[PATCH] 6pack persistence fix
[linux-2.6/verdex.git] / drivers / net / hamradio / 6pack.c
blobf9e3be96963cde79ded8cd0b556294a6bd9987ec
1 /*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
6 * Authors: Andreas Könsgen <ajk@iehk.rwth-aachen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <asm/system.h>
18 #include <asm/uaccess.h>
19 #include <linux/bitops.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/in.h>
24 #include <linux/tty.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/timer.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <asm/semaphore.h>
38 #include <asm/atomic.h>
40 #define SIXPACK_VERSION "Revision: 0.3.0"
42 /* sixpack priority commands */
43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44 #define SIXP_TX_URUN 0x48 /* transmit overrun */
45 #define SIXP_RX_ORUN 0x50 /* receive overrun */
46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
50 /* masks to get certain bits out of the status bytes sent by the TNC */
52 #define SIXP_CMD_MASK 0xC0
53 #define SIXP_CHN_MASK 0x07
54 #define SIXP_PRIO_CMD_MASK 0x80
55 #define SIXP_STD_CMD_MASK 0x40
56 #define SIXP_PRIO_DATA_MASK 0x38
57 #define SIXP_TX_MASK 0x20
58 #define SIXP_RX_MASK 0x10
59 #define SIXP_RX_DCD_MASK 0x18
60 #define SIXP_LEDS_ON 0x78
61 #define SIXP_LEDS_OFF 0x60
62 #define SIXP_CON 0x08
63 #define SIXP_STA 0x10
65 #define SIXP_FOUND_TNC 0xe9
66 #define SIXP_CON_ON 0x68
67 #define SIXP_DCD_MASK 0x08
68 #define SIXP_DAMA_OFF 0
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */
72 #define SIXP_PERSIST 50 /* in 256ths */
73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79 #define SIXP_MTU 256 /* Default MTU */
81 enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
85 struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
103 /* 6pack interface statistics. */
104 struct net_device_stats stats;
106 int mtu; /* Our mtu (to spot changes!) */
107 int buffsize; /* Max buffers sizes */
109 unsigned long flags; /* Flag values/ mode etc */
110 unsigned char mode; /* 6pack mode */
112 /* 6pack stuff */
113 unsigned char tx_delay;
114 unsigned char persistence;
115 unsigned char slottime;
116 unsigned char duplex;
117 unsigned char led_state;
118 unsigned char status;
119 unsigned char status1;
120 unsigned char status2;
121 unsigned char tx_enable;
122 unsigned char tnc_state;
124 struct timer_list tx_t;
125 struct timer_list resync_t;
126 atomic_t refcnt;
127 struct semaphore dead_sem;
128 spinlock_t lock;
131 #define AX25_6PACK_HEADER_LEN 0
133 static void sixpack_decode(struct sixpack *, unsigned char[], int);
134 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
137 * Perform the persistence/slottime algorithm for CSMA access. If the
138 * persistence check was successful, write the data to the serial driver.
139 * Note that in case of DAMA operation, the data is not sent here.
