[ALSA] cs4281 - Clean up delay function
[linux-2.6/verdex.git] / drivers / scsi / libata-core.c
blobd0a0fdbd0fc4a658d5b900647c0ab4b238db45d3
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
90 /**
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
97 * LOCKING:
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
145 ata_wait_idle(ap);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
155 * LOCKING:
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
203 ata_wait_idle(ap);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
225 * LOCKING:
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
306 * LOCKING:
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
325 * LOCKING:
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
331 struct ata_ioports *ioaddr = &ap->ioaddr;
333 tf->command = ata_check_status(ap);
334 tf->feature = inb(ioaddr->error_addr);
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
359 * LOCKING:
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
365 struct ata_ioports *ioaddr = &ap->ioaddr;
367 tf->command = ata_check_status(ap);
368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
399 * LOCKING:
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
416 * from this device
418 * LOCKING:
419 * Inherited from caller.
421 static u8 ata_check_status_pio(struct ata_port *ap)
423 return inb(ap->ioaddr.status_addr);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
432 * from this device
434 * LOCKING:
435 * Inherited from caller.
437 static u8 ata_check_status_mmio(struct ata_port *ap)
439 return readb((void __iomem *) ap->ioaddr.status_addr);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
451 * May be used as the check_status() entry in ata_port_operations.
453 * LOCKING:
454 * Inherited from caller.
456 u8 ata_check_status(struct ata_port *ap)
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
474 * LOCKING:
475 * Inherited from caller.
477 u8 ata_altstatus(struct ata_port *ap)
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
497 * LOCKING:
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
537 * LOCKING:
538 * Inherited from caller.
541 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
559 static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
565 /* pio */
566 ATA_CMD_PIO_READ,
567 ATA_CMD_PIO_WRITE,
568 ATA_CMD_PIO_READ_EXT,
569 ATA_CMD_PIO_WRITE_EXT,
570 /* dma */
571 ATA_CMD_READ,
572 ATA_CMD_WRITE,
573 ATA_CMD_READ_EXT,
574 ATA_CMD_WRITE_EXT
578 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
579 * @qc: command to examine and configure
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
584 * LOCKING:
585 * caller.
587 void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
589 struct ata_taskfile *tf = &qc->tf;
590 struct ata_device *dev = qc->dev;
592 int index, lba48, write;
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 4;
600 } else {
601 tf->protocol = ATA_PROT_DMA;
602 index = 8;
605 tf->command = ata_rw_cmds[index + lba48 + write];
608 static const char * xfer_mode_str[] = {
609 "UDMA/16",
610 "UDMA/25",
611 "UDMA/33",
612 "UDMA/44",
613 "UDMA/66",
614 "UDMA/100",
615 "UDMA/133",
616 "UDMA7",
617 "MWDMA0",
618 "MWDMA1",
619 "MWDMA2",
620 "PIO0",
621 "PIO1",
622 "PIO2",
623 "PIO3",
624 "PIO4",
628 * ata_udma_string - convert UDMA bit offset to string
629 * @mask: mask of bits supported; only highest bit counts.
631 * Determine string which represents the highest speed
632 * (highest bit in @udma_mask).
634 * LOCKING:
635 * None.
637 * RETURNS:
638 * Constant C string representing highest speed listed in
639 * @udma_mask, or the constant C string "<n/a>".
642 static const char *ata_mode_string(unsigned int mask)
644 int i;
646 for (i = 7; i >= 0; i--)
647 if (mask & (1 << i))
648 goto out;
649 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
650 if (mask & (1 << i))
651 goto out;
652 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
653 if (mask & (1 << i))
654 goto out;
656 return "<n/a>";
658 out:
659 return xfer_mode_str[i];
663 * ata_pio_devchk - PATA device presence detection
664 * @ap: ATA channel to examine
665 * @device: Device to examine (starting at zero)
667 * This technique was originally described in
668 * Hale Landis's ATADRVR (www.ata-atapi.com), and
669 * later found its way into the ATA/ATAPI spec.
671 * Write a pattern to the ATA shadow registers,
672 * and if a device is present, it will respond by
673 * correctly storing and echoing back the
674 * ATA shadow register contents.
676 * LOCKING:
677 * caller.
680 static unsigned int ata_pio_devchk(struct ata_port *ap,
681 unsigned int device)
683 struct ata_ioports *ioaddr = &ap->ioaddr;
684 u8 nsect, lbal;
686 ap->ops->dev_select(ap, device);
688 outb(0x55, ioaddr->nsect_addr);
689 outb(0xaa, ioaddr->lbal_addr);
691 outb(0xaa, ioaddr->nsect_addr);
692 outb(0x55, ioaddr->lbal_addr);
694 outb(0x55, ioaddr->nsect_addr);
695 outb(0xaa, ioaddr->lbal_addr);
697 nsect = inb(ioaddr->nsect_addr);
698 lbal = inb(ioaddr->lbal_addr);
700 if ((nsect == 0x55) && (lbal == 0xaa))
701 return 1; /* we found a device */
703 return 0; /* nothing found */
707 * ata_mmio_devchk - PATA device presence detection
708 * @ap: ATA channel to examine
709 * @device: Device to examine (starting at zero)
711 * This technique was originally described in
712 * Hale Landis's ATADRVR (www.ata-atapi.com), and
713 * later found its way into the ATA/ATAPI spec.
