2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
60 #define NR_STRIPES 256
61 #define STRIPE_SIZE PAGE_SIZE
62 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
102 static inline int raid6_next_disk(int disk
, int raid_disks
)
105 return (disk
< raid_disks
) ? disk
: 0;
107 static void print_raid5_conf (raid5_conf_t
*conf
);
109 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
111 if (atomic_dec_and_test(&sh
->count
)) {
112 BUG_ON(!list_empty(&sh
->lru
));
113 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
114 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
115 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
116 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
117 blk_plug_device(conf
->mddev
->queue
);
118 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
119 sh
->bm_seq
- conf
->seq_write
> 0) {
120 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
121 blk_plug_device(conf
->mddev
->queue
);
123 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
124 list_add_tail(&sh
->lru
, &conf
->handle_list
);
126 md_wakeup_thread(conf
->mddev
->thread
);
128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
129 atomic_dec(&conf
->preread_active_stripes
);
130 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
131 md_wakeup_thread(conf
->mddev
->thread
);
133 atomic_dec(&conf
->active_stripes
);
134 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
135 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
136 wake_up(&conf
->wait_for_stripe
);
137 if (conf
->retry_read_aligned
)
138 md_wakeup_thread(conf
->mddev
->thread
);
143 static void release_stripe(struct stripe_head
*sh
)
145 raid5_conf_t
*conf
= sh
->raid_conf
;
148 spin_lock_irqsave(&conf
->device_lock
, flags
);
149 __release_stripe(conf
, sh
);
150 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
153 static inline void remove_hash(struct stripe_head
*sh
)
155 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
157 hlist_del_init(&sh
->hash
);
160 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
162 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
164 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
167 hlist_add_head(&sh
->hash
, hp
);
171 /* find an idle stripe, make sure it is unhashed, and return it. */
172 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
174 struct stripe_head
*sh
= NULL
;
175 struct list_head
*first
;
178 if (list_empty(&conf
->inactive_list
))
180 first
= conf
->inactive_list
.next
;
181 sh
= list_entry(first
, struct stripe_head
, lru
);
182 list_del_init(first
);
184 atomic_inc(&conf
->active_stripes
);
189 static void shrink_buffers(struct stripe_head
*sh
, int num
)
194 for (i
=0; i
<num
; i
++) {
198 sh
->dev
[i
].page
= NULL
;
203 static int grow_buffers(struct stripe_head
*sh
, int num
)
207 for (i
=0; i
<num
; i
++) {
210 if (!(page
= alloc_page(GFP_KERNEL
))) {
213 sh
->dev
[i
].page
= page
;
218 static void raid5_build_block (struct stripe_head
*sh
, int i
);
220 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
222 raid5_conf_t
*conf
= sh
->raid_conf
;
225 BUG_ON(atomic_read(&sh
->count
) != 0);
226 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
229 PRINTK("init_stripe called, stripe %llu\n",
230 (unsigned long long)sh
->sector
);
240 for (i
= sh
->disks
; i
--; ) {
241 struct r5dev
*dev
= &sh
->dev
[i
];
243 if (dev
->toread
|| dev
->towrite
|| dev
->written
||
244 test_bit(R5_LOCKED
, &dev
->flags
)) {
245 printk("sector=%llx i=%d %p %p %p %d\n",
246 (unsigned long long)sh
->sector
, i
, dev
->toread
,
247 dev
->towrite
, dev
->written
,
248 test_bit(R5_LOCKED
, &dev
->flags
));
252 raid5_build_block(sh
, i
);
254 insert_hash(conf
, sh
);
257 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
259 struct stripe_head
*sh
;
260 struct hlist_node
*hn
;
263 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector
);
264 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
265 if (sh
->sector
== sector
&& sh
->disks
== disks
)
267 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector
);
271 static void unplug_slaves(mddev_t
*mddev
);
272 static void raid5_unplug_device(request_queue_t
*q
);
274 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
275 int pd_idx
, int noblock
)
277 struct stripe_head
*sh
;
279 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector
);
281 spin_lock_irq(&conf
->device_lock
);
284 wait_event_lock_irq(conf
->wait_for_stripe
,
286 conf
->device_lock
, /* nothing */);
287 sh
= __find_stripe(conf
, sector
, disks
);
289 if (!conf
->inactive_blocked
)
290 sh
= get_free_stripe(conf
);
291 if (noblock
&& sh
== NULL
)
294 conf
->inactive_blocked
= 1;
295 wait_event_lock_irq(conf
->wait_for_stripe
,
296 !list_empty(&conf
->inactive_list
) &&
297 (atomic_read(&conf
->active_stripes
)
298 < (conf
->max_nr_stripes
*3/4)
299 || !conf
->inactive_blocked
),
301 raid5_unplug_device(conf
->mddev
->queue
)
303 conf
->inactive_blocked
= 0;
305 init_stripe(sh
, sector
, pd_idx
, disks
);
307 if (atomic_read(&sh
->count
)) {
308 BUG_ON(!list_empty(&sh
->lru
));
310 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
311 atomic_inc(&conf
->active_stripes
);
312 if (list_empty(&sh
->lru
) &&
313 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
315 list_del_init(&sh
->lru
);
318 } while (sh
== NULL
);
321 atomic_inc(&sh
->count
);
323 spin_unlock_irq(&conf
->device_lock
);
327 static int grow_one_stripe(raid5_conf_t
*conf
)
329 struct stripe_head
*sh
;
330 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
333 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
334 sh
->raid_conf
= conf
;
335 spin_lock_init(&sh
->lock
);
337 if (grow_buffers(sh
, conf
->raid_disks
)) {
338 shrink_buffers(sh
, conf
->raid_disks
);
339 kmem_cache_free(conf
->slab_cache
, sh
);
342 sh
->disks
= conf
->raid_disks
;
343 /* we just created an active stripe so... */
344 atomic_set(&sh
->count
, 1);
345 atomic_inc(&conf
->active_stripes
);
346 INIT_LIST_HEAD(&sh
->lru
);
351 static int grow_stripes(raid5_conf_t
*conf
, int num
)
353 struct kmem_cache
*sc
;
354 int devs
= conf
->raid_disks
;
356 sprintf(conf
->cache_name
[0], "raid5/%s", mdname(conf
->mddev
));
357 sprintf(conf
->cache_name
[1], "raid5/%s-alt", mdname(conf
->mddev
));
358 conf
->active_name
= 0;
359 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
360 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
364 conf
->slab_cache
= sc
;
365 conf
->pool_size
= devs
;
367 if (!grow_one_stripe(conf
))
372 #ifdef CONFIG_MD_RAID5_RESHAPE
373 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
375 /* Make all the stripes able to hold 'newsize' devices.
376 * New slots in each stripe get 'page' set to a new page.
378 * This happens in stages:
379 * 1/ create a new kmem_cache and allocate the required number of
381 * 2/ gather all the old stripe_heads and tranfer the pages across
382 * to the new stripe_heads. This will have the side effect of
383 * freezing the array as once all stripe_heads have been collected,
384 * no IO will be possible. Old stripe heads are freed once their
385 * pages have been transferred over, and the old kmem_cache is
386 * freed when all stripes are done.
387 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
388 * we simple return a failre status - no need to clean anything up.
389 * 4/ allocate new pages for the new slots in the new stripe_heads.
390 * If this fails, we don't bother trying the shrink the
391 * stripe_heads down again, we just leave them as they are.
392 * As each stripe_head is processed the new one is released into
395 * Once step2 is started, we cannot afford to wait for a write,
396 * so we use GFP_NOIO allocations.
398 struct stripe_head
*osh
, *nsh
;
399 LIST_HEAD(newstripes
);
400 struct disk_info
*ndisks
;
402 struct kmem_cache
*sc
;
405 if (newsize
<= conf
->pool_size
)
406 return 0; /* never bother to shrink */
408 md_allow_write(conf
->mddev
);
411 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
412 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
417 for (i
= conf
->max_nr_stripes
; i
; i
--) {
418 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
422 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
424 nsh
->raid_conf
= conf
;
425 spin_lock_init(&nsh
->lock
);
427 list_add(&nsh
->lru
, &newstripes
);
430 /* didn't get enough, give up */
431 while (!list_empty(&newstripes
)) {
432 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
434 kmem_cache_free(sc
, nsh
);
436 kmem_cache_destroy(sc
);
439 /* Step 2 - Must use GFP_NOIO now.
440 * OK, we have enough stripes, start collecting inactive
441 * stripes and copying them over
443 list_for_each_entry(nsh
, &newstripes
, lru
) {
444 spin_lock_irq(&conf
->device_lock
);
445 wait_event_lock_irq(conf
->wait_for_stripe
,
446 !list_empty(&conf
->inactive_list
),
448 unplug_slaves(conf
->mddev
)
450 osh
= get_free_stripe(conf
);
451 spin_unlock_irq(&conf
->device_lock
);
452 atomic_set(&nsh
->count
, 1);
453 for(i
=0; i
<conf
->pool_size
; i
++)
454 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
455 for( ; i
<newsize
; i
++)
456 nsh
->dev
[i
].page
= NULL
;
457 kmem_cache_free(conf
->slab_cache
, osh
);
459 kmem_cache_destroy(conf
->slab_cache
);
462 * At this point, we are holding all the stripes so the array
463 * is completely stalled, so now is a good time to resize
466 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
468 for (i
=0; i
<conf
->raid_disks
; i
++)
469 ndisks
[i
] = conf
->disks
[i
];
471 conf
->disks
= ndisks
;
475 /* Step 4, return new stripes to service */
476 while(!list_empty(&newstripes
)) {
477 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
478 list_del_init(&nsh
->lru
);
479 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
480 if (nsh
->dev
[i
].page
== NULL
) {
481 struct page
*p
= alloc_page(GFP_NOIO
);
482 nsh
->dev
[i
].page
= p
;
488 /* critical section pass, GFP_NOIO no longer needed */
490 conf
->slab_cache
= sc
;
491 conf
->active_name
= 1-conf
->active_name
;
492 conf
->pool_size
= newsize
;
497 static int drop_one_stripe(raid5_conf_t
*conf
)
499 struct stripe_head
*sh
;
501 spin_lock_irq(&conf
->device_lock
);
502 sh
= get_free_stripe(conf
);
503 spin_unlock_irq(&conf
->device_lock
);
506 BUG_ON(atomic_read(&sh
->count
));
507 shrink_buffers(sh
, conf
->pool_size
);
508 kmem_cache_free(conf
->slab_cache
, sh
);
509 atomic_dec(&conf
->active_stripes
);
513 static void shrink_stripes(raid5_conf_t
*conf
)
515 while (drop_one_stripe(conf
))
518 if (conf
->slab_cache
)
519 kmem_cache_destroy(conf
->slab_cache
);
520 conf
->slab_cache
= NULL
;
523 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
526 struct stripe_head
*sh
= bi
->bi_private
;
527 raid5_conf_t
*conf
= sh
->raid_conf
;
528 int disks
= sh
->disks
, i
;
529 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
530 char b
[BDEVNAME_SIZE
];
536 for (i
=0 ; i
<disks
; i
++)
537 if (bi
== &sh
->dev
[i
].req
)
540 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
541 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
549 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
550 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
551 rdev
= conf
->disks
[i
].rdev
;
552 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
553 mdname(conf
->mddev
), STRIPE_SECTORS
,
554 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
555 bdevname(rdev
->bdev
, b
));
556 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
557 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
559 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
560 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
562 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
564 rdev
= conf
->disks
[i
].rdev
;
566 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
567 atomic_inc(&rdev
->read_errors
);
568 if (conf
->mddev
->degraded
)
569 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
571 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
573 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
575 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
577 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
579 else if (atomic_read(&rdev
->read_errors
)
580 > conf
->max_nr_stripes
)
582 "raid5:%s: Too many read errors, failing device %s.\n",
583 mdname(conf
->mddev
), bdn
);
587 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
589 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
590 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
591 md_error(conf
->mddev
, rdev
);
594 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
595 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
596 set_bit(STRIPE_HANDLE
, &sh
->state
);
601 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
604 struct stripe_head
*sh
= bi
->bi_private
;
605 raid5_conf_t
*conf
= sh
->raid_conf
;
606 int disks
= sh
->disks
, i
;
607 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
612 for (i
=0 ; i
<disks
; i
++)
613 if (bi
== &sh
->dev
[i
].req
)
616 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
617 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
625 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
627 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
629 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
630 set_bit(STRIPE_HANDLE
, &sh
->state
);
636 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
638 static void raid5_build_block (struct stripe_head
*sh
, int i
)
640 struct r5dev
*dev
= &sh
->dev
[i
];
643 dev
->req
.bi_io_vec
= &dev
->vec
;
645 dev
->req
.bi_max_vecs
++;
646 dev
->vec
.bv_page
= dev
->page
;
647 dev
->vec
.bv_len
= STRIPE_SIZE
;
648 dev
->vec
.bv_offset
= 0;
650 dev
->req
.bi_sector
= sh
->sector
;
651 dev
->req
.bi_private
= sh
;
654 dev
->sector
= compute_blocknr(sh
, i
);
657 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
659 char b
[BDEVNAME_SIZE
];
660 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
661 PRINTK("raid5: error called\n");
663 if (!test_bit(Faulty
, &rdev
->flags
)) {
664 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
665 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
667 spin_lock_irqsave(&conf
->device_lock
, flags
);
669 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
671 * if recovery was running, make sure it aborts.