142 static void sp_xmit_on_air(unsigned long channel)
144 struct sixpack *sp = (struct sixpack *) channel;
145 int actual, when = sp->slottime;
146 static unsigned char random;
148 random = random * 17 + 41;
150 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
151 sp->led_state = 0x70;
152 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
153 sp->tx_enable = 1;
154 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
155 sp->xleft -= actual;
156 sp->xhead += actual;
157 sp->led_state = 0x60;
158 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
159 sp->status2 = 0;
160 } else
161 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
164 /* ----> 6pack timer interrupt handler and friends. <---- */
166 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
167 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
169 unsigned char *msg, *p = icp;
170 int actual, count;
172 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
173 msg = "oversized transmit packet!";
174 goto out_drop;
177 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
178 msg = "oversized transmit packet!";
179 goto out_drop;
182 if (p[0] > 5) {
183 msg = "invalid KISS command";
184 goto out_drop;
187 if ((p[0] != 0) && (len > 2)) {
188 msg = "KISS control packet too long";
189 goto out_drop;
192 if ((p[0] == 0) && (len < 15)) {
193 msg = "bad AX.25 packet to transmit";
194 goto out_drop;
197 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
198 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
200 switch (p[0]) {
201 case 1: sp->tx_delay = p[1];
202 return;
203 case 2: sp->persistence = p[1];
204 return;
205 case 3: sp->slottime = p[1];
206 return;
207 case 4: /* ignored */
208 return;
209 case 5: sp->duplex = p[1];
210 return;
213 if (p[0] != 0)
214 return;
217 * In case of fullduplex or DAMA operation, we don't take care about the
218 * state of the DCD or of any timers, as the determination of the
219 * correct time to send is the job of the AX.25 layer. We send
220 * immediately after data has arrived.
222 if (sp->duplex == 1) {
223 sp->led_state = 0x70;
224 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
225 sp->tx_enable = 1;
226 actual = sp->tty->driver->write(sp->tty, sp->xbuff, count);
227 sp->xleft = count - actual;
228 sp->xhead = sp->xbuff + actual;
229 sp->led_state = 0x60;
230 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
231 } else {
232 sp->xleft = count;
233 sp->xhead = sp->xbuff;
234 sp->status2 = count;
235 sp_xmit_on_air((unsigned long)sp);
238 return;
240 out_drop:
241 sp->stats.tx_dropped++;
242 netif_start_queue(sp->dev);
243 if (net_ratelimit())
244 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
247 /* Encapsulate an IP datagram and kick it into a TTY queue. */
249 static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
251 struct sixpack *sp = netdev_priv(dev);
253 spin_lock_bh(&sp->lock);
254 /* We were not busy, so we are now... :-) */
255 netif_stop_queue(dev);
256 sp->stats.tx_bytes += skb->len;
257 sp_encaps(sp, skb->data, skb->len);
258 spin_unlock_bh(&sp->lock);
260 dev_kfree_skb(skb);
262 return 0;
265 static int sp_open_dev(struct net_device *dev)
267 struct sixpack *sp = netdev_priv(dev);
269 if (sp->tty == NULL)
270 return -ENODEV;
271 return 0;
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
277 struct sixpack *sp = netdev_priv(dev);
279 spin_lock_bh(&sp->lock);
280 if (sp->tty) {
281 /* TTY discipline is running. */
282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
284 netif_stop_queue(dev);
285 spin_unlock_bh(&sp->lock);
287 return 0;
290 /* Return the frame type ID */
291 static int sp_header(struct sk_buff *skb, struct net_device *dev,
292 unsigned short type, void *daddr, void *saddr, unsigned len)
294 #ifdef CONFIG_INET
295 if (type != htons(ETH_P_AX25))
296 return ax25_encapsulate(skb, dev, type, daddr, saddr, len);
297 #endif
298 return 0;
301 static struct net_device_stats *sp_get_stats(struct net_device *dev)
303 struct sixpack *sp = netdev_priv(dev);
304 return &sp->stats;