715 * Write a pattern to the ATA shadow registers,
716 * and if a device is present, it will respond by
717 * correctly storing and echoing back the
718 * ATA shadow register contents.
720 * LOCKING:
721 * caller.
724 static unsigned int ata_mmio_devchk(struct ata_port *ap,
725 unsigned int device)
727 struct ata_ioports *ioaddr = &ap->ioaddr;
728 u8 nsect, lbal;
730 ap->ops->dev_select(ap, device);
732 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
733 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
735 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
736 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
738 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
739 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
741 nsect = readb((void __iomem *) ioaddr->nsect_addr);
742 lbal = readb((void __iomem *) ioaddr->lbal_addr);
744 if ((nsect == 0x55) && (lbal == 0xaa))
745 return 1; /* we found a device */
747 return 0; /* nothing found */
751 * ata_devchk - PATA device presence detection
752 * @ap: ATA channel to examine
753 * @device: Device to examine (starting at zero)
755 * Dispatch ATA device presence detection, depending
756 * on whether we are using PIO or MMIO to talk to the
757 * ATA shadow registers.
759 * LOCKING:
760 * caller.
763 static unsigned int ata_devchk(struct ata_port *ap,
764 unsigned int device)
766 if (ap->flags & ATA_FLAG_MMIO)
767 return ata_mmio_devchk(ap, device);
768 return ata_pio_devchk(ap, device);
772 * ata_dev_classify - determine device type based on ATA-spec signature
773 * @tf: ATA taskfile register set for device to be identified
775 * Determine from taskfile register contents whether a device is
776 * ATA or ATAPI, as per "Signature and persistence" section
777 * of ATA/PI spec (volume 1, sect 5.14).
779 * LOCKING:
780 * None.
782 * RETURNS:
783 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
784 * the event of failure.
787 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
789 /* Apple's open source Darwin code hints that some devices only
790 * put a proper signature into the LBA mid/high registers,
791 * So, we only check those. It's sufficient for uniqueness.
794 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
795 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
796 DPRINTK("found ATA device by sig\n");
797 return ATA_DEV_ATA;
800 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
801 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
802 DPRINTK("found ATAPI device by sig\n");
803 return ATA_DEV_ATAPI;
806 DPRINTK("unknown device\n");
807 return ATA_DEV_UNKNOWN;
811 * ata_dev_try_classify - Parse returned ATA device signature
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
815 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
816 * an ATA/ATAPI-defined set of values is placed in the ATA
817 * shadow registers, indicating the results of device detection
818 * and diagnostics.
820 * Select the ATA device, and read the values from the ATA shadow
821 * registers. Then parse according to the Error register value,
822 * and the spec-defined values examined by ata_dev_classify().
824 * LOCKING:
825 * caller.
828 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
830 struct ata_device *dev = &ap->device[device];
831 struct ata_taskfile tf;
832 unsigned int class;
833 u8 err;
835 ap->ops->dev_select(ap, device);
837 memset(&tf, 0, sizeof(tf));
839 ap->ops->tf_read(ap, &tf);
840 err = tf.feature;
842 dev->class = ATA_DEV_NONE;
844 /* see if device passed diags */
845 if (err == 1)
846 /* do nothing */ ;
847 else if ((device == 0) && (err == 0x81))
848 /* do nothing */ ;
849 else
850 return err;
852 /* determine if device if ATA or ATAPI */
853 class = ata_dev_classify(&tf);
854 if (class == ATA_DEV_UNKNOWN)
855 return err;
856 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
857 return err;
859 dev->class = class;
861 return err;
865 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
866 * @id: IDENTIFY DEVICE results we will examine
867 * @s: string into which data is output
868 * @ofs: offset into identify device page
869 * @len: length of string to return. must be an even number.
871 * The strings in the IDENTIFY DEVICE page are broken up into
872 * 16-bit chunks. Run through the string, and output each
873 * 8-bit chunk linearly, regardless of platform.
875 * LOCKING:
876 * caller.