673 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
675 set_bit(Faulty
, &rdev
->flags
);
677 "raid5: Disk failure on %s, disabling device."
678 " Operation continuing on %d devices\n",
679 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
684 * Input: a 'big' sector number,
685 * Output: index of the data and parity disk, and the sector # in them.
687 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
688 unsigned int data_disks
, unsigned int * dd_idx
,
689 unsigned int * pd_idx
, raid5_conf_t
*conf
)
692 unsigned long chunk_number
;
693 unsigned int chunk_offset
;
695 int sectors_per_chunk
= conf
->chunk_size
>> 9;
697 /* First compute the information on this sector */
700 * Compute the chunk number and the sector offset inside the chunk
702 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
703 chunk_number
= r_sector
;
704 BUG_ON(r_sector
!= chunk_number
);
707 * Compute the stripe number
709 stripe
= chunk_number
/ data_disks
;
712 * Compute the data disk and parity disk indexes inside the stripe
714 *dd_idx
= chunk_number
% data_disks
;
717 * Select the parity disk based on the user selected algorithm.
719 switch(conf
->level
) {
721 *pd_idx
= data_disks
;
724 switch (conf
->algorithm
) {
725 case ALGORITHM_LEFT_ASYMMETRIC
:
726 *pd_idx
= data_disks
- stripe
% raid_disks
;
727 if (*dd_idx
>= *pd_idx
)
730 case ALGORITHM_RIGHT_ASYMMETRIC
:
731 *pd_idx
= stripe
% raid_disks
;
732 if (*dd_idx
>= *pd_idx
)
735 case ALGORITHM_LEFT_SYMMETRIC
:
736 *pd_idx
= data_disks
- stripe
% raid_disks
;
737 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
739 case ALGORITHM_RIGHT_SYMMETRIC
:
740 *pd_idx
= stripe
% raid_disks
;
741 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
744 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
751 switch (conf
->algorithm
) {
752 case ALGORITHM_LEFT_ASYMMETRIC
:
753 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
754 if (*pd_idx
== raid_disks
-1)
755 (*dd_idx
)++; /* Q D D D P */
756 else if (*dd_idx
>= *pd_idx
)
757 (*dd_idx
) += 2; /* D D P Q D */
759 case ALGORITHM_RIGHT_ASYMMETRIC
:
760 *pd_idx
= stripe
% raid_disks
;
761 if (*pd_idx
== raid_disks
-1)
762 (*dd_idx
)++; /* Q D D D P */
763 else if (*dd_idx
>= *pd_idx
)
764 (*dd_idx
) += 2; /* D D P Q D */
766 case ALGORITHM_LEFT_SYMMETRIC
:
767 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
768 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
770 case ALGORITHM_RIGHT_SYMMETRIC
:
771 *pd_idx
= stripe
% raid_disks
;
772 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
775 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
782 * Finally, compute the new sector number
784 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
789 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
791 raid5_conf_t
*conf
= sh
->raid_conf
;
792 int raid_disks
= sh
->disks
;
793 int data_disks
= raid_disks
- conf
->max_degraded
;
794 sector_t new_sector
= sh
->sector
, check
;
795 int sectors_per_chunk
= conf
->chunk_size
>> 9;
798 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
802 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
804 BUG_ON(new_sector
!= stripe
);
808 switch(conf
->level
) {
811 switch (conf
->algorithm
) {
812 case ALGORITHM_LEFT_ASYMMETRIC
:
813 case ALGORITHM_RIGHT_ASYMMETRIC
:
817 case ALGORITHM_LEFT_SYMMETRIC
:
818 case ALGORITHM_RIGHT_SYMMETRIC
:
821 i
-= (sh
->pd_idx
+ 1);
824 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
829 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
830 return 0; /* It is the Q disk */
831 switch (conf
->algorithm
) {
832 case ALGORITHM_LEFT_ASYMMETRIC
:
833 case ALGORITHM_RIGHT_ASYMMETRIC
:
834 if (sh
->pd_idx
== raid_disks
-1)
836 else if (i
> sh
->pd_idx
)
837 i
-= 2; /* D D P Q D */
839 case ALGORITHM_LEFT_SYMMETRIC
:
840 case ALGORITHM_RIGHT_SYMMETRIC
:
841 if (sh
->pd_idx
== raid_disks
-1)
847 i
-= (sh
->pd_idx
+ 2);
851 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
857 chunk_number
= stripe
* data_disks
+ i
;
858 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
860 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
861 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
862 printk(KERN_ERR
"compute_blocknr: map not correct\n");
871 * Copy data between a page in the stripe cache, and one or more bion
872 * The page could align with the middle of the bio, or there could be
873 * several bion, each with several bio_vecs, which cover part of the page
874 * Multiple bion are linked together on bi_next. There may be extras
875 * at the end of this list. We ignore them.
877 static void copy_data(int frombio
, struct bio
*bio
,
881 char *pa
= page_address(page
);
886 if (bio
->bi_sector
>= sector
)
887 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
889 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
890 bio_for_each_segment(bvl
, bio
, i
) {
891 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
895 if (page_offset
< 0) {
896 b_offset
= -page_offset
;
897 page_offset
+= b_offset
;
901 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
902 clen
= STRIPE_SIZE
- page_offset
;
906 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
908 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
910 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
911 __bio_kunmap_atomic(ba
, KM_USER0
);
913 if (clen
< len
) /* hit end of page */
919 #define check_xor() do { \
920 if (count == MAX_XOR_BLOCKS) { \
921 xor_block(count, STRIPE_SIZE, ptr); \
927 static void compute_block(struct stripe_head
*sh
, int dd_idx
)
929 int i
, count
, disks
= sh
->disks
;
930 void *ptr
[MAX_XOR_BLOCKS
], *p
;
932 PRINTK("compute_block, stripe %llu, idx %d\n",
933 (unsigned long long)sh
->sector
, dd_idx
);
935 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
936 memset(ptr
[0], 0, STRIPE_SIZE
);
938 for (i
= disks
; i
--; ) {
941 p
= page_address(sh
->dev
[i
].page
);
942 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
945 printk(KERN_ERR
"compute_block() %d, stripe %llu, %d"
946 " not present\n", dd_idx
,
947 (unsigned long long)sh
->sector
, i
);
952 xor_block(count
, STRIPE_SIZE
, ptr
);
953 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
956 static void compute_parity5(struct stripe_head
*sh
, int method
)
958 raid5_conf_t
*conf
= sh
->raid_conf
;
959 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
, count
;
960 void *ptr
[MAX_XOR_BLOCKS
];
963 PRINTK("compute_parity5, stripe %llu, method %d\n",
964 (unsigned long long)sh
->sector
, method
);
967 ptr
[0] = page_address(sh
->dev
[pd_idx
].page
);
969 case READ_MODIFY_WRITE
:
970 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
));
971 for (i
=disks
; i
-- ;) {
974 if (sh
->dev
[i
].towrite
&&
975 test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
976 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
977 chosen
= sh
->dev
[i
].towrite
;
978 sh
->dev
[i
].towrite
= NULL
;
980 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
981 wake_up(&conf
->wait_for_overlap
);
983 BUG_ON(sh
->dev
[i
].written
);
984 sh
->dev
[i
].written
= chosen
;
989 case RECONSTRUCT_WRITE
:
990 memset(ptr
[0], 0, STRIPE_SIZE
);
991 for (i
= disks
; i
-- ;)
992 if (i
!=pd_idx
&& sh
->dev
[i
].towrite
) {
993 chosen
= sh
->dev
[i
].towrite
;
994 sh
->dev
[i
].towrite
= NULL
;
996 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
997 wake_up(&conf
->wait_for_overlap
);
999 BUG_ON(sh
->dev
[i
].written
);
1000 sh
->dev
[i
].written
= chosen
;
1007 xor_block(count
, STRIPE_SIZE
, ptr
);
1011 for (i
= disks
; i
--;)
1012 if (sh
->dev
[i
].written
) {
1013 sector_t sector
= sh
->dev
[i
].sector
;
1014 struct bio
*wbi
= sh
->dev
[i
].written
;
1015 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1016 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1017 wbi
= r5_next_bio(wbi
, sector
);
1020 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1021 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1025 case RECONSTRUCT_WRITE
:
1029 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1033 case READ_MODIFY_WRITE
:
1034 for (i
= disks
; i
--;)
1035 if (sh
->dev
[i
].written
) {
1036 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1041 xor_block(count
, STRIPE_SIZE
, ptr
);
1043 if (method
!= CHECK_PARITY
) {
1044 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1045 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1047 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1050 static void compute_parity6(struct stripe_head
*sh
, int method
)
1052 raid6_conf_t
*conf
= sh
->raid_conf
;
1053 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= conf
->raid_disks
, count
;
1055 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1058 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1059 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1061 PRINTK("compute_parity, stripe %llu, method %d\n",
1062 (unsigned long long)sh
->sector
, method
);
1065 case READ_MODIFY_WRITE
:
1066 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1067 case RECONSTRUCT_WRITE
:
1068 for (i
= disks
; i
-- ;)
1069 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1070 chosen
= sh
->dev
[i
].towrite
;
1071 sh
->dev
[i
].towrite
= NULL
;
1073 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1074 wake_up(&conf
->wait_for_overlap
);
1076 BUG_ON(sh
->dev
[i
].written
);
1077 sh
->dev
[i
].written
= chosen
;
1081 BUG(); /* Not implemented yet */
1084 for (i
= disks
; i
--;)
1085 if (sh
->dev
[i
].written
) {
1086 sector_t sector
= sh
->dev
[i
].sector
;
1087 struct bio
*wbi
= sh
->dev
[i
].written
;
1088 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1089 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1090 wbi
= r5_next_bio(wbi
, sector
);
1093 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1094 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1098 // case RECONSTRUCT_WRITE:
1099 // case CHECK_PARITY:
1100 // case UPDATE_PARITY:
1101 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1102 /* FIX: Is this ordering of drives even remotely optimal? */
1106 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1107 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1108 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1109 i
= raid6_next_disk(i
, disks
);
1110 } while ( i
!= d0_idx
);
1114 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1117 case RECONSTRUCT_WRITE
:
1118 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1119 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1120 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1121 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1124 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1125 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1131 /* Compute one missing block */
1132 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1134 raid6_conf_t
*conf
= sh
->raid_conf
;
1135 int i
, count
, disks
= conf
->raid_disks
;
1136 void *ptr
[MAX_XOR_BLOCKS
], *p
;
1137 int pd_idx
= sh
->pd_idx
;
1138 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1140 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1141 (unsigned long long)sh
->sector
, dd_idx
);
1143 if ( dd_idx
== qd_idx
) {
1144 /* We're actually computing the Q drive */
1145 compute_parity6(sh
, UPDATE_PARITY
);
1147 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
1148 if (!nozero
) memset(ptr
[0], 0, STRIPE_SIZE
);
1150 for (i
= disks
; i
--; ) {
1151 if (i
== dd_idx
|| i
== qd_idx
)
1153 p
= page_address(sh
->dev
[i
].page
);
1154 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1157 printk("compute_block() %d, stripe %llu, %d"
1158 " not present\n", dd_idx
,
1159 (unsigned long long)sh
->sector
, i
);
1164 xor_block(count
, STRIPE_SIZE
, ptr
);
1165 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1166 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1170 /* Compute two missing blocks */
1171 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1173 raid6_conf_t
*conf
= sh
->raid_conf
;
1174 int i
, count
, disks
= conf
->raid_disks
;
1175 int pd_idx
= sh
->pd_idx
;
1176 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1177 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1180 /* faila and failb are disk numbers relative to d0_idx */
1181 /* pd_idx become disks-2 and qd_idx become disks-1 */
1182 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1183 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1185 BUG_ON(faila
== failb
);
1186 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1188 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1189 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1191 if ( failb
== disks
-1 ) {
1192 /* Q disk is one of the missing disks */
1193 if ( faila
== disks
-2 ) {
1194 /* Missing P+Q, just recompute */
1195 compute_parity6(sh
, UPDATE_PARITY
);
1198 /* We're missing D+Q; recompute D from P */
1199 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1200 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1205 /* We're missing D+P or D+D; build pointer table */
1207 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1213 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1214 i
= raid6_next_disk(i
, disks
);
1215 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1216 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1217 printk("compute_2 with missing block %d/%d\n", count
, i
);
1218 } while ( i
!= d0_idx
);
1220 if ( failb
== disks
-2 ) {
1221 /* We're missing D+P. */
1222 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1224 /* We're missing D+D. */
1225 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1228 /* Both the above update both missing blocks */
1229 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1230 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1237 * Each stripe/dev can have one or more bion attached.