307 static int sp_set_mac_address(struct net_device *dev, void *addr)
309 struct sockaddr_ax25 *sa = addr;
311 if (sa->sax25_family != AF_AX25)
312 return -EINVAL;
314 if (!sa->sax25_ndigis)
315 return -EINVAL;
317 spin_lock_irq(&dev->xmit_lock);
318 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
319 spin_unlock_irq(&dev->xmit_lock);
321 return 0;
324 static int sp_rebuild_header(struct sk_buff *skb)
326 #ifdef CONFIG_INET
327 return ax25_rebuild_header(skb);
328 #else
329 return 0;
330 #endif
333 static void sp_setup(struct net_device *dev)
335 static char ax25_bcast[AX25_ADDR_LEN] =
336 {'Q'<<1,'S'<<1,'T'<<1,' '<<1,' '<<1,' '<<1,'0'<<1};
337 static char ax25_test[AX25_ADDR_LEN] =
338 {'L'<<1,'I'<<1,'N'<<1,'U'<<1,'X'<<1,' '<<1,'1'<<1};
340 /* Finish setting up the DEVICE info. */
341 dev->mtu = SIXP_MTU;
342 dev->hard_start_xmit = sp_xmit;
343 dev->open = sp_open_dev;
344 dev->destructor = free_netdev;
345 dev->stop = sp_close;
346 dev->hard_header = sp_header;
347 dev->get_stats = sp_get_stats;
348 dev->set_mac_address = sp_set_mac_address;
349 dev->hard_header_len = AX25_MAX_HEADER_LEN;
350 dev->addr_len = AX25_ADDR_LEN;
351 dev->type = ARPHRD_AX25;
352 dev->tx_queue_len = 10;
353 dev->rebuild_header = sp_rebuild_header;
354 dev->tx_timeout = NULL;
356 /* Only activated in AX.25 mode */
357 memcpy(dev->broadcast, ax25_bcast, AX25_ADDR_LEN);
358 memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN);
360 SET_MODULE_OWNER(dev);
362 dev->flags = 0;
365 /* Send one completely decapsulated IP datagram to the IP layer. */
368 * This is the routine that sends the received data to the kernel AX.25.
369 * 'cmd' is the KISS command. For AX.25 data, it is zero.
372 static void sp_bump(struct sixpack *sp, char cmd)
374 struct sk_buff *skb;
375 int count;
376 unsigned char *ptr;
378 count = sp->rcount + 1;
380 sp->stats.rx_bytes += count;
382 if ((skb = dev_alloc_skb(count)) == NULL)
383 goto out_mem;
385 ptr = skb_put(skb, count);
386 *ptr++ = cmd; /* KISS command */
388 memcpy(ptr, sp->cooked_buf + 1, count);
389 skb->protocol = ax25_type_trans(skb, sp->dev);
390 netif_rx(skb);
391 sp->dev->last_rx = jiffies;
392 sp->stats.rx_packets++;
394 return;
396 out_mem:
397 sp->stats.rx_dropped++;
401 /* ----------------------------------------------------------------------- */
404 * We have a potential race on dereferencing tty->disc_data, because the tty
405 * layer provides no locking at all - thus one cpu could be running
406 * sixpack_receive_buf while another calls sixpack_close, which zeroes
407 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
408 * best way to fix this is to use a rwlock in the tty struct, but for now we
409 * use a single global rwlock for all ttys in ppp line discipline.
411 static DEFINE_RWLOCK(disc_data_lock);
413 static struct sixpack *sp_get(struct tty_struct *tty)
415 struct sixpack *sp;
417 read_lock(&disc_data_lock);
418 sp = tty->disc_data;
419 if (sp)
420 atomic_inc(&sp->refcnt);
421 read_unlock(&disc_data_lock);
423 return sp;
426 static void sp_put(struct sixpack *sp)
428 if (atomic_dec_and_test(&sp->refcnt))
429 up(&sp->dead_sem);
433 * Called by the TTY driver when there's room for more data. If we have
434 * more packets to send, we send them here.
436 static void sixpack_write_wakeup(struct tty_struct *tty)
438 struct sixpack *sp = sp_get(tty);
439 int actual;
441 if (!sp)
442 return;
443 if (sp->xleft <= 0) {
444 /* Now serial buffer is almost free & we can start
445 * transmission of another packet */
446 sp->stats.tx_packets++;
447 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
448 sp->tx_enable = 0;
449 netif_wake_queue(sp->dev);
450 goto out;
453 if (sp->tx_enable) {
454 actual = tty->driver->write(tty, sp->xhead, sp->xleft);
455 sp->xleft -= actual;
456 sp->xhead += actual;
459 out:
460 sp_put(sp);
463 /* ----------------------------------------------------------------------- */
465 static int sixpack_receive_room(struct tty_struct *tty)
467 return 65536; /* We can handle an infinite amount of data. :-) */
471 * Handle the 'receiver data ready' interrupt.