879 void ata_dev_id_string(const u16 *id, unsigned char *s,
880 unsigned int ofs, unsigned int len)
882 unsigned int c;
884 while (len > 0) {
885 c = id[ofs] >> 8;
886 *s = c;
887 s++;
889 c = id[ofs] & 0xff;
890 *s = c;
891 s++;
893 ofs++;
894 len -= 2;
900 * ata_noop_dev_select - Select device 0/1 on ATA bus
901 * @ap: ATA channel to manipulate
902 * @device: ATA device (numbered from zero) to select
904 * This function performs no actual function.
906 * May be used as the dev_select() entry in ata_port_operations.
908 * LOCKING:
909 * caller.
911 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
917 * ata_std_dev_select - Select device 0/1 on ATA bus
918 * @ap: ATA channel to manipulate
919 * @device: ATA device (numbered from zero) to select
921 * Use the method defined in the ATA specification to
922 * make either device 0, or device 1, active on the
923 * ATA channel. Works with both PIO and MMIO.
925 * May be used as the dev_select() entry in ata_port_operations.
927 * LOCKING:
928 * caller.
931 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
933 u8 tmp;
935 if (device == 0)
936 tmp = ATA_DEVICE_OBS;
937 else
938 tmp = ATA_DEVICE_OBS | ATA_DEV1;
940 if (ap->flags & ATA_FLAG_MMIO) {
941 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
942 } else {
943 outb(tmp, ap->ioaddr.device_addr);
945 ata_pause(ap); /* needed; also flushes, for mmio */
949 * ata_dev_select - Select device 0/1 on ATA bus
950 * @ap: ATA channel to manipulate
951 * @device: ATA device (numbered from zero) to select
952 * @wait: non-zero to wait for Status register BSY bit to clear
953 * @can_sleep: non-zero if context allows sleeping
955 * Use the method defined in the ATA specification to
956 * make either device 0, or device 1, active on the
957 * ATA channel.
959 * This is a high-level version of ata_std_dev_select(),
960 * which additionally provides the services of inserting
961 * the proper pauses and status polling, where needed.
963 * LOCKING:
964 * caller.
967 void ata_dev_select(struct ata_port *ap, unsigned int device,
968 unsigned int wait, unsigned int can_sleep)
970 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
971 ap->id, device, wait);
973 if (wait)
974 ata_wait_idle(ap);
976 ap->ops->dev_select(ap, device);
978 if (wait) {
979 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
980 msleep(150);
981 ata_wait_idle(ap);
986 * ata_dump_id - IDENTIFY DEVICE info debugging output
987 * @dev: Device whose IDENTIFY DEVICE page we will dump
989 * Dump selected 16-bit words from a detected device's
990 * IDENTIFY PAGE page.
992 * LOCKING:
993 * caller.
996 static inline void ata_dump_id(const struct ata_device *dev)
998 DPRINTK("49==0x%04x "
999 "53==0x%04x "
1000 "63==0x%04x "
1001 "64==0x%04x "
1002 "75==0x%04x \n",
1003 dev->id[49],
1004 dev->id[53],
1005 dev->id[63],
1006 dev->id[64],
1007 dev->id[75]);
1008 DPRINTK("80==0x%04x "
1009 "81==0x%04x "
1010 "82==0x%04x "
1011 "83==0x%04x "
1012 "84==0x%04x \n",
1013 dev->id[80],
1014 dev->id[81],
1015 dev->id[82],
1016 dev->id[83],
1017 dev->id[84]);
1018 DPRINTK("88==0x%04x "
1019 "93==0x%04x\n",
1020 dev->id[88],
1021 dev->id[93]);
1025 * Compute the PIO modes available for this device. This is not as
1026 * trivial as it seems if we must consider early devices correctly.
1028 * FIXME: pre IDE drive timing (do we care ?).
1031 static unsigned int ata_pio_modes(const struct ata_device *adev)
1033 u16 modes;
1035 /* Usual case. Word 53 indicates word 88 is valid */
1036 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1037 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1038 modes <<= 3;
1039 modes |= 0x7;
1040 return modes;
1043 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1044 for the maximum. Turn it into a mask and return it */
1045 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1046 return modes;
1049 static int ata_qc_wait_err(struct ata_queued_cmd *qc,
1050 struct completion *wait)
1052 int rc = 0;
1054 if (wait_for_completion_timeout(wait, 30 * HZ) < 1) {
1055 /* timeout handling */
1056 unsigned int err_mask = ac_err_mask(ata_chk_status(qc->ap));
1058 if (!err_mask) {
1059 printk(KERN_WARNING "ata%u: slow completion (cmd %x)\n",
1060 qc->ap->id, qc->tf.command);
1061 } else {
1062 printk(KERN_WARNING "ata%u: qc timeout (cmd %x)\n",
1063 qc->ap->id, qc->tf.command);
1064 rc = -EIO;
1067 ata_qc_complete(qc, err_mask);
1070 return rc;
1074 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1075 * @ap: port on which device we wish to probe resides
1076 * @device: device bus address, starting at zero
1078 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1079 * command, and read back the 512-byte device information page.
