init_secmark(struct sk_buff *skb)
1675 #endif
1677 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1679 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1680 skb->queue_mapping = queue_mapping;
1681 #endif
1684 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1686 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1687 return skb->queue_mapping;
1688 #else
1689 return 0;
1690 #endif
1693 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1695 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1696 to->queue_mapping = from->queue_mapping;
1697 #endif
1700 static inline int skb_is_gso(const struct sk_buff *skb)
1702 return skb_shinfo(skb)->gso_size;
1705 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1707 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1710 static inline void skb_forward_csum(struct sk_buff *skb)
1712 /* Unfortunately we don't support this one. Any brave souls? */
1713 if (skb->ip_summed == CHECKSUM_COMPLETE)
1714 skb->ip_summed = CHECKSUM_NONE;
1717 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1718 #endif /* __KERNEL__ */
1719 #endif /* _LINUX_SKBUFF_H */