472 * This function is called by the 'tty_io' module in the kernel when
473 * a block of 6pack data has been received, which can now be decapsulated
474 * and sent on to some IP layer for further processing.
476 static void sixpack_receive_buf(struct tty_struct *tty,
477 const unsigned char *cp, char *fp, int count)
479 struct sixpack *sp;
480 unsigned char buf[512];
481 int count1;
483 if (!count)
484 return;
486 sp = sp_get(tty);
487 if (!sp)
488 return;
490 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
492 /* Read the characters out of the buffer */
494 count1 = count;
495 while (count) {
496 count--;
497 if (fp && *fp++) {
498 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
499 sp->stats.rx_errors++;
500 continue;
503 sixpack_decode(sp, buf, count1);
505 sp_put(sp);
506 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags)
507 && tty->driver->unthrottle)
508 tty->driver->unthrottle(tty);
512 * Try to resync the TNC. Called by the resync timer defined in
513 * decode_prio_command
516 #define TNC_UNINITIALIZED 0
517 #define TNC_UNSYNC_STARTUP 1
518 #define TNC_UNSYNCED 2
519 #define TNC_IN_SYNC 3
521 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
523 char *msg;
525 switch (new_tnc_state) {
526 default: /* gcc oh piece-o-crap ... */
527 case TNC_UNSYNC_STARTUP:
528 msg = "Synchronizing with TNC";
529 break;
530 case TNC_UNSYNCED:
531 msg = "Lost synchronization with TNC\n";
532 break;
533 case TNC_IN_SYNC:
534 msg = "Found TNC";
535 break;
538 sp->tnc_state = new_tnc_state;
539 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
542 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
544 int old_tnc_state = sp->tnc_state;
546 if (old_tnc_state != new_tnc_state)
547 __tnc_set_sync_state(sp, new_tnc_state);
550 static void resync_tnc(unsigned long channel)
552 struct sixpack *sp = (struct sixpack *) channel;
553 static char resync_cmd = 0xe8;
555 /* clear any data that might have been received */
557 sp->rx_count = 0;
558 sp->rx_count_cooked = 0;
560 /* reset state machine */
562 sp->status = 1;
563 sp->status1 = 1;
564 sp->status2 = 0;
566 /* resync the TNC */
568 sp->led_state = 0x60;
569 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
570 sp->tty->driver->write(sp->tty, &resync_cmd, 1);
573 /* Start resync timer again -- the TNC might be still absent */
575 del_timer(&sp->resync_t);
576 sp->resync_t.data = (unsigned long) sp;
577 sp->resync_t.function = resync_tnc;
578 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
579 add_timer(&sp->resync_t);
582 static inline int tnc_init(struct sixpack *sp)
584 unsigned char inbyte = 0xe8;
586 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
588 sp->tty->driver->write(sp->tty, &inbyte, 1);
590 del_timer(&sp->resync_t);
591 sp->resync_t.data = (unsigned long) sp;
592 sp->resync_t.function = resync_tnc;
593 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
594 add_timer(&sp->resync_t);
596 return 0;
600 * Open the high-level part of the 6pack channel.
601 * This function is called by the TTY module when the
602 * 6pack line discipline is called for. Because we are
603 * sure the tty line exists, we only have to link it to
604 * a free 6pcack channel...