1080 * The device information page is fed to us via the standard
1081 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1082 * using standard PIO-IN paths)
1084 * After reading the device information page, we use several
1085 * bits of information from it to initialize data structures
1086 * that will be used during the lifetime of the ata_device.
1087 * Other data from the info page is used to disqualify certain
1088 * older ATA devices we do not wish to support.
1090 * LOCKING:
1091 * Inherited from caller. Some functions called by this function
1092 * obtain the host_set lock.
1095 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1097 struct ata_device *dev = &ap->device[device];
1098 unsigned int major_version;
1099 u16 tmp;
1100 unsigned long xfer_modes;
1101 unsigned int using_edd;
1102 DECLARE_COMPLETION(wait);
1103 struct ata_queued_cmd *qc;
1104 unsigned long flags;
1105 int rc;
1107 if (!ata_dev_present(dev)) {
1108 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1109 ap->id, device);
1110 return;
1113 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1114 using_edd = 0;
1115 else
1116 using_edd = 1;
1118 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1120 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1121 dev->class == ATA_DEV_NONE);
1123 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1125 qc = ata_qc_new_init(ap, dev);
1126 BUG_ON(qc == NULL);
1128 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1129 qc->dma_dir = DMA_FROM_DEVICE;
1130 qc->tf.protocol = ATA_PROT_PIO;
1131 qc->nsect = 1;
1133 retry:
1134 if (dev->class == ATA_DEV_ATA) {
1135 qc->tf.command = ATA_CMD_ID_ATA;
1136 DPRINTK("do ATA identify\n");
1137 } else {
1138 qc->tf.command = ATA_CMD_ID_ATAPI;
1139 DPRINTK("do ATAPI identify\n");
1142 qc->waiting = &wait;
1143 qc->complete_fn = ata_qc_complete_noop;
1145 spin_lock_irqsave(&ap->host_set->lock, flags);
1146 rc = ata_qc_issue(qc);
1147 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1149 if (rc)
1150 goto err_out;
1151 else
1152 ata_qc_wait_err(qc, &wait);
1154 spin_lock_irqsave(&ap->host_set->lock, flags);
1155 ap->ops->tf_read(ap, &qc->tf);
1156 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1158 if (qc->tf.command & ATA_ERR) {
1160 * arg! EDD works for all test cases, but seems to return
1161 * the ATA signature for some ATAPI devices. Until the
1162 * reason for this is found and fixed, we fix up the mess
1163 * here. If IDENTIFY DEVICE returns command aborted
1164 * (as ATAPI devices do), then we issue an
1165 * IDENTIFY PACKET DEVICE.
1167 * ATA software reset (SRST, the default) does not appear
1168 * to have this problem.
1170 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1171 u8 err = qc->tf.feature;
1172 if (err & ATA_ABORTED) {
1173 dev->class = ATA_DEV_ATAPI;
1174 qc->cursg = 0;
1175 qc->cursg_ofs = 0;
1176 qc->cursect = 0;
1177 qc->nsect = 1;
1178 goto retry;
1181 goto err_out;
1184 swap_buf_le16(dev->id, ATA_ID_WORDS);
1186 /* print device capabilities */
1187 printk(KERN_DEBUG "ata%u: dev %u cfg "
1188 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1189 ap->id, device, dev->id[49],
1190 dev->id[82], dev->id[83], dev->id[84],
1191 dev->id[85], dev->id[86], dev->id[87],
1192 dev->id[88]);
1195 * common ATA, ATAPI feature tests
1198 /* we require DMA support (bits 8 of word 49) */
1199 if (!ata_id_has_dma(dev->id)) {
1200 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1201 goto err_out_nosup;
1204 /* quick-n-dirty find max transfer mode; for printk only */
1205 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1206 if (!xfer_modes)
1207 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1208 if (!xfer_modes)
1209 xfer_modes = ata_pio_modes(dev);
1211 ata_dump_id(dev);
1213 /* ATA-specific feature tests */
1214 if (dev->class == ATA_DEV_ATA) {
1215 if (!ata_id_is_ata(dev->id)) /* sanity check */
1216 goto err_out_nosup;
1218 /* get major version */
1219 tmp = dev->id[ATA_ID_MAJOR_VER];
1220 for (major_version = 14; major_version >= 1; major_version--)
1221 if (tmp & (1 << major_version))
1222 break;
1225 * The exact sequence expected by certain pre-ATA4 drives is:
1226 * SRST RESET
1227 * IDENTIFY
1228 * INITIALIZE DEVICE PARAMETERS
1229 * anything else..
1230 * Some drives were very specific about that exact sequence.
1232 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1233 ata_dev_init_params(ap, dev);
1235 /* current CHS translation info (id[53-58]) might be
1236 * changed. reread the identify device info.