1238 * toread/towrite point to the first in a chain.
1239 * The bi_next chain must be in order.
1241 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1244 raid5_conf_t
*conf
= sh
->raid_conf
;
1247 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1248 (unsigned long long)bi
->bi_sector
,
1249 (unsigned long long)sh
->sector
);
1252 spin_lock(&sh
->lock
);
1253 spin_lock_irq(&conf
->device_lock
);
1255 bip
= &sh
->dev
[dd_idx
].towrite
;
1256 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1259 bip
= &sh
->dev
[dd_idx
].toread
;
1260 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1261 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1263 bip
= & (*bip
)->bi_next
;
1265 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1268 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1272 bi
->bi_phys_segments
++;
1273 spin_unlock_irq(&conf
->device_lock
);
1274 spin_unlock(&sh
->lock
);
1276 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1277 (unsigned long long)bi
->bi_sector
,
1278 (unsigned long long)sh
->sector
, dd_idx
);
1280 if (conf
->mddev
->bitmap
&& firstwrite
) {
1281 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1283 sh
->bm_seq
= conf
->seq_flush
+1;
1284 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1288 /* check if page is covered */
1289 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1290 for (bi
=sh
->dev
[dd_idx
].towrite
;
1291 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1292 bi
&& bi
->bi_sector
<= sector
;
1293 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1294 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1295 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1297 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1298 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1303 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1304 spin_unlock_irq(&conf
->device_lock
);
1305 spin_unlock(&sh
->lock
);
1309 static void end_reshape(raid5_conf_t
*conf
);
1311 static int page_is_zero(struct page
*p
)
1313 char *a
= page_address(p
);
1314 return ((*(u32
*)a
) == 0 &&
1315 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1318 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1320 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1322 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1324 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1325 *sectors_per_chunk
+ chunk_offset
,
1326 disks
, disks
- conf
->max_degraded
,
1327 &dd_idx
, &pd_idx
, conf
);
1333 * handle_stripe - do things to a stripe.
1335 * We lock the stripe and then examine the state of various bits
1336 * to see what needs to be done.
1338 * return some read request which now have data
1339 * return some write requests which are safely on disc
1340 * schedule a read on some buffers
1341 * schedule a write of some buffers
1342 * return confirmation of parity correctness
1344 * Parity calculations are done inside the stripe lock
1345 * buffers are taken off read_list or write_list, and bh_cache buffers
1346 * get BH_Lock set before the stripe lock is released.
1350 static void handle_stripe5(struct stripe_head
*sh
)
1352 raid5_conf_t
*conf
= sh
->raid_conf
;
1353 int disks
= sh
->disks
;
1354 struct bio
*return_bi
= NULL
;
1357 int syncing
, expanding
, expanded
;
1358 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1359 int non_overwrite
= 0;
1363 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1364 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
),
1367 spin_lock(&sh
->lock
);
1368 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1369 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1371 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1372 expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1373 expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1374 /* Now to look around and see what can be done */
1377 for (i
=disks
; i
--; ) {
1380 clear_bit(R5_Insync
, &dev
->flags
);
1382 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1383 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1384 /* maybe we can reply to a read */
1385 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1386 struct bio
*rbi
, *rbi2
;
1387 PRINTK("Return read for disc %d\n", i
);
1388 spin_lock_irq(&conf
->device_lock
);
1391 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1392 wake_up(&conf
->wait_for_overlap
);
1393 spin_unlock_irq(&conf
->device_lock
);
1394 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1395 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1396 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1397 spin_lock_irq(&conf
->device_lock
);
1398 if (--rbi
->bi_phys_segments
== 0) {
1399 rbi
->bi_next
= return_bi
;
1402 spin_unlock_irq(&conf
->device_lock
);
1407 /* now count some things */
1408 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1409 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1412 if (dev
->toread
) to_read
++;
1415 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1418 if (dev
->written
) written
++;
1419 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1420 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
1421 /* The ReadError flag will just be confusing now */
1422 clear_bit(R5_ReadError
, &dev
->flags
);
1423 clear_bit(R5_ReWrite
, &dev
->flags
);
1425 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
1426 || test_bit(R5_ReadError
, &dev
->flags
)) {
1430 set_bit(R5_Insync
, &dev
->flags
);
1433 PRINTK("locked=%d uptodate=%d to_read=%d"
1434 " to_write=%d failed=%d failed_num=%d\n",
1435 locked
, uptodate
, to_read
, to_write
, failed
, failed_num
);
1436 /* check if the array has lost two devices and, if so, some requests might
1439 if (failed
> 1 && to_read
+to_write
+written
) {
1440 for (i
=disks
; i
--; ) {
1443 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1446 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1447 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1448 /* multiple read failures in one stripe */
1449 md_error(conf
->mddev
, rdev
);
1453 spin_lock_irq(&conf
->device_lock
);
1454 /* fail all writes first */
1455 bi
= sh
->dev
[i
].towrite
;
1456 sh
->dev
[i
].towrite
= NULL
;
1457 if (bi
) { to_write
--; bitmap_end
= 1; }
1459 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1460 wake_up(&conf
->wait_for_overlap
);
1462 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1463 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1464 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1465 if (--bi
->bi_phys_segments
== 0) {
1466 md_write_end(conf
->mddev
);
1467 bi
->bi_next
= return_bi
;
1472 /* and fail all 'written' */
1473 bi
= sh
->dev
[i
].written
;
1474 sh
->dev
[i
].written
= NULL
;
1475 if (bi
) bitmap_end
= 1;
1476 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1477 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1478 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1479 if (--bi
->bi_phys_segments
== 0) {
1480 md_write_end(conf
->mddev
);
1481 bi
->bi_next
= return_bi
;
1487 /* fail any reads if this device is non-operational */
1488 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1489 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1490 bi
= sh
->dev
[i
].toread
;
1491 sh
->dev
[i
].toread
= NULL
;
1492 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1493 wake_up(&conf
->wait_for_overlap
);
1495 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1496 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1497 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1498 if (--bi
->bi_phys_segments
== 0) {
1499 bi
->bi_next
= return_bi
;
1505 spin_unlock_irq(&conf
->device_lock
);
1507 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1508 STRIPE_SECTORS
, 0, 0);
1511 if (failed
> 1 && syncing
) {
1512 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
1513 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1517 /* might be able to return some write requests if the parity block
1518 * is safe, or on a failed drive
1520 dev
= &sh
->dev
[sh
->pd_idx
];
1522 ( (test_bit(R5_Insync
, &dev
->flags
) && !test_bit(R5_LOCKED
, &dev
->flags
) &&
1523 test_bit(R5_UPTODATE
, &dev
->flags
))
1524 || (failed
== 1 && failed_num
== sh
->pd_idx
))
1526 /* any written block on an uptodate or failed drive can be returned.
1527 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1528 * never LOCKED, so we don't need to test 'failed' directly.
1530 for (i
=disks
; i
--; )
1531 if (sh
->dev
[i
].written
) {
1533 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1534 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
1535 /* We can return any write requests */
1536 struct bio
*wbi
, *wbi2
;
1538 PRINTK("Return write for disc %d\n", i
);
1539 spin_lock_irq(&conf
->device_lock
);
1541 dev
->written
= NULL
;
1542 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1543 wbi2
= r5_next_bio(wbi
, dev
->sector
);
1544 if (--wbi
->bi_phys_segments
== 0) {
1545 md_write_end(conf
->mddev
);
1546 wbi
->bi_next
= return_bi
;
1551 if (dev
->towrite
== NULL
)
1553 spin_unlock_irq(&conf
->device_lock
);
1555 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1557 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
1562 /* Now we might consider reading some blocks, either to check/generate
1563 * parity, or to satisfy requests
1564 * or to load a block that is being partially written.