606 static int sixpack_open(struct tty_struct *tty)
608 char *rbuff = NULL, *xbuff = NULL;
609 struct net_device *dev;
610 struct sixpack *sp;
611 unsigned long len;
612 int err = 0;
614 if (!capable(CAP_NET_ADMIN))
615 return -EPERM;
617 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
618 if (!dev) {
619 err = -ENOMEM;
620 goto out;
623 sp = netdev_priv(dev);
624 sp->dev = dev;
626 spin_lock_init(&sp->lock);
627 atomic_set(&sp->refcnt, 1);
628 init_MUTEX_LOCKED(&sp->dead_sem);
630 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
632 len = dev->mtu * 2;
634 rbuff = kmalloc(len + 4, GFP_KERNEL);
635 xbuff = kmalloc(len + 4, GFP_KERNEL);
637 if (rbuff == NULL || xbuff == NULL) {
638 err = -ENOBUFS;
639 goto out_free;
642 spin_lock_bh(&sp->lock);
644 sp->tty = tty;
646 sp->rbuff = rbuff;
647 sp->xbuff = xbuff;
649 sp->mtu = AX25_MTU + 73;
650 sp->buffsize = len;
651 sp->rcount = 0;
652 sp->rx_count = 0;
653 sp->rx_count_cooked = 0;
654 sp->xleft = 0;
656 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
658 sp->duplex = 0;
659 sp->tx_delay = SIXP_TXDELAY;
660 sp->persistence = SIXP_PERSIST;
661 sp->slottime = SIXP_SLOTTIME;
662 sp->led_state = 0x60;
663 sp->status = 1;
664 sp->status1 = 1;
665 sp->status2 = 0;
666 sp->tx_enable = 0;
668 netif_start_queue(dev);
670 init_timer(&sp->tx_t);
671 init_timer(&sp->resync_t);
673 spin_unlock_bh(&sp->lock);
675 /* Done. We have linked the TTY line to a channel. */
676 tty->disc_data = sp;
678 /* Now we're ready to register. */
679 if (register_netdev(dev))
680 goto out_free;
682 tnc_init(sp);
684 return 0;
686 out_free:
687 kfree(xbuff);
688 kfree(rbuff);
690 if (dev)
691 free_netdev(dev);
693 out:
694 return err;
699 * Close down a 6pack channel.
700 * This means flushing out any pending queues, and then restoring the
701 * TTY line discipline to what it was before it got hooked to 6pack
702 * (which usually is TTY again).
704 static void sixpack_close(struct tty_struct *tty)
706 struct sixpack *sp;
708 write_lock(&disc_data_lock);
709 sp = tty->disc_data;
710 tty->disc_data = NULL;
711 write_unlock(&disc_data_lock);
712 if (sp == 0)
713 return;
716 * We have now ensured that nobody can start using ap from now on, but
717 * we have to wait for all existing users to finish.
719 if (!atomic_dec_and_test(&sp->refcnt))
720 down(&sp->dead_sem);
722 unregister_netdev(sp->dev);
724 del_timer(&sp->tx_t);
725 del_timer(&sp->resync_t);
727 /* Free all 6pack frame buffers. */
728 kfree(sp->rbuff);
729 kfree(sp->xbuff);
732 /* Perform I/O control on an active 6pack channel. */
733 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
734 unsigned int cmd, unsigned long arg)
736 struct sixpack *sp = sp_get(tty);
737 struct net_device *dev = sp->dev;
738 unsigned int tmp, err;
740 if (!sp)
741 return -ENXIO;
743 switch(cmd) {
744 case SIOCGIFNAME:
745 err = copy_to_user((void __user *) arg, dev->name,
746 strlen(dev->name) + 1) ? -EFAULT : 0;
747 break;
749 case SIOCGIFENCAP:
750 err = put_user(0, (int __user *) arg);
751 break;
753 case SIOCSIFENCAP:
754 if (get_user(tmp, (int __user *) arg)) {
755 err = -EFAULT;
756 break;
759 sp->mode = tmp;
760 dev->addr_len = AX25_ADDR_LEN;
761 dev->hard_header_len = AX25_KISS_HEADER_LEN +
762 AX25_MAX_HEADER_LEN + 3;
763 dev->type = ARPHRD_AX25;
765 err = 0;
766 break;
768 case SIOCSIFHWADDR: {
769 char addr[AX25_ADDR_LEN];
771 if (copy_from_user(&addr,
772 (void __user *) arg, AX25_ADDR_LEN)) {
773 err = -EFAULT;
774 break;
777 spin_lock_irq(&dev->xmit_lock);
778 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