1238 ata_dev_reread_id(ap, dev);
1241 if (ata_id_has_lba(dev->id)) {
1242 dev->flags |= ATA_DFLAG_LBA;
1244 if (ata_id_has_lba48(dev->id)) {
1245 dev->flags |= ATA_DFLAG_LBA48;
1246 dev->n_sectors = ata_id_u64(dev->id, 100);
1247 } else {
1248 dev->n_sectors = ata_id_u32(dev->id, 60);
1251 /* print device info to dmesg */
1252 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1253 ap->id, device,
1254 major_version,
1255 ata_mode_string(xfer_modes),
1256 (unsigned long long)dev->n_sectors,
1257 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1258 } else {
1259 /* CHS */
1261 /* Default translation */
1262 dev->cylinders = dev->id[1];
1263 dev->heads = dev->id[3];
1264 dev->sectors = dev->id[6];
1265 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1267 if (ata_id_current_chs_valid(dev->id)) {
1268 /* Current CHS translation is valid. */
1269 dev->cylinders = dev->id[54];
1270 dev->heads = dev->id[55];
1271 dev->sectors = dev->id[56];
1273 dev->n_sectors = ata_id_u32(dev->id, 57);
1276 /* print device info to dmesg */
1277 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1278 ap->id, device,
1279 major_version,
1280 ata_mode_string(xfer_modes),
1281 (unsigned long long)dev->n_sectors,
1282 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1286 ap->host->max_cmd_len = 16;
1289 /* ATAPI-specific feature tests */
1290 else if (dev->class == ATA_DEV_ATAPI) {
1291 if (ata_id_is_ata(dev->id)) /* sanity check */
1292 goto err_out_nosup;
1294 rc = atapi_cdb_len(dev->id);
1295 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1296 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1297 goto err_out_nosup;
1299 ap->cdb_len = (unsigned int) rc;
1300 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1302 /* print device info to dmesg */
1303 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1304 ap->id, device,
1305 ata_mode_string(xfer_modes));
1308 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1309 return;
1311 err_out_nosup:
1312 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1313 ap->id, device);
1314 err_out:
1315 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1316 DPRINTK("EXIT, err\n");
1320 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1322 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1326 * ata_dev_config - Run device specific handlers and check for
1327 * SATA->PATA bridges
1328 * @ap: Bus
1329 * @i: Device
1331 * LOCKING:
1334 void ata_dev_config(struct ata_port *ap, unsigned int i)
1336 /* limit bridge transfers to udma5, 200 sectors */
1337 if (ata_dev_knobble(ap)) {
1338 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1339 ap->id, ap->device->devno);
1340 ap->udma_mask &= ATA_UDMA5;
1341 ap->host->max_sectors = ATA_MAX_SECTORS;
1342 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1343 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, &ap->device[i]);
1351 * ata_bus_probe - Reset and probe ATA bus
1352 * @ap: Bus to probe
1354 * Master ATA bus probing function. Initiates a hardware-dependent
1355 * bus reset, then attempts to identify any devices found on
1356 * the bus.
1358 * LOCKING:
1359 * PCI/etc. bus probe sem.
1361 * RETURNS:
1362 * Zero on success, non-zero on error.
1365 static int ata_bus_probe(struct ata_port *ap)
1367 unsigned int i, found = 0;
1369 ap->ops->phy_reset(ap);
1370 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1371 goto err_out;
1373 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1374 ata_dev_identify(ap, i);
1375 if (ata_dev_present(&ap->device[i])) {
1376 found = 1;
1377 ata_dev_config(ap,i);
1381 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1382 goto err_out_disable;
1384 ata_set_mode(ap);
1385 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1386 goto err_out_disable;
1388 return 0;
1390 err_out_disable:
1391 ap->ops->port_disable(ap);
1392 err_out:
1393 return -1;
1397 * ata_port_probe - Mark port as enabled
1398 * @ap: Port for which we indicate enablement
1400 * Modify @ap data structure such that the system
1401 * thinks that the entire port is enabled.
1403 * LOCKING: host_set lock, or some other form of
1404 * serialization.
1407 void ata_port_probe(struct ata_port *ap)
1409 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1413 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1414 * @ap: SATA port associated with target SATA PHY.
1416 * This function issues commands to standard SATA Sxxx
1417 * PHY registers, to wake up the phy (and device), and
1418 * clear any reset condition.
1420 * LOCKING:
1421 * PCI/etc. bus probe sem.