1566 if (to_read
|| non_overwrite
|| (syncing
&& (uptodate
< disks
)) || expanding
) {
1567 for (i
=disks
; i
--;) {
1569 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1571 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1574 (failed
&& (sh
->dev
[failed_num
].toread
||
1575 (sh
->dev
[failed_num
].towrite
&& !test_bit(R5_OVERWRITE
, &sh
->dev
[failed_num
].flags
))))
1578 /* we would like to get this block, possibly
1579 * by computing it, but we might not be able to
1581 if (uptodate
== disks
-1) {
1582 PRINTK("Computing block %d\n", i
);
1583 compute_block(sh
, i
);
1585 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1586 set_bit(R5_LOCKED
, &dev
->flags
);
1587 set_bit(R5_Wantread
, &dev
->flags
);
1589 PRINTK("Reading block %d (sync=%d)\n",
1594 set_bit(STRIPE_HANDLE
, &sh
->state
);
1597 /* now to consider writing and what else, if anything should be read */
1600 for (i
=disks
; i
--;) {
1601 /* would I have to read this buffer for read_modify_write */
1603 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1604 (!test_bit(R5_LOCKED
, &dev
->flags
)
1606 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1607 if (test_bit(R5_Insync
, &dev
->flags
)
1608 /* && !(!mddev->insync && i == sh->pd_idx) */
1611 else rmw
+= 2*disks
; /* cannot read it */
1613 /* Would I have to read this buffer for reconstruct_write */
1614 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1615 (!test_bit(R5_LOCKED
, &dev
->flags
)
1617 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1618 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
1619 else rcw
+= 2*disks
;
1622 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1623 (unsigned long long)sh
->sector
, rmw
, rcw
);
1624 set_bit(STRIPE_HANDLE
, &sh
->state
);
1625 if (rmw
< rcw
&& rmw
> 0)
1626 /* prefer read-modify-write, but need to get some data */
1627 for (i
=disks
; i
--;) {
1629 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
1630 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1631 test_bit(R5_Insync
, &dev
->flags
)) {
1632 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1634 PRINTK("Read_old block %d for r-m-w\n", i
);
1635 set_bit(R5_LOCKED
, &dev
->flags
);
1636 set_bit(R5_Wantread
, &dev
->flags
);
1639 set_bit(STRIPE_DELAYED
, &sh
->state
);
1640 set_bit(STRIPE_HANDLE
, &sh
->state
);
1644 if (rcw
<= rmw
&& rcw
> 0)
1645 /* want reconstruct write, but need to get some data */
1646 for (i
=disks
; i
--;) {
1648 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
1649 !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1650 test_bit(R5_Insync
, &dev
->flags
)) {
1651 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1653 PRINTK("Read_old block %d for Reconstruct\n", i
);
1654 set_bit(R5_LOCKED
, &dev
->flags
);
1655 set_bit(R5_Wantread
, &dev
->flags
);
1658 set_bit(STRIPE_DELAYED
, &sh
->state
);
1659 set_bit(STRIPE_HANDLE
, &sh
->state
);
1663 /* now if nothing is locked, and if we have enough data, we can start a write request */
1664 if (locked
== 0 && (rcw
== 0 ||rmw
== 0) &&
1665 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
1666 PRINTK("Computing parity...\n");
1667 compute_parity5(sh
, rcw
==0 ? RECONSTRUCT_WRITE
: READ_MODIFY_WRITE
);
1668 /* now every locked buffer is ready to be written */
1670 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
1671 PRINTK("Writing block %d\n", i
);
1673 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1674 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)
1675 || (i
==sh
->pd_idx
&& failed
== 0))
1676 set_bit(STRIPE_INSYNC
, &sh
->state
);
1678 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
1679 atomic_dec(&conf
->preread_active_stripes
);
1680 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
1681 md_wakeup_thread(conf
->mddev
->thread
);
1686 /* maybe we need to check and possibly fix the parity for this stripe
1687 * Any reads will already have been scheduled, so we just see if enough data
1690 if (syncing
&& locked
== 0 &&
1691 !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1692 set_bit(STRIPE_HANDLE
, &sh
->state
);
1694 BUG_ON(uptodate
!= disks
);
1695 compute_parity5(sh
, CHECK_PARITY
);
1697 if (page_is_zero(sh
->dev
[sh
->pd_idx
].page
)) {
1698 /* parity is correct (on disc, not in buffer any more) */
1699 set_bit(STRIPE_INSYNC
, &sh
->state
);
1701 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
1702 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
1703 /* don't try to repair!! */
1704 set_bit(STRIPE_INSYNC
, &sh
->state
);
1706 compute_block(sh
, sh
->pd_idx
);
1711 if (!test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1712 /* either failed parity check, or recovery is happening */
1714 failed_num
= sh
->pd_idx
;
1715 dev
= &sh
->dev
[failed_num
];
1716 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
1717 BUG_ON(uptodate
!= disks
);
1719 set_bit(R5_LOCKED
, &dev
->flags
);
1720 set_bit(R5_Wantwrite
, &dev
->flags
);
1721 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
1723 set_bit(STRIPE_INSYNC
, &sh
->state
);
1726 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1727 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
1728 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1731 /* If the failed drive is just a ReadError, then we might need to progress
1732 * the repair/check process
1734 if (failed
== 1 && ! conf
->mddev
->ro
&&
1735 test_bit(R5_ReadError
, &sh
->dev
[failed_num
].flags
)
1736 && !test_bit(R5_LOCKED
, &sh
->dev
[failed_num
].flags
)
1737 && test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
].flags
)
1739 dev
= &sh
->dev
[failed_num
];
1740 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
1741 set_bit(R5_Wantwrite
, &dev
->flags
);
1742 set_bit(R5_ReWrite
, &dev
->flags
);
1743 set_bit(R5_LOCKED
, &dev
->flags
);
1746 /* let's read it back */
1747 set_bit(R5_Wantread
, &dev
->flags
);
1748 set_bit(R5_LOCKED
, &dev
->flags
);
1753 if (expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
1754 /* Need to write out all blocks after computing parity */
1755 sh
->disks
= conf
->raid_disks
;
1756 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
, conf
->raid_disks
);
1757 compute_parity5(sh
, RECONSTRUCT_WRITE
);
1758 for (i
= conf
->raid_disks
; i
--;) {
1759 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1761 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1763 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
1764 } else if (expanded
) {
1765 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
1766 atomic_dec(&conf
->reshape_stripes
);
1767 wake_up(&conf
->wait_for_overlap
);
1768 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
1771 if (expanding
&& locked
== 0) {
1772 /* We have read all the blocks in this stripe and now we need to
1773 * copy some of them into a target stripe for expand.
1775 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
1776 for (i
=0; i
< sh
->disks
; i
++)
1777 if (i
!= sh
->pd_idx
) {
1778 int dd_idx
, pd_idx
, j
;
1779 struct stripe_head
*sh2
;
1781 sector_t bn
= compute_blocknr(sh
, i
);
1782 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
1784 &dd_idx
, &pd_idx
, conf
);
1785 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
, pd_idx
, 1);
1787 /* so far only the early blocks of this stripe
1788 * have been requested. When later blocks
1789 * get requested, we will try again
1792 if(!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
1793 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
1794 /* must have already done this block */
1795 release_stripe(sh2
);
1798 memcpy(page_address(sh2
->dev
[dd_idx
].page
),
1799 page_address(sh
->dev
[i
].page
),
1801 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
1802 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
1803 for (j
=0; j
<conf
->raid_disks
; j
++)
1804 if (j
!= sh2
->pd_idx
&&
1805 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
1807 if (j
== conf
->raid_disks
) {
1808 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
1809 set_bit(STRIPE_HANDLE
, &sh2
->state
);
1811 release_stripe(sh2
);
1815 spin_unlock(&sh
->lock
);
1817 while ((bi
=return_bi
)) {
1818 int bytes
= bi
->bi_size
;
1820 return_bi
= bi
->bi_next
;
1823 bi
->bi_end_io(bi
, bytes
,
1824 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
1827 for (i
=disks
; i
-- ;) {
1831 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
1833 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1838 bi
= &sh
->dev
[i
].req
;
1842 bi
->bi_end_io
= raid5_end_write_request
;
1844 bi
->bi_end_io
= raid5_end_read_request
;
1847 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1848 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1851 atomic_inc(&rdev
->nr_pending
);
1855 if (syncing
|| expanding
|| expanded
)
1856 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1858 bi
->bi_bdev
= rdev
->bdev
;
1859 PRINTK("for %llu schedule op %ld on disc %d\n",
1860 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
1861 atomic_inc(&sh
->count
);
1862 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
1863 bi
->bi_flags
= 1 << BIO_UPTODATE
;
1865 bi
->bi_max_vecs
= 1;
1867 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
1868 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1869 bi
->bi_io_vec
[0].bv_offset
= 0;
1870 bi
->bi_size
= STRIPE_SIZE
;
1873 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1874 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1875 generic_make_request(bi
);
1878 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1879 PRINTK("skip op %ld on disc %d for sector %llu\n",
1880 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1881 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1882 set_bit(STRIPE_HANDLE
, &sh
->state
);
1887 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
1889 raid6_conf_t
*conf
= sh
->raid_conf
;
1890 int disks
= conf
->raid_disks
;
1891 struct bio
*return_bi
= NULL
;
1895 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1896 int non_overwrite
= 0;
1897 int failed_num
[2] = {0, 0};
1898 struct r5dev
*dev
, *pdev
, *qdev
;
1899 int pd_idx
= sh
->pd_idx
;
1900 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1901 int p_failed
, q_failed
;
1903 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1904 (unsigned long long)sh
->sector
, sh
->state
, atomic_read(&sh
->count
),
1907 spin_lock(&sh
->lock
);
1908 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1909 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1911 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1912 /* Now to look around and see what can be done */
1915 for (i
=disks
; i
--; ) {
1918 clear_bit(R5_Insync
, &dev
->flags
);
1920 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1921 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1922 /* maybe we can reply to a read */
1923 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1924 struct bio
*rbi
, *rbi2
;
1925 PRINTK("Return read for disc %d\n", i
);
1926 spin_lock_irq(&conf
->device_lock
);
1929 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1930 wake_up(&conf
->wait_for_overlap
);
1931 spin_unlock_irq(&conf
->device_lock
);
1932 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1933 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1934 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1935 spin_lock_irq(&conf
->device_lock
);
1936 if (--rbi
->bi_phys_segments
== 0) {
1937 rbi
->bi_next
= return_bi
;
1940 spin_unlock_irq(&conf
->device_lock
);
1945 /* now count some things */
1946 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1947 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1950 if (dev
->toread
) to_read
++;
1953 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1956 if (dev
->written
) written
++;
1957 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1958 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
1959 /* The ReadError flag will just be confusing now */
1960 clear_bit(R5_ReadError
, &dev
->flags
);
1961 clear_bit(R5_ReWrite
, &dev
->flags
);
1963 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
1964 || test_bit(R5_ReadError
, &dev
->flags
)) {
1966 failed_num
[failed
] = i
;
1969 set_bit(R5_Insync
, &dev
->flags
);
1972 PRINTK("locked=%d uptodate=%d to_read=%d"
1973 " to_write=%d failed=%d failed_num=%d,%d\n",
1974 locked
, uptodate
, to_read
, to_write
, failed
,
1975 failed_num
[0], failed_num
[1]);
1976 /* check if the array has lost >2 devices and, if so, some requests might
1979 if (failed
> 2 && to_read
+to_write
+written
) {
1980 for (i
=disks
; i
--; ) {
1983 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1986 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1987 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1988 /* multiple read failures in one stripe */
1989 md_error(conf
->mddev
, rdev
);
1993 spin_lock_irq(&conf
->device_lock
);
1994 /* fail all writes first */
1995 bi
= sh
->dev
[i
].towrite
;
1996 sh
->dev
[i
].towrite
= NULL
;
1997 if (bi
) { to_write
--; bitmap_end
= 1; }
1999 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2000 wake_up(&conf
->wait_for_overlap
);
2002 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2003 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2004 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2005 if (--bi
->bi_phys_segments
== 0) {
2006 md_write_end(conf
->mddev
);
2007 bi
->bi_next
= return_bi
;
2012 /* and fail all 'written' */
2013 bi
= sh
->dev
[i
].written
;
2014 sh
->dev
[i
].written
= NULL
;
2015 if (bi
) bitmap_end
= 1;
2016 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2017 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2018 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2019 if (--bi
->bi_phys_segments
== 0) {
2020 md_write_end(conf
->mddev
);
2021 bi
->bi_next
= return_bi
;
2027 /* fail any reads if this device is non-operational */
2028 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2029 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2030 bi
= sh
->dev
[i
].toread
;
2031 sh
->dev
[i
].toread
= NULL
;
2032 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2033 wake_up(&conf
->wait_for_overlap
);
2035 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
2036 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2037 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2038 if (--bi
->bi_phys_segments
== 0) {
2039 bi
->bi_next
= return_bi
;
2045 spin_unlock_irq(&conf
->device_lock
);
2047 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2048 STRIPE_SECTORS
, 0, 0);
2051 if (failed
> 2 && syncing
) {
2052 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2053 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2058 * might be able to return some write requests if the parity blocks
2059 * are safe, or on a failed drive
2061 pdev
= &sh
->dev
[pd_idx
];
2062 p_failed
= (failed
>= 1 && failed_num
[0] == pd_idx
)
2063 || (failed
>= 2 && failed_num
[1] == pd_idx
);
2064 qdev
= &sh
->dev
[qd_idx
];
2065 q_failed
= (failed
>= 1 && failed_num
[0] == qd_idx
)
2066 || (failed
>= 2 && failed_num
[1] == qd_idx
);
2069 ( p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2070 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2071 && test_bit(R5_UPTODATE
, &pdev
->flags
))) ) &&
2072 ( q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2073 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2074 && test_bit(R5_UPTODATE
, &qdev
->flags
))) ) ) {
2075 /* any written block on an uptodate or failed drive can be
2076 * returned. Note that if we 'wrote' to a failed drive,
2077 * it will be UPTODATE, but never LOCKED, so we don't need
2078 * to test 'failed' directly.