779 spin_unlock_irq(&dev->xmit_lock);
781 err = 0;
782 break;
785 /* Allow stty to read, but not set, the serial port */
786 case TCGETS:
787 case TCGETA:
788 err = n_tty_ioctl(tty, (struct file *) file, cmd, arg);
789 break;
791 default:
792 err = -ENOIOCTLCMD;
795 sp_put(sp);
797 return err;
800 static struct tty_ldisc sp_ldisc = {
801 .owner = THIS_MODULE,
802 .magic = TTY_LDISC_MAGIC,
803 .name = "6pack",
804 .open = sixpack_open,
805 .close = sixpack_close,
806 .ioctl = sixpack_ioctl,
807 .receive_buf = sixpack_receive_buf,
808 .receive_room = sixpack_receive_room,
809 .write_wakeup = sixpack_write_wakeup,
812 /* Initialize 6pack control device -- register 6pack line discipline */
814 static char msg_banner[] __initdata = KERN_INFO \
815 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
816 static char msg_regfail[] __initdata = KERN_ERR \
817 "6pack: can't register line discipline (err = %d)\n";
819 static int __init sixpack_init_driver(void)
821 int status;
823 printk(msg_banner);
825 /* Register the provided line protocol discipline */
826 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
827 printk(msg_regfail, status);
829 return status;
832 static const char msg_unregfail[] __exitdata = KERN_ERR \
833 "6pack: can't unregister line discipline (err = %d)\n";
835 static void __exit sixpack_exit_driver(void)
837 int ret;
839 if ((ret = tty_unregister_ldisc(N_6PACK)))
840 printk(msg_unregfail, ret);
843 /* encode an AX.25 packet into 6pack */
845 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
846 int length, unsigned char tx_delay)
848 int count = 0;
849 unsigned char checksum = 0, buf[400];
850 int raw_count = 0;
852 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
853 tx_buf_raw[raw_count++] = SIXP_SEOF;
855 buf[0] = tx_delay;
856 for (count = 1; count < length; count++)
857 buf[count] = tx_buf[count];
859 for (count = 0; count < length; count++)
860 checksum += buf[count];
861 buf[length] = (unsigned char) 0xff - checksum;
863 for (count = 0; count <= length; count++) {
864 if ((count % 3) == 0) {
865 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
866 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
867 } else if ((count % 3) == 1) {
868 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
869 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
870 } else {
871 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
872 tx_buf_raw[raw_count++] = (buf[count] >> 2);
875 if ((length % 3) != 2)
876 raw_count++;
877 tx_buf_raw[raw_count++] = SIXP_SEOF;
878 return raw_count;
881 /* decode 4 sixpack-encoded bytes into 3 data bytes */
883 static void decode_data(struct sixpack *sp, unsigned char inbyte)
885 unsigned char *buf;
887 if (sp->rx_count != 3) {
888 sp->raw_buf[sp->rx_count++] = inbyte;
890 return;
893 buf = sp->raw_buf;
894 sp->cooked_buf[sp->rx_count_cooked++] =
895 buf[0] | ((buf[1] << 2) & 0xc0);
896 sp->cooked_buf[sp->rx_count_cooked++] =
897 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
898 sp->cooked_buf[sp->rx_count_cooked++] =
899 (buf[2] & 0x03) | (inbyte << 2);
900 sp->rx_count = 0;
903 /* identify and execute a 6pack priority command byte */
905 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
907 unsigned char channel;
908 int actual;
910 channel = cmd & SIXP_CHN_MASK;
911 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
913 /* RX and DCD flags can only be set in the same prio command,
914 if the DCD flag has been set without the RX flag in the previous
915 prio command. If DCD has not been set before, something in the