1424 void __sata_phy_reset(struct ata_port *ap)
1426 u32 sstatus;
1427 unsigned long timeout = jiffies + (HZ * 5);
1429 if (ap->flags & ATA_FLAG_SATA_RESET) {
1430 /* issue phy wake/reset */
1431 scr_write_flush(ap, SCR_CONTROL, 0x301);
1432 /* Couldn't find anything in SATA I/II specs, but
1433 * AHCI-1.1 10.4.2 says at least 1 ms. */
1434 mdelay(1);
1436 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1438 /* wait for phy to become ready, if necessary */
1439 do {
1440 msleep(200);
1441 sstatus = scr_read(ap, SCR_STATUS);
1442 if ((sstatus & 0xf) != 1)
1443 break;
1444 } while (time_before(jiffies, timeout));
1446 /* TODO: phy layer with polling, timeouts, etc. */
1447 if (sata_dev_present(ap))
1448 ata_port_probe(ap);
1449 else {
1450 sstatus = scr_read(ap, SCR_STATUS);
1451 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1452 ap->id, sstatus);
1453 ata_port_disable(ap);
1456 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1457 return;
1459 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1460 ata_port_disable(ap);
1461 return;
1464 ap->cbl = ATA_CBL_SATA;
1468 * sata_phy_reset - Reset SATA bus.
1469 * @ap: SATA port associated with target SATA PHY.
1471 * This function resets the SATA bus, and then probes
1472 * the bus for devices.
1474 * LOCKING:
1475 * PCI/etc. bus probe sem.
1478 void sata_phy_reset(struct ata_port *ap)
1480 __sata_phy_reset(ap);
1481 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1482 return;
1483 ata_bus_reset(ap);
1487 * ata_port_disable - Disable port.
1488 * @ap: Port to be disabled.
1490 * Modify @ap data structure such that the system
1491 * thinks that the entire port is disabled, and should
1492 * never attempt to probe or communicate with devices
1493 * on this port.
1495 * LOCKING: host_set lock, or some other form of
1496 * serialization.
1499 void ata_port_disable(struct ata_port *ap)
1501 ap->device[0].class = ATA_DEV_NONE;
1502 ap->device[1].class = ATA_DEV_NONE;
1503 ap->flags |= ATA_FLAG_PORT_DISABLED;
1507 * This mode timing computation functionality is ported over from
1508 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1511 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1512 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1513 * for PIO 5, which is a nonstandard extension and UDMA6, which
1514 * is currently supported only by Maxtor drives.
1517 static const struct ata_timing ata_timing[] = {
1519 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1520 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1521 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1522 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1538 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1546 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1548 { 0xFF }
1551 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1552 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1554 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1556 q->setup = EZ(t->setup * 1000, T);
1557 q->act8b = EZ(t->act8b * 1000, T);
1558 q->rec8b = EZ(t->rec8b * 1000, T);
1559 q->cyc8b = EZ(t->cyc8b * 1000, T);
1560 q->active = EZ(t->active * 1000, T);
1561 q->recover = EZ(t->recover * 1000, T);
1562 q->cycle = EZ(t->cycle * 1000, T);
1563 q->udma = EZ(t->udma * 1000, UT);
1566 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1567 struct ata_timing *m, unsigned int what)
1569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1579 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1581 const struct ata_timing *t;
1583 for (t = ata_timing; t->mode != speed; t++)
1584 if (t->mode == 0xFF)
1585 return NULL;
1586 return t;
1589 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1590 struct ata_timing *t, int T, int UT)
1592 const struct ata_timing *s;
1593 struct ata_timing p;
1596 * Find the mode.
1599 if (!(s = ata_timing_find_mode(speed)))
1600 return -EINVAL;
1602 memcpy(t, s, sizeof(*s));
1605 * If the drive is an EIDE drive, it can tell us it needs extended
1606 * PIO/MW_DMA cycle timing.
1609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1610 memset(&p, 0, sizeof(p));
1611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1621 * Convert the timing to bus clock counts.
1624 ata_timing_quantize(t, t, T, UT);
1627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1628 * and some other commands. We have to ensure that the DMA cycle timing is
1629 * slower/equal than the fastest PIO timing.
1632 if (speed > XFER_PIO_4) {
1633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1638 * Lenghten active & recovery time so that cycle time is correct.