2080 for (i
=disks
; i
--; )
2081 if (sh
->dev
[i
].written
) {
2083 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2084 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
2085 /* We can return any write requests */
2087 struct bio
*wbi
, *wbi2
;
2088 PRINTK("Return write for stripe %llu disc %d\n",
2089 (unsigned long long)sh
->sector
, i
);
2090 spin_lock_irq(&conf
->device_lock
);
2092 dev
->written
= NULL
;
2093 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2094 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2095 if (--wbi
->bi_phys_segments
== 0) {
2096 md_write_end(conf
->mddev
);
2097 wbi
->bi_next
= return_bi
;
2102 if (dev
->towrite
== NULL
)
2104 spin_unlock_irq(&conf
->device_lock
);
2106 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2108 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
2113 /* Now we might consider reading some blocks, either to check/generate
2114 * parity, or to satisfy requests
2115 * or to load a block that is being partially written.
2117 if (to_read
|| non_overwrite
|| (to_write
&& failed
) || (syncing
&& (uptodate
< disks
))) {
2118 for (i
=disks
; i
--;) {
2120 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2122 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2124 (failed
>= 1 && (sh
->dev
[failed_num
[0]].toread
|| to_write
)) ||
2125 (failed
>= 2 && (sh
->dev
[failed_num
[1]].toread
|| to_write
))
2128 /* we would like to get this block, possibly
2129 * by computing it, but we might not be able to
2131 if (uptodate
== disks
-1) {
2132 PRINTK("Computing stripe %llu block %d\n",
2133 (unsigned long long)sh
->sector
, i
);
2134 compute_block_1(sh
, i
, 0);
2136 } else if ( uptodate
== disks
-2 && failed
>= 2 ) {
2137 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2139 for (other
=disks
; other
--;) {
2142 if ( !test_bit(R5_UPTODATE
, &sh
->dev
[other
].flags
) )
2146 PRINTK("Computing stripe %llu blocks %d,%d\n",
2147 (unsigned long long)sh
->sector
, i
, other
);
2148 compute_block_2(sh
, i
, other
);
2150 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2151 set_bit(R5_LOCKED
, &dev
->flags
);
2152 set_bit(R5_Wantread
, &dev
->flags
);
2154 PRINTK("Reading block %d (sync=%d)\n",
2159 set_bit(STRIPE_HANDLE
, &sh
->state
);
2162 /* now to consider writing and what else, if anything should be read */
2164 int rcw
=0, must_compute
=0;
2165 for (i
=disks
; i
--;) {
2167 /* Would I have to read this buffer for reconstruct_write */
2168 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2169 && i
!= pd_idx
&& i
!= qd_idx
2170 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2172 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2173 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2175 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i
, dev
->flags
);
2180 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2181 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2182 set_bit(STRIPE_HANDLE
, &sh
->state
);
2185 /* want reconstruct write, but need to get some data */
2186 for (i
=disks
; i
--;) {
2188 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2189 && !(failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2190 && !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2191 test_bit(R5_Insync
, &dev
->flags
)) {
2192 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2194 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2195 (unsigned long long)sh
->sector
, i
);
2196 set_bit(R5_LOCKED
, &dev
->flags
);
2197 set_bit(R5_Wantread
, &dev
->flags
);
2200 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2201 (unsigned long long)sh
->sector
, i
);
2202 set_bit(STRIPE_DELAYED
, &sh
->state
);
2203 set_bit(STRIPE_HANDLE
, &sh
->state
);
2207 /* now if nothing is locked, and if we have enough data, we can start a write request */
2208 if (locked
== 0 && rcw
== 0 &&
2209 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2210 if ( must_compute
> 0 ) {
2211 /* We have failed blocks and need to compute them */
2214 case 1: compute_block_1(sh
, failed_num
[0], 0); break;
2215 case 2: compute_block_2(sh
, failed_num
[0], failed_num
[1]); break;
2216 default: BUG(); /* This request should have been failed? */
2220 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh
->sector
);
2221 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2222 /* now every locked buffer is ready to be written */
2224 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2225 PRINTK("Writing stripe %llu block %d\n",
2226 (unsigned long long)sh
->sector
, i
);
2228 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2230 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2231 set_bit(STRIPE_INSYNC
, &sh
->state
);
2233 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2234 atomic_dec(&conf
->preread_active_stripes
);
2235 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
2236 md_wakeup_thread(conf
->mddev
->thread
);
2241 /* maybe we need to check and possibly fix the parity for this stripe
2242 * Any reads will already have been scheduled, so we just see if enough data
2245 if (syncing
&& locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2246 int update_p
= 0, update_q
= 0;
2249 set_bit(STRIPE_HANDLE
, &sh
->state
);
2252 BUG_ON(uptodate
< disks
);
2253 /* Want to check and possibly repair P and Q.
2254 * However there could be one 'failed' device, in which
2255 * case we can only check one of them, possibly using the
2256 * other to generate missing data
2259 /* If !tmp_page, we cannot do the calculations,
2260 * but as we have set STRIPE_HANDLE, we will soon be called
2261 * by stripe_handle with a tmp_page - just wait until then.
2264 if (failed
== q_failed
) {
2265 /* The only possible failed device holds 'Q', so it makes
2266 * sense to check P (If anything else were failed, we would
2267 * have used P to recreate it).
2269 compute_block_1(sh
, pd_idx
, 1);
2270 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2271 compute_block_1(sh
,pd_idx
,0);
2275 if (!q_failed
&& failed
< 2) {
2276 /* q is not failed, and we didn't use it to generate
2277 * anything, so it makes sense to check it
2279 memcpy(page_address(tmp_page
),
2280 page_address(sh
->dev
[qd_idx
].page
),
2282 compute_parity6(sh
, UPDATE_PARITY
);
2283 if (memcmp(page_address(tmp_page
),
2284 page_address(sh
->dev
[qd_idx
].page
),
2286 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2290 if (update_p
|| update_q
) {
2291 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2292 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2293 /* don't try to repair!! */
2294 update_p
= update_q
= 0;
2297 /* now write out any block on a failed drive,
2298 * or P or Q if they need it
2302 dev
= &sh
->dev
[failed_num
[1]];
2304 set_bit(R5_LOCKED
, &dev
->flags
);
2305 set_bit(R5_Wantwrite
, &dev
->flags
);
2308 dev
= &sh
->dev
[failed_num
[0]];
2310 set_bit(R5_LOCKED
, &dev
->flags
);
2311 set_bit(R5_Wantwrite
, &dev
->flags
);
2315 dev
= &sh
->dev
[pd_idx
];
2317 set_bit(R5_LOCKED
, &dev
->flags
);
2318 set_bit(R5_Wantwrite
, &dev
->flags
);
2321 dev
= &sh
->dev
[qd_idx
];
2323 set_bit(R5_LOCKED
, &dev
->flags
);
2324 set_bit(R5_Wantwrite
, &dev
->flags
);
2326 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2328 set_bit(STRIPE_INSYNC
, &sh
->state
);
2332 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2333 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2334 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2337 /* If the failed drives are just a ReadError, then we might need
2338 * to progress the repair/check process
2340 if (failed
<= 2 && ! conf
->mddev
->ro
)
2341 for (i
=0; i
<failed
;i
++) {
2342 dev
= &sh
->dev
[failed_num
[i
]];
2343 if (test_bit(R5_ReadError
, &dev
->flags
)
2344 && !test_bit(R5_LOCKED
, &dev
->flags
)
2345 && test_bit(R5_UPTODATE
, &dev
->flags
)
2347 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2348 set_bit(R5_Wantwrite
, &dev
->flags
);
2349 set_bit(R5_ReWrite
, &dev
->flags
);
2350 set_bit(R5_LOCKED
, &dev
->flags
);
2352 /* let's read it back */
2353 set_bit(R5_Wantread
, &dev
->flags
);
2354 set_bit(R5_LOCKED
, &dev
->flags
);
2358 spin_unlock(&sh
->lock
);
2360 while ((bi
=return_bi
)) {
2361 int bytes
= bi
->bi_size
;
2363 return_bi
= bi
->bi_next
;
2366 bi
->bi_end_io(bi
, bytes
,
2367 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
2370 for (i
=disks
; i
-- ;) {
2374 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2376 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
2381 bi
= &sh
->dev
[i
].req
;
2385 bi
->bi_end_io
= raid5_end_write_request
;
2387 bi
->bi_end_io
= raid5_end_read_request
;
2390 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2391 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
2394 atomic_inc(&rdev
->nr_pending
);
2399 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
2401 bi
->bi_bdev
= rdev
->bdev
;
2402 PRINTK("for %llu schedule op %ld on disc %d\n",
2403 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
2404 atomic_inc(&sh
->count
);
2405 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
2406 bi
->bi_flags
= 1 << BIO_UPTODATE
;
2408 bi
->bi_max_vecs
= 1;
2410 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
2411 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
2412 bi
->bi_io_vec
[0].bv_offset
= 0;
2413 bi
->bi_size
= STRIPE_SIZE
;
2416 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
2417 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2418 generic_make_request(bi
);
2421 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2422 PRINTK("skip op %ld on disc %d for sector %llu\n",
2423 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
2424 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2425 set_bit(STRIPE_HANDLE
, &sh
->state
);
2430 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
2432 if (sh
->raid_conf
->level
== 6)
2433 handle_stripe6(sh
, tmp_page
);
2440 static void raid5_activate_delayed(raid5_conf_t
*conf
)
2442 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
2443 while (!list_empty(&conf
->delayed_list
)) {
2444 struct list_head
*l
= conf
->delayed_list
.next
;
2445 struct stripe_head
*sh
;
2446 sh
= list_entry(l
, struct stripe_head
, lru
);
2448 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2449 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2450 atomic_inc(&conf
->preread_active_stripes
);
2451 list_add_tail(&sh
->lru
, &conf
->handle_list
);
2456 static void activate_bit_delay(raid5_conf_t
*conf
)
2458 /* device_lock is held */
2459 struct list_head head
;
2460 list_add(&head
, &conf
->bitmap_list
);
2461 list_del_init(&conf
->bitmap_list
);
2462 while (!list_empty(&head
)) {
2463 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
2464 list_del_init(&sh
->lru
);
2465 atomic_inc(&sh
->count
);
2466 __release_stripe(conf
, sh
);
2470 static void unplug_slaves(mddev_t
*mddev
)
2472 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2476 for (i
=0; i
<mddev
->raid_disks
; i
++) {
2477 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2478 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
2479 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
2481 atomic_inc(&rdev
->nr_pending
);
2484 if (r_queue
->unplug_fn
)
2485 r_queue
->unplug_fn(r_queue
);
2487 rdev_dec_pending(rdev
, mddev
);
2494 static void raid5_unplug_device(request_queue_t
*q
)
2496 mddev_t
*mddev
= q
->queuedata
;
2497 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2498 unsigned long flags
;
2500 spin_lock_irqsave(&conf
->device_lock
, flags
);
2502 if (blk_remove_plug(q
)) {
2504 raid5_activate_delayed(conf
);
2506 md_wakeup_thread(mddev
->thread
);
2508 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2510 unplug_slaves(mddev
);
2513 static int raid5_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
2514 sector_t
*error_sector
)
2516 mddev_t
*mddev
= q
->queuedata
;
2517 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2521 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
2522 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2523 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
2524 struct block_device
*bdev
= rdev
->bdev
;
2525 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
2527 if (!r_queue
->issue_flush_fn
)
2530 atomic_inc(&rdev
->nr_pending
);
2532 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
2534 rdev_dec_pending(rdev
, mddev
);
2543 static int raid5_congested(void *data
, int bits
)
2545 mddev_t
*mddev
= data
;
2546 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2548 /* No difference between reads and writes. Just check
2549 * how busy the stripe_cache is
2551 if (conf
->inactive_blocked
)
2555 if (list_empty_careful(&conf
->inactive_list
))
2561 /* We want read requests to align with chunks where possible,
2562 * but write requests don't need to.