916 transmission has gone wrong. In this case, RX and DCD are
917 cleared in order to prevent the decode_data routine from
918 reading further data that might be corrupt. */
920 if (((sp->status & SIXP_DCD_MASK) == 0) &&
921 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
922 if (sp->status != 1)
923 printk(KERN_DEBUG "6pack: protocol violation\n");
924 else
925 sp->status = 0;
926 cmd &= !SIXP_RX_DCD_MASK;
928 sp->status = cmd & SIXP_PRIO_DATA_MASK;
929 } else { /* output watchdog char if idle */
930 if ((sp->status2 != 0) && (sp->duplex == 1)) {
931 sp->led_state = 0x70;
932 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
933 sp->tx_enable = 1;
934 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
935 sp->xleft -= actual;
936 sp->xhead += actual;
937 sp->led_state = 0x60;
938 sp->status2 = 0;
943 /* needed to trigger the TNC watchdog */
944 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
946 /* if the state byte has been received, the TNC is present,
947 so the resync timer can be reset. */
949 if (sp->tnc_state == TNC_IN_SYNC) {
950 del_timer(&sp->resync_t);
951 sp->resync_t.data = (unsigned long) sp;
952 sp->resync_t.function = resync_tnc;
953 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
954 add_timer(&sp->resync_t);
957 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
960 /* identify and execute a standard 6pack command byte */
962 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
964 unsigned char checksum = 0, rest = 0, channel;
965 short i;
967 channel = cmd & SIXP_CHN_MASK;
968 switch (cmd & SIXP_CMD_MASK) { /* normal command */
969 case SIXP_SEOF:
970 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
971 if ((sp->status & SIXP_RX_DCD_MASK) ==
972 SIXP_RX_DCD_MASK) {
973 sp->led_state = 0x68;
974 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
976 } else {
977 sp->led_state = 0x60;
978 /* fill trailing bytes with zeroes */
979 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
980 rest = sp->rx_count;
981 if (rest != 0)
982 for (i = rest; i <= 3; i++)
983 decode_data(sp, 0);
984 if (rest == 2)
985 sp->rx_count_cooked -= 2;
986 else if (rest == 3)
987 sp->rx_count_cooked -= 1;
988 for (i = 0; i < sp->rx_count_cooked; i++)
989 checksum += sp->cooked_buf[i];
990 if (checksum != SIXP_CHKSUM) {
991 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
992 } else {
993 sp->rcount = sp->rx_count_cooked-2;
994 sp_bump(sp, 0);
996 sp->rx_count_cooked = 0;
998 break;
999 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1000 break;
1001 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1002 break;
1003 case SIXP_RX_BUF_OVL:
1004 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1008 /* decode a 6pack packet */
1010 static void
1011 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013 unsigned char inbyte;
1014 int count1;
1016 for (count1 = 0; count1 < count; count1++) {
1017 inbyte = pre_rbuff[count1];
1018 if (inbyte == SIXP_FOUND_TNC) {
1019 tnc_set_sync_state(sp, TNC_IN_SYNC);
1020 del_timer(&sp->resync_t);
1022 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1023 decode_prio_command(sp, inbyte);
1024 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1025 decode_std_command(sp, inbyte);
1026 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1027 decode_data(sp, inbyte);
1031 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1032 MODULE_DESCRIPTION("6pack driver for AX.25");
1033 MODULE_LICENSE("GPL");
1034 MODULE_ALIAS_LDISC(N_6PACK);
1036 module_init(sixpack_init_driver);
1037 module_exit(sixpack_exit_driver);