1641 if (t->act8b + t->rec8b < t->cyc8b) {
1642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1643 t->rec8b = t->cyc8b - t->act8b;
1646 if (t->active + t->recover < t->cycle) {
1647 t->active += (t->cycle - (t->active + t->recover)) / 2;
1648 t->recover = t->cycle - t->active;
1651 return 0;
1654 static const struct {
1655 unsigned int shift;
1656 u8 base;
1657 } xfer_mode_classes[] = {
1658 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1659 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1660 { ATA_SHIFT_PIO, XFER_PIO_0 },
1663 static inline u8 base_from_shift(unsigned int shift)
1665 int i;
1667 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1668 if (xfer_mode_classes[i].shift == shift)
1669 return xfer_mode_classes[i].base;
1671 return 0xff;
1674 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1676 int ofs, idx;
1677 u8 base;
1679 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1680 return;
1682 if (dev->xfer_shift == ATA_SHIFT_PIO)
1683 dev->flags |= ATA_DFLAG_PIO;
1685 ata_dev_set_xfermode(ap, dev);
1687 base = base_from_shift(dev->xfer_shift);
1688 ofs = dev->xfer_mode - base;
1689 idx = ofs + dev->xfer_shift;
1690 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1692 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1693 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1695 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1696 ap->id, dev->devno, xfer_mode_str[idx]);
1699 static int ata_host_set_pio(struct ata_port *ap)
1701 unsigned int mask;
1702 int x, i;
1703 u8 base, xfer_mode;
1705 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1706 x = fgb(mask);
1707 if (x < 0) {
1708 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1709 return -1;
1712 base = base_from_shift(ATA_SHIFT_PIO);
1713 xfer_mode = base + x;
1715 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1716 (int)base, (int)xfer_mode, mask, x);
1718 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1719 struct ata_device *dev = &ap->device[i];
1720 if (ata_dev_present(dev)) {
1721 dev->pio_mode = xfer_mode;
1722 dev->xfer_mode = xfer_mode;
1723 dev->xfer_shift = ATA_SHIFT_PIO;
1724 if (ap->ops->set_piomode)
1725 ap->ops->set_piomode(ap, dev);
1729 return 0;
1732 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1733 unsigned int xfer_shift)
1735 int i;
1737 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1738 struct ata_device *dev = &ap->device[i];
1739 if (ata_dev_present(dev)) {
1740 dev->dma_mode = xfer_mode;
1741 dev->xfer_mode = xfer_mode;
1742 dev->xfer_shift = xfer_shift;
1743 if (ap->ops->set_dmamode)
1744 ap->ops->set_dmamode(ap, dev);
1750 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1751 * @ap: port on which timings will be programmed
1753 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1755 * LOCKING:
1756 * PCI/etc. bus probe sem.
1759 static void ata_set_mode(struct ata_port *ap)
1761 unsigned int xfer_shift;
1762 u8 xfer_mode;
1763 int rc;
1765 /* step 1: always set host PIO timings */
1766 rc = ata_host_set_pio(ap);
1767 if (rc)
1768 goto err_out;
1770 /* step 2: choose the best data xfer mode */
1771 xfer_mode = xfer_shift = 0;
1772 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1773 if (rc)
1774 goto err_out;
1776 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1777 if (xfer_shift != ATA_SHIFT_PIO)
1778 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1780 /* step 4: update devices' xfer mode */
1781 ata_dev_set_mode(ap, &ap->device[0]);
1782 ata_dev_set_mode(ap, &ap->device[1]);
1784 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1785 return;
1787 if (ap->ops->post_set_mode)
1788 ap->ops->post_set_mode(ap);
1790 return;
1792 err_out:
1793 ata_port_disable(ap);
1797 * ata_busy_sleep - sleep until BSY clears, or timeout
1798 * @ap: port containing status register to be polled
1799 * @tmout_pat: impatience timeout
1800 * @tmout: overall timeout
1802 * Sleep until ATA Status register bit BSY clears,
1803 * or a timeout occurs.
1805 * LOCKING: None.
1809 static unsigned int ata_busy_sleep (struct ata_port *ap,
1810 unsigned long tmout_pat,
1811 unsigned long tmout)
1813 unsigned long timer_start, timeout;
1814 u8 status;
1816 status = ata_busy_wait(ap, ATA_BUSY, 300);
1817 timer_start = jiffies;
1818 timeout = timer_start + tmout_pat;
1819 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1820 msleep(50);
1821 status = ata_busy_wait(ap, ATA_BUSY, 3);
1824 if (status & ATA_BUSY)
1825 printk(KERN_WARNING "ata%u is slow to respond, "
1826 "please be patient\n", ap->id);
1828 timeout = timer_start + tmout;
1829 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1830 msleep(50);
1831 status = ata_chk_status(ap);
1834 if (status & ATA_BUSY) {
1835 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1836 ap->id, tmout / HZ);
1837 return 1;
1840 return 0;
1843 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1845 struct ata_ioports *ioaddr = &ap->ioaddr;
1846 unsigned int dev0 = devmask & (1 << 0);
1847 unsigned int dev1 = devmask & (1 << 1);
1848 unsigned long timeout;
1850 /* if device 0 was found in ata_devchk, wait for its
1851 * BSY bit to clear
1853 if (dev0)
1854 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1856 /* if device 1 was found in ata_devchk, wait for
1857 * register access, then wait for BSY to clear
1859 timeout = jiffies + ATA_TMOUT_BOOT;
1860 while (dev1) {
1861 u8 nsect, lbal;
1863 ap->ops->dev_select(ap, 1);
1864 if (ap->flags & ATA_FLAG_MMIO) {
1865 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1866 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1867 } else {
1868 nsect = inb(ioaddr->nsect_addr);
1869 lbal = inb(ioaddr->lbal_addr);
1871 if ((nsect == 1) && (lbal == 1))
1872 break;
1873 if (time_after(jiffies, timeout)) {
1874 dev1 = 0;
1875 break;
1877 msleep(50); /* give drive a breather */
1879 if (dev1)
1880 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1882 /* is all this really necessary? */
1883 ap->ops->dev_select(ap, 0);
1884 if (dev1)
1885 ap->ops->dev_select(ap, 1);
1886 if (dev0)
1887 ap->ops->dev_select(ap, 0);
1891 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1892 * @ap: Port to reset and probe
1894 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1895 * probe the bus. Not often used these days.