2564 static int raid5_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
2566 mddev_t
*mddev
= q
->queuedata
;
2567 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
2569 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
2570 unsigned int bio_sectors
= bio
->bi_size
>> 9;
2572 if (bio_data_dir(bio
) == WRITE
)
2573 return biovec
->bv_len
; /* always allow writes to be mergeable */
2575 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
2576 if (max
< 0) max
= 0;
2577 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
2578 return biovec
->bv_len
;
2584 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
2586 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
2587 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
2588 unsigned int bio_sectors
= bio
->bi_size
>> 9;
2590 return chunk_sectors
>=
2591 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
2595 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
2596 * later sampled by raid5d.
2598 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
2600 unsigned long flags
;
2602 spin_lock_irqsave(&conf
->device_lock
, flags
);
2604 bi
->bi_next
= conf
->retry_read_aligned_list
;
2605 conf
->retry_read_aligned_list
= bi
;
2607 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2608 md_wakeup_thread(conf
->mddev
->thread
);
2612 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
2616 bi
= conf
->retry_read_aligned
;
2618 conf
->retry_read_aligned
= NULL
;
2621 bi
= conf
->retry_read_aligned_list
;
2623 conf
->retry_read_aligned
= bi
->bi_next
;
2625 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
2626 bi
->bi_hw_segments
= 0; /* count of processed stripes */
2634 * The "raid5_align_endio" should check if the read succeeded and if it
2635 * did, call bio_endio on the original bio (having bio_put the new bio
2637 * If the read failed..
2639 static int raid5_align_endio(struct bio
*bi
, unsigned int bytes
, int error
)
2641 struct bio
* raid_bi
= bi
->bi_private
;
2644 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2651 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
2652 conf
= mddev_to_conf(mddev
);
2653 rdev
= (void*)raid_bi
->bi_next
;
2654 raid_bi
->bi_next
= NULL
;
2656 rdev_dec_pending(rdev
, conf
->mddev
);
2658 if (!error
&& uptodate
) {
2659 bio_endio(raid_bi
, bytes
, 0);
2660 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
2661 wake_up(&conf
->wait_for_stripe
);
2666 PRINTK("raid5_align_endio : io error...handing IO for a retry\n");
2668 add_bio_to_retry(raid_bi
, conf
);
2672 static int chunk_aligned_read(request_queue_t
*q
, struct bio
* raid_bio
)
2674 mddev_t
*mddev
= q
->queuedata
;
2675 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2676 const unsigned int raid_disks
= conf
->raid_disks
;
2677 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
2678 unsigned int dd_idx
, pd_idx
;
2679 struct bio
* align_bi
;
2682 if (!in_chunk_boundary(mddev
, raid_bio
)) {
2683 PRINTK("chunk_aligned_read : non aligned\n");
2687 * use bio_clone to make a copy of the bio
2689 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
2693 * set bi_end_io to a new function, and set bi_private to the
2696 align_bi
->bi_end_io
= raid5_align_endio
;
2697 align_bi
->bi_private
= raid_bio
;
2701 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
2709 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
2710 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
2711 atomic_inc(&rdev
->nr_pending
);
2713 raid_bio
->bi_next
= (void*)rdev
;
2714 align_bi
->bi_bdev
= rdev
->bdev
;
2715 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
2716 align_bi
->bi_sector
+= rdev
->data_offset
;
2718 spin_lock_irq(&conf
->device_lock
);
2719 wait_event_lock_irq(conf
->wait_for_stripe
,
2721 conf
->device_lock
, /* nothing */);
2722 atomic_inc(&conf
->active_aligned_reads
);
2723 spin_unlock_irq(&conf
->device_lock
);
2725 generic_make_request(align_bi
);
2735 static int make_request(request_queue_t
*q
, struct bio
* bi
)
2737 mddev_t
*mddev
= q
->queuedata
;
2738 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
2739 unsigned int dd_idx
, pd_idx
;
2740 sector_t new_sector
;
2741 sector_t logical_sector
, last_sector
;
2742 struct stripe_head
*sh
;
2743 const int rw
= bio_data_dir(bi
);
2746 if (unlikely(bio_barrier(bi
))) {
2747 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
2751 md_write_start(mddev
, bi
);
2753 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
2754 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
2757 mddev
->reshape_position
== MaxSector
&&
2758 chunk_aligned_read(q
,bi
))
2761 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
2762 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2764 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
2766 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
2768 int disks
, data_disks
;
2771 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
2772 if (likely(conf
->expand_progress
== MaxSector
))
2773 disks
= conf
->raid_disks
;
2775 /* spinlock is needed as expand_progress may be
2776 * 64bit on a 32bit platform, and so it might be
2777 * possible to see a half-updated value
2778 * Ofcourse expand_progress could change after
2779 * the lock is dropped, so once we get a reference
2780 * to the stripe that we think it is, we will have
2783 spin_lock_irq(&conf
->device_lock
);
2784 disks
= conf
->raid_disks
;
2785 if (logical_sector
>= conf
->expand_progress
)
2786 disks
= conf
->previous_raid_disks
;
2788 if (logical_sector
>= conf
->expand_lo
) {
2789 spin_unlock_irq(&conf
->device_lock
);
2794 spin_unlock_irq(&conf
->device_lock
);
2796 data_disks
= disks
- conf
->max_degraded
;
2798 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
2799 &dd_idx
, &pd_idx
, conf
);
2800 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2801 (unsigned long long)new_sector
,
2802 (unsigned long long)logical_sector
);
2804 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
2806 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
2807 /* expansion might have moved on while waiting for a
2808 * stripe, so we must do the range check again.
2809 * Expansion could still move past after this
2810 * test, but as we are holding a reference to
2811 * 'sh', we know that if that happens,
2812 * STRIPE_EXPANDING will get set and the expansion
2813 * won't proceed until we finish with the stripe.
2816 spin_lock_irq(&conf
->device_lock
);
2817 if (logical_sector
< conf
->expand_progress
&&
2818 disks
== conf
->previous_raid_disks
)
2819 /* mismatch, need to try again */
2821 spin_unlock_irq(&conf
->device_lock
);
2827 /* FIXME what if we get a false positive because these
2828 * are being updated.
2830 if (logical_sector
>= mddev
->suspend_lo
&&
2831 logical_sector
< mddev
->suspend_hi
) {
2837 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
2838 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
2839 /* Stripe is busy expanding or
2840 * add failed due to overlap. Flush everything
2843 raid5_unplug_device(mddev
->queue
);
2848 finish_wait(&conf
->wait_for_overlap
, &w
);
2849 handle_stripe(sh
, NULL
);
2852 /* cannot get stripe for read-ahead, just give-up */
2853 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2854 finish_wait(&conf
->wait_for_overlap
, &w
);
2859 spin_lock_irq(&conf
->device_lock
);
2860 remaining
= --bi
->bi_phys_segments
;
2861 spin_unlock_irq(&conf
->device_lock
);
2862 if (remaining
== 0) {
2863 int bytes
= bi
->bi_size
;
2866 md_write_end(mddev
);
2868 bi
->bi_end_io(bi
, bytes
,
2869 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
2875 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
2877 /* reshaping is quite different to recovery/resync so it is
2878 * handled quite separately ... here.
2880 * On each call to sync_request, we gather one chunk worth of
2881 * destination stripes and flag them as expanding.
2882 * Then we find all the source stripes and request reads.
2883 * As the reads complete, handle_stripe will copy the data
2884 * into the destination stripe and release that stripe.
2886 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
2887 struct stripe_head
*sh
;
2889 sector_t first_sector
, last_sector
;
2894 sector_t writepos
, safepos
, gap
;
2896 if (sector_nr
== 0 &&
2897 conf
->expand_progress
!= 0) {
2898 /* restarting in the middle, skip the initial sectors */
2899 sector_nr
= conf
->expand_progress
;
2900 sector_div(sector_nr
, conf
->raid_disks
-1);
2905 /* we update the metadata when there is more than 3Meg
2906 * in the block range (that is rather arbitrary, should
2907 * probably be time based) or when the data about to be
2908 * copied would over-write the source of the data at
2909 * the front of the range.
2910 * i.e. one new_stripe forward from expand_progress new_maps
2911 * to after where expand_lo old_maps to
2913 writepos
= conf
->expand_progress
+
2914 conf
->chunk_size
/512*(conf
->raid_disks
-1);
2915 sector_div(writepos
, conf
->raid_disks
-1);
2916 safepos
= conf
->expand_lo
;
2917 sector_div(safepos
, conf
->previous_raid_disks
-1);
2918 gap
= conf
->expand_progress
- conf
->expand_lo
;
2920 if (writepos
>= safepos
||
2921 gap
> (conf
->raid_disks
-1)*3000*2 /*3Meg*/) {
2922 /* Cannot proceed until we've updated the superblock... */
2923 wait_event(conf
->wait_for_overlap
,
2924 atomic_read(&conf
->reshape_stripes
)==0);
2925 mddev
->reshape_position
= conf
->expand_progress
;
2926 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2927 md_wakeup_thread(mddev
->thread
);
2928 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
2929 kthread_should_stop());
2930 spin_lock_irq(&conf
->device_lock
);
2931 conf
->expand_lo
= mddev
->reshape_position
;
2932 spin_unlock_irq(&conf
->device_lock
);
2933 wake_up(&conf
->wait_for_overlap
);
2936 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
2939 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
2940 sh
= get_active_stripe(conf
, sector_nr
+i
,
2941 conf
->raid_disks
, pd_idx
, 0);
2942 set_bit(STRIPE_EXPANDING
, &sh
->state
);
2943 atomic_inc(&conf
->reshape_stripes
);
2944 /* If any of this stripe is beyond the end of the old
2945 * array, then we need to zero those blocks
2947 for (j
=sh
->disks
; j
--;) {
2949 if (j
== sh
->pd_idx
)
2951 s
= compute_blocknr(sh
, j
);
2952 if (s
< (mddev
->array_size
<<1)) {
2956 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
2957 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
2958 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
2961 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2962 set_bit(STRIPE_HANDLE
, &sh
->state
);
2966 spin_lock_irq(&conf
->device_lock
);
2967 conf
->expand_progress
= (sector_nr
+ i
)*(conf
->raid_disks
-1);
2968 spin_unlock_irq(&conf
->device_lock
);
2969 /* Ok, those stripe are ready. We can start scheduling
2970 * reads on the source stripes.
2971 * The source stripes are determined by mapping the first and last
2972 * block on the destination stripes.
2974 raid_disks
= conf
->previous_raid_disks
;
2975 data_disks
= raid_disks
- 1;
2977 raid5_compute_sector(sector_nr
*(conf
->raid_disks
-1),
2978 raid_disks
, data_disks
,
2979 &dd_idx
, &pd_idx
, conf
);
2981 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
2982 *(conf
->raid_disks
-1) -1,
2983 raid_disks
, data_disks
,
2984 &dd_idx
, &pd_idx
, conf
);
2985 if (last_sector
>= (mddev
->size
<<1))
2986 last_sector
= (mddev
->size
<<1)-1;
2987 while (first_sector
<= last_sector
) {
2988 pd_idx
= stripe_to_pdidx(first_sector
, conf
, conf
->previous_raid_disks
);
2989 sh
= get_active_stripe(conf
, first_sector
,
2990 conf
->previous_raid_disks
, pd_idx
, 0);
2991 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2992 set_bit(STRIPE_HANDLE
, &sh
->state
);
2994 first_sector
+= STRIPE_SECTORS
;
2996 return conf
->chunk_size
>>9;
2999 /* FIXME go_faster isn't used */
3000 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3002 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3003 struct stripe_head
*sh
;
3005 int raid_disks
= conf
->raid_disks
;
3006 sector_t max_sector
= mddev
->size
<< 1;
3008 int still_degraded
= 0;
3011 if (sector_nr
>= max_sector
) {
3012 /* just being told to finish up .. nothing much to do */
3013 unplug_slaves(mddev
);
3014 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3019 if (mddev
->curr_resync
< max_sector
) /* aborted */
3020 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3022 else /* completed sync */
3024 bitmap_close_sync(mddev
->bitmap
);
3029 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3030 return reshape_request(mddev
, sector_nr
, skipped
);
3032 /* if there is too many failed drives and we are trying
3033 * to resync, then assert that we are finished, because there is
3034 * nothing we can do.
3036 if (mddev
->degraded
>= conf
->max_degraded
&&
3037 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3038 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3042 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3043 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3044 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3045 /* we can skip this block, and probably more */
3046 sync_blocks
/= STRIPE_SECTORS
;
3048 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3051 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3052 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3054 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3055 /* make sure we don't swamp the stripe cache if someone else
3056 * is trying to get access
3058 schedule_timeout_uninterruptible(1);
3060 /* Need to check if array will still be degraded after recovery/resync
3061 * We don't need to check the 'failed' flag as when that gets set,
3064 for (i
=0; i
<mddev
->raid_disks
; i
++)
3065 if (conf
->disks
[i
].rdev
== NULL
)
3068 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3070 spin_lock(&sh
->lock
);
3071 set_bit(STRIPE_SYNCING
, &sh
->state
);
3072 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3073 spin_unlock(&sh
->lock
);
3075 handle_stripe(sh
, NULL
);
3078 return STRIPE_SECTORS
;
3081 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3083 /* We may not be able to submit a whole bio at once as there
3084 * may not be enough stripe_heads available.
3085 * We cannot pre-allocate enough stripe_heads as we may need
3086 * more than exist in the cache (if we allow ever large chunks).
3087 * So we do one stripe head at a time and record in
3088 * ->bi_hw_segments how many have been done.
3090 * We *know* that this entire raid_bio is in one chunk, so
3091 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3093 struct stripe_head
*sh
;
3095 sector_t sector
, logical_sector
, last_sector
;
3100 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3101 sector
= raid5_compute_sector( logical_sector
,
3103 conf
->raid_disks
- conf
->max_degraded
,
3107 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3109 for (; logical_sector
< last_sector
;
3110 logical_sector
+= STRIPE_SECTORS
, scnt
++) {
3112 if (scnt
< raid_bio
->bi_hw_segments
)
3113 /* already done this stripe */
3116 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3119 /* failed to get a stripe - must wait */
3120 raid_bio
->bi_hw_segments
= scnt
;
3121 conf
->retry_read_aligned
= raid_bio
;
3125 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3126 add_stripe_bio(sh
, raid_bio
, dd_idx
, 0);
3127 handle_stripe(sh
, NULL
);
3131 spin_lock_irq(&conf
->device_lock
);
3132 remaining
= --raid_bio
->bi_phys_segments
;
3133 spin_unlock_irq(&conf
->device_lock
);
3134 if (remaining
== 0) {
3135 int bytes
= raid_bio
->bi_size
;
3137 raid_bio
->bi_size
= 0;
3138 raid_bio
->bi_end_io(raid_bio
, bytes
,
3139 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
3142 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3143 wake_up(&conf
->wait_for_stripe
);
3150 * This is our raid5 kernel thread.
3152 * We scan the hash table for stripes which can be handled now.
3153 * During the scan, completed stripes are saved for us by the interrupt
3154 * handler, so that they will not have to wait for our next wakeup.
3156 static void raid5d (mddev_t
*mddev
)
3158 struct stripe_head
*sh
;
3159 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3162 PRINTK("+++ raid5d active\n");
3164 md_check_recovery(mddev
);
3167 spin_lock_irq(&conf
->device_lock
);
3169 struct list_head
*first
;
3172 if (conf
->seq_flush
!= conf
->seq_write
) {
3173 int seq
= conf
->seq_flush
;
3174 spin_unlock_irq(&conf
->device_lock
);
3175 bitmap_unplug(mddev
->bitmap
);
3176 spin_lock_irq(&conf
->device_lock
);
3177 conf
->seq_write
= seq
;
3178 activate_bit_delay(conf
);
3181 if (list_empty(&conf
->handle_list
) &&
3182 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
3183 !blk_queue_plugged(mddev
->queue
) &&
3184 !list_empty(&conf
->delayed_list
))
3185 raid5_activate_delayed(conf
);
3187 while ((bio
= remove_bio_from_retry(conf
))) {
3189 spin_unlock_irq(&conf
->device_lock
);
3190 ok
= retry_aligned_read(conf
, bio
);
3191 spin_lock_irq(&conf
->device_lock
);
3197 if (list_empty(&conf
->handle_list
))
3200 first
= conf
->handle_list
.next
;
3201 sh
= list_entry(first
, struct stripe_head
, lru
);
3203 list_del_init(first
);
3204 atomic_inc(&sh
->count
);
3205 BUG_ON(atomic_read(&sh
->count
)!= 1);
3206 spin_unlock_irq(&conf
->device_lock
);
3209 handle_stripe(sh
, conf
->spare_page
);
3212 spin_lock_irq(&conf
->device_lock
);
3214 PRINTK("%d stripes handled\n", handled
);
3216 spin_unlock_irq(&conf
->device_lock
);
3218 unplug_slaves(mddev
);
3220 PRINTK("--- raid5d inactive\n");
3224 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3226 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3228 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3234 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3236 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3239 if (len
>= PAGE_SIZE
)
3244 new = simple_strtoul(page
, &end
, 10);
3245 if (!*page
|| (*end
&& *end
!= '\n') )
3247 if (new <= 16 || new > 32768)
3249 while (new < conf
->max_nr_stripes
) {
3250 if (drop_one_stripe(conf
))
3251 conf
->max_nr_stripes
--;
3255 md_allow_write(mddev
);
3256 while (new > conf
->max_nr_stripes
) {
3257 if (grow_one_stripe(conf
))
3258 conf
->max_nr_stripes
++;
3264 static struct md_sysfs_entry
3265 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3266 raid5_show_stripe_cache_size
,
3267 raid5_store_stripe_cache_size
);
3270 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3272 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3274 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3279 static struct md_sysfs_entry
3280 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3282 static struct attribute
*raid5_attrs
[] = {
3283 &raid5_stripecache_size
.attr
,
3284 &raid5_stripecache_active
.attr
,
3287 static struct attribute_group raid5_attrs_group
= {
3289 .attrs
= raid5_attrs
,
3292 static int run(mddev_t
*mddev
)
3295 int raid_disk
, memory
;
3297 struct disk_info
*disk
;
3298 struct list_head
*tmp
;
3299 int working_disks
= 0;
3301 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
3302 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
3303 mdname(mddev
), mddev
->level
);
3307 if (mddev
->reshape_position
!= MaxSector
) {
3308 /* Check that we can continue the reshape.
3309 * Currently only disks can change, it must
3310 * increase, and we must be past the point where
3311 * a stripe over-writes itself
3313 sector_t here_new
, here_old
;
3316 if (mddev
->new_level
!= mddev
->level
||
3317 mddev
->new_layout
!= mddev
->layout
||
3318 mddev
->new_chunk
!= mddev
->chunk_size
) {
3319 printk(KERN_ERR
"raid5: %s: unsupported reshape required - aborting.\n",
3323 if (mddev
->delta_disks
<= 0) {
3324 printk(KERN_ERR
"raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3328 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3329 /* reshape_position must be on a new-stripe boundary, and one
3330 * further up in new geometry must map after here in old geometry.
3332 here_new
= mddev
->reshape_position
;
3333 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*(mddev
->raid_disks
-1))) {
3334 printk(KERN_ERR
"raid5: reshape_position not on a stripe boundary\n");
3337 /* here_new is the stripe we will write to */
3338 here_old
= mddev
->reshape_position
;
3339 sector_div(here_old
, (mddev
->chunk_size
>>9)*(old_disks
-1));
3340 /* here_old is the first stripe that we might need to read from */
3341 if (here_new
>= here_old
) {
3342 /* Reading from the same stripe as writing to - bad */
3343 printk(KERN_ERR
"raid5: reshape_position too early for auto-recovery - aborting.\n");
3346 printk(KERN_INFO
"raid5: reshape will continue\n");
3347 /* OK, we should be able to continue; */
3351 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
3352 if ((conf
= mddev
->private) == NULL
)
3354 if (mddev
->reshape_position
== MaxSector
) {
3355 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
3357 conf
->raid_disks
= mddev
->raid_disks
;
3358 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3361 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
3366 conf
->mddev
= mddev
;
3368 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
3371 if (mddev
->level
== 6) {
3372 conf
->spare_page
= alloc_page(GFP_KERNEL
);
3373 if (!conf
->spare_page
)
3376 spin_lock_init(&conf
->device_lock
);
3377 init_waitqueue_head(&conf
->wait_for_stripe
);
3378 init_waitqueue_head(&conf
->wait_for_overlap
);
3379 INIT_LIST_HEAD(&conf
->handle_list
);
3380 INIT_LIST_HEAD(&conf
->delayed_list
);
3381 INIT_LIST_HEAD(&conf
->bitmap_list
);
3382 INIT_LIST_HEAD(&conf
->inactive_list
);
3383 atomic_set(&conf
->active_stripes
, 0);
3384 atomic_set(&conf
->preread_active_stripes
, 0);
3385 atomic_set(&conf
->active_aligned_reads
, 0);
3387 PRINTK("raid5: run(%s) called.\n", mdname(mddev
));
3389 ITERATE_RDEV(mddev
,rdev
,tmp
) {
3390 raid_disk
= rdev
->raid_disk
;
3391 if (raid_disk
>= conf
->raid_disks
3394 disk
= conf
->disks
+ raid_disk
;
3398 if (test_bit(In_sync
, &rdev
->flags
)) {
3399 char b
[BDEVNAME_SIZE
];
3400 printk(KERN_INFO
"raid5: device %s operational as raid"
3401 " disk %d\n", bdevname(rdev
->bdev
,b
),
3408 * 0 for a fully functional array, 1 or 2 for a degraded array.
3410 mddev
->degraded
= conf
->raid_disks
- working_disks
;
3411 conf
->mddev
= mddev
;
3412 conf
->chunk_size
= mddev
->chunk_size
;
3413 conf
->level
= mddev
->level
;
3414 if (conf
->level
== 6)
3415 conf
->max_degraded
= 2;
3417 conf
->max_degraded
= 1;
3418 conf
->algorithm
= mddev
->layout
;
3419 conf
->max_nr_stripes
= NR_STRIPES
;
3420 conf
->expand_progress
= mddev
->reshape_position
;
3422 /* device size must be a multiple of chunk size */
3423 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
3424 mddev
->resync_max_sectors
= mddev
->size
<< 1;
3426 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
3427 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
3428 mdname(mddev
), conf
->raid_disks
);
3431 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
3432 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
3433 conf
->chunk_size
, mdname(mddev
));
3436 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
3438 "raid5: unsupported parity algorithm %d for %s\n",
3439 conf
->algorithm
, mdname(mddev
));
3442 if (mddev
->degraded
> conf
->max_degraded
) {
3443 printk(KERN_ERR
"raid5: not enough operational devices for %s"
3444 " (%d/%d failed)\n",
3445 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
3449 if (mddev
->degraded
> 0 &&
3450 mddev
->recovery_cp
!= MaxSector
) {
3451 if (mddev
->ok_start_degraded
)
3453 "raid5: starting dirty degraded array: %s"
3454 "- data corruption possible.\n",
3458 "raid5: cannot start dirty degraded array for %s\n",
3465 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
3466 if (!mddev
->thread
) {
3468 "raid5: couldn't allocate thread for %s\n",
3473 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
3474 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
3475 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
3477 "raid5: couldn't allocate %dkB for buffers\n", memory
);
3478 shrink_stripes(conf
);
3479 md_unregister_thread(mddev
->thread
);
3482 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
3483 memory
, mdname(mddev
));
3485 if (mddev
->degraded
== 0)
3486 printk("raid5: raid level %d set %s active with %d out of %d"
3487 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
3488 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
3491 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
3492 " out of %d devices, algorithm %d\n", conf
->level
,
3493 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3494 mddev
->raid_disks
, conf
->algorithm
);
3496 print_raid5_conf(conf
);
3498 if (conf
->expand_progress
!= MaxSector
) {
3499 printk("...ok start reshape thread\n");
3500 conf
->expand_lo
= conf
->expand_progress
;
3501 atomic_set(&conf
->reshape_stripes
, 0);
3502 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3503 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3504 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3505 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3506 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3510 /* read-ahead size must cover two whole stripes, which is
3511 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3514 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3515 int stripe
= data_disks
*
3516 (mddev
->chunk_size
/ PAGE_SIZE
);
3517 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3518 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3521 /* Ok, everything is just fine now */
3522 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
);
3524 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
3525 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
3526 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
3527 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3529 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
3530 conf
->max_degraded
);
3532 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
3537 print_raid5_conf(conf
);
3538 safe_put_page(conf
->spare_page
);
3540 kfree(conf
->stripe_hashtbl
);
3543 mddev
->private = NULL
;
3544 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
3550 static int stop(mddev_t
*mddev
)
3552 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3554 md_unregister_thread(mddev
->thread
);
3555 mddev
->thread
= NULL
;
3556 shrink_stripes(conf
);
3557 kfree(conf
->stripe_hashtbl
);
3558 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3559 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
3562 mddev
->private = NULL
;
3567 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
3571 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
3572 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
3573 seq_printf(seq
, "sh %llu, count %d.\n",
3574 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
3575 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
3576 for (i
= 0; i
< sh
->disks
; i
++) {
3577 seq_printf(seq
, "(cache%d: %p %ld) ",
3578 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
3580 seq_printf(seq
, "\n");
3583 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
3585 struct stripe_head
*sh
;
3586 struct hlist_node
*hn
;
3589 spin_lock_irq(&conf
->device_lock
);
3590 for (i
= 0; i
< NR_HASH
; i
++) {
3591 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
3592 if (sh
->raid_conf
!= conf
)
3597 spin_unlock_irq(&conf
->device_lock
);
3601 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
3603 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3606 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
3607 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
3608 for (i
= 0; i
< conf
->raid_disks
; i
++)
3609 seq_printf (seq
, "%s",
3610 conf
->disks
[i
].rdev
&&
3611 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
3612 seq_printf (seq
, "]");
3614 seq_printf (seq
, "\n");
3615 printall(seq
, conf
);
3619 static void print_raid5_conf (raid5_conf_t
*conf
)
3622 struct disk_info
*tmp
;
3624 printk("RAID5 conf printout:\n");
3626 printk("(conf==NULL)\n");
3629 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
3630 conf
->raid_disks
- conf
->mddev
->degraded
);
3632 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3633 char b
[BDEVNAME_SIZE
];
3634 tmp
= conf
->disks
+ i
;
3636 printk(" disk %d, o:%d, dev:%s\n",
3637 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
3638 bdevname(tmp
->rdev
->bdev
,b
));
3642 static int raid5_spare_active(mddev_t
*mddev
)
3645 raid5_conf_t
*conf
= mddev
->private;
3646 struct disk_info
*tmp
;
3648 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3649 tmp
= conf
->disks
+ i
;
3651 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
3652 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
3653 unsigned long flags
;
3654 spin_lock_irqsave(&conf
->device_lock
, flags
);
3656 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3659 print_raid5_conf(conf
);
3663 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
3665 raid5_conf_t
*conf
= mddev
->private;
3668 struct disk_info
*p
= conf
->disks
+ number
;
3670 print_raid5_conf(conf
);
3673 if (test_bit(In_sync
, &rdev
->flags
) ||
3674 atomic_read(&rdev
->nr_pending
)) {
3680 if (atomic_read(&rdev
->nr_pending
)) {
3681 /* lost the race, try later */
3688 print_raid5_conf(conf
);
3692 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
3694 raid5_conf_t
*conf
= mddev
->private;
3697 struct disk_info
*p
;
3699 if (mddev
->degraded
> conf
->max_degraded
)
3700 /* no point adding a device */
3704 * find the disk ... but prefer rdev->saved_raid_disk
3707 if (rdev
->saved_raid_disk
>= 0 &&
3708 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
3709 disk
= rdev
->saved_raid_disk
;
3712 for ( ; disk
< conf
->raid_disks
; disk
++)
3713 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
3714 clear_bit(In_sync
, &rdev
->flags
);
3715 rdev
->raid_disk
= disk
;
3717 if (rdev
->saved_raid_disk
!= disk
)
3719 rcu_assign_pointer(p
->rdev
, rdev
);
3722 print_raid5_conf(conf
);
3726 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
3728 /* no resync is happening, and there is enough space
3729 * on all devices, so we can resize.
3730 * We need to make sure resync covers any new space.
3731 * If the array is shrinking we should possibly wait until
3732 * any io in the removed space completes, but it hardly seems
3735 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3737 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
3738 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
3739 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
3741 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
3742 mddev
->recovery_cp
= mddev
->size
<< 1;
3743 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3745 mddev
->size
= sectors
/2;
3746 mddev
->resync_max_sectors
= sectors
;
3750 #ifdef CONFIG_MD_RAID5_RESHAPE
3751 static int raid5_check_reshape(mddev_t
*mddev
)
3753 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3756 if (mddev
->delta_disks
< 0 ||
3757 mddev
->new_level
!= mddev
->level
)
3758 return -EINVAL
; /* Cannot shrink array or change level yet */
3759 if (mddev
->delta_disks
== 0)
3760 return 0; /* nothing to do */
3762 /* Can only proceed if there are plenty of stripe_heads.
3763 * We need a minimum of one full stripe,, and for sensible progress
3764 * it is best to have about 4 times that.
3765 * If we require 4 times, then the default 256 4K stripe_heads will
3766 * allow for chunk sizes up to 256K, which is probably OK.
3767 * If the chunk size is greater, user-space should request more
3768 * stripe_heads first.
3770 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
3771 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
3772 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
3773 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
3777 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
3781 /* looks like we might be able to manage this */
3785 static int raid5_start_reshape(mddev_t
*mddev
)
3787 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3789 struct list_head
*rtmp
;
3791 int added_devices
= 0;
3792 unsigned long flags
;
3794 if (mddev
->degraded
||
3795 test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3798 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3799 if (rdev
->raid_disk
< 0 &&
3800 !test_bit(Faulty
, &rdev
->flags
))
3803 if (spares
< mddev
->delta_disks
-1)
3804 /* Not enough devices even to make a degraded array
3809 atomic_set(&conf
->reshape_stripes
, 0);
3810 spin_lock_irq(&conf
->device_lock
);
3811 conf
->previous_raid_disks
= conf
->raid_disks
;
3812 conf
->raid_disks
+= mddev
->delta_disks
;
3813 conf
->expand_progress
= 0;
3814 conf
->expand_lo
= 0;
3815 spin_unlock_irq(&conf
->device_lock
);
3817 /* Add some new drives, as many as will fit.
3818 * We know there are enough to make the newly sized array work.
3820 ITERATE_RDEV(mddev
, rdev
, rtmp
)
3821 if (rdev
->raid_disk
< 0 &&
3822 !test_bit(Faulty
, &rdev
->flags
)) {
3823 if (raid5_add_disk(mddev
, rdev
)) {
3825 set_bit(In_sync
, &rdev
->flags
);
3827 rdev
->recovery_offset
= 0;
3828 sprintf(nm
, "rd%d", rdev
->raid_disk
);
3829 sysfs_create_link(&mddev
->kobj
, &rdev
->kobj
, nm
);
3834 spin_lock_irqsave(&conf
->device_lock
, flags
);
3835 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
3836 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3837 mddev
->raid_disks
= conf
->raid_disks
;
3838 mddev
->reshape_position
= 0;
3839 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3841 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3842 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3843 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3844 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3845 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3847 if (!mddev
->sync_thread
) {
3848 mddev
->recovery
= 0;
3849 spin_lock_irq(&conf
->device_lock
);
3850 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
3851 conf
->expand_progress
= MaxSector
;
3852 spin_unlock_irq(&conf
->device_lock
);
3855 md_wakeup_thread(mddev
->sync_thread
);
3856 md_new_event(mddev
);
3861 static void end_reshape(raid5_conf_t
*conf
)
3863 struct block_device
*bdev
;
3865 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
3866 conf
->mddev
->array_size
= conf
->mddev
->size
* (conf
->raid_disks
-1);
3867 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
3868 conf
->mddev
->changed
= 1;
3870 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
3872 mutex_lock(&bdev
->bd_inode
->i_mutex
);
3873 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
3874 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
3877 spin_lock_irq(&conf
->device_lock
);
3878 conf
->expand_progress
= MaxSector
;
3879 spin_unlock_irq(&conf
->device_lock
);
3880 conf
->mddev
->reshape_position
= MaxSector
;
3882 /* read-ahead size must cover two whole stripes, which is
3883 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3886 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
3887 int stripe
= data_disks
*
3888 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
3889 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3890 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3895 static void raid5_quiesce(mddev_t
*mddev
, int state
)
3897 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3900 case 2: /* resume for a suspend */
3901 wake_up(&conf
->wait_for_overlap
);
3904 case 1: /* stop all writes */
3905 spin_lock_irq(&conf
->device_lock
);
3907 wait_event_lock_irq(conf
->wait_for_stripe
,
3908 atomic_read(&conf
->active_stripes
) == 0 &&
3909 atomic_read(&conf
->active_aligned_reads
) == 0,
3910 conf
->device_lock
, /* nothing */);
3911 spin_unlock_irq(&conf
->device_lock
);
3914 case 0: /* re-enable writes */
3915 spin_lock_irq(&conf
->device_lock
);
3917 wake_up(&conf
->wait_for_stripe
);
3918 wake_up(&conf
->wait_for_overlap
);
3919 spin_unlock_irq(&conf
->device_lock
);
3924 static struct mdk_personality raid6_personality
=
3928 .owner
= THIS_MODULE
,
3929 .make_request
= make_request
,
3933 .error_handler
= error
,
3934 .hot_add_disk
= raid5_add_disk
,
3935 .hot_remove_disk
= raid5_remove_disk
,
3936 .spare_active
= raid5_spare_active
,
3937 .sync_request
= sync_request
,
3938 .resize
= raid5_resize
,
3939 .quiesce
= raid5_quiesce
,
3941 static struct mdk_personality raid5_personality
=
3945 .owner
= THIS_MODULE
,
3946 .make_request
= make_request
,
3950 .error_handler
= error
,
3951 .hot_add_disk
= raid5_add_disk
,
3952 .hot_remove_disk
= raid5_remove_disk
,
3953 .spare_active
= raid5_spare_active
,
3954 .sync_request
= sync_request
,
3955 .resize
= raid5_resize
,
3956 #ifdef CONFIG_MD_RAID5_RESHAPE
3957 .check_reshape
= raid5_check_reshape
,
3958 .start_reshape
= raid5_start_reshape
,
3960 .quiesce
= raid5_quiesce
,
3963 static struct mdk_personality raid4_personality
=
3967 .owner
= THIS_MODULE
,
3968 .make_request
= make_request
,
3972 .error_handler
= error
,
3973 .hot_add_disk
= raid5_add_disk
,
3974 .hot_remove_disk
= raid5_remove_disk
,
3975 .spare_active
= raid5_spare_active
,
3976 .sync_request
= sync_request
,
3977 .resize
= raid5_resize
,
3978 .quiesce
= raid5_quiesce
,
3981 static int __init
raid5_init(void)
3985 e
= raid6_select_algo();
3988 register_md_personality(&raid6_personality
);
3989 register_md_personality(&raid5_personality
);
3990 register_md_personality(&raid4_personality
);
3994 static void raid5_exit(void)
3996 unregister_md_personality(&raid6_personality
);
3997 unregister_md_personality(&raid5_personality
);
3998 unregister_md_personality(&raid4_personality
);
4001 module_init(raid5_init
);
4002 module_exit(raid5_exit
);
4003 MODULE_LICENSE("GPL");
4004 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4005 MODULE_ALIAS("md-raid5");
4006 MODULE_ALIAS("md-raid4");
4007 MODULE_ALIAS("md-level-5");
4008 MODULE_ALIAS("md-level-4");
4009 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4010 MODULE_ALIAS("md-raid6");
4011 MODULE_ALIAS("md-level-6");
4013 /* This used to be two separate modules, they were: */
4014 MODULE_ALIAS("raid5");
4015 MODULE_ALIAS("raid6");