1897 * LOCKING:
1898 * PCI/etc. bus probe sem.
1899 * Obtains host_set lock.
1903 static unsigned int ata_bus_edd(struct ata_port *ap)
1905 struct ata_taskfile tf;
1906 unsigned long flags;
1908 /* set up execute-device-diag (bus reset) taskfile */
1909 /* also, take interrupts to a known state (disabled) */
1910 DPRINTK("execute-device-diag\n");
1911 ata_tf_init(ap, &tf, 0);
1912 tf.ctl |= ATA_NIEN;
1913 tf.command = ATA_CMD_EDD;
1914 tf.protocol = ATA_PROT_NODATA;
1916 /* do bus reset */
1917 spin_lock_irqsave(&ap->host_set->lock, flags);
1918 ata_tf_to_host(ap, &tf);
1919 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1921 /* spec says at least 2ms. but who knows with those
1922 * crazy ATAPI devices...
1924 msleep(150);
1926 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1929 static unsigned int ata_bus_softreset(struct ata_port *ap,
1930 unsigned int devmask)
1932 struct ata_ioports *ioaddr = &ap->ioaddr;
1934 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1936 /* software reset. causes dev0 to be selected */
1937 if (ap->flags & ATA_FLAG_MMIO) {
1938 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1939 udelay(20); /* FIXME: flush */
1940 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1941 udelay(20); /* FIXME: flush */
1942 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1943 } else {
1944 outb(ap->ctl, ioaddr->ctl_addr);
1945 udelay(10);
1946 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1947 udelay(10);
1948 outb(ap->ctl, ioaddr->ctl_addr);
1951 /* spec mandates ">= 2ms" before checking status.
1952 * We wait 150ms, because that was the magic delay used for
1953 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1954 * between when the ATA command register is written, and then
1955 * status is checked. Because waiting for "a while" before
1956 * checking status is fine, post SRST, we perform this magic
1957 * delay here as well.
1959 msleep(150);
1961 ata_bus_post_reset(ap, devmask);
1963 return 0;
1967 * ata_bus_reset - reset host port and associated ATA channel
1968 * @ap: port to reset
1970 * This is typically the first time we actually start issuing
1971 * commands to the ATA channel. We wait for BSY to clear, then
1972 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1973 * result. Determine what devices, if any, are on the channel
1974 * by looking at the device 0/1 error register. Look at the signature
1975 * stored in each device's taskfile registers, to determine if
1976 * the device is ATA or ATAPI.
1978 * LOCKING:
1979 * PCI/etc. bus probe sem.
1980 * Obtains host_set lock.
1982 * SIDE EFFECTS:
1983 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1986 void ata_bus_reset(struct ata_port *ap)
1988 struct ata_ioports *ioaddr = &ap->ioaddr;
1989 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1990 u8 err;
1991 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1993 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1995 /* determine if device 0/1 are present */
1996 if (ap->flags & ATA_FLAG_SATA_RESET)
1997 dev0 = 1;
1998 else {
1999 dev0 = ata_devchk(ap, 0);
2000 if (slave_possible)
2001 dev1 = ata_devchk(ap, 1);
2004 if (dev0)
2005 devmask |= (1 << 0);
2006 if (dev1)
2007 devmask |= (1 << 1);
2009 /* select device 0 again */
2010 ap->ops->dev_select(ap, 0);
2012 /* issue bus reset */
2013 if (ap->flags & ATA_FLAG_SRST)
2014 rc = ata_bus_softreset(ap, devmask);
2015 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2016 /* set up device control */
2017 if (ap->flags & ATA_FLAG_MMIO)
2018 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2019 else
2020 outb(ap->ctl, ioaddr->ctl_addr);
2021 rc = ata_bus_edd(ap);
2024 if (rc)
2025 goto err_out;
2028 * determine by signature whether we have ATA or ATAPI devices
2030 err = ata_dev_try_classify(ap, 0);
2031 if ((slave_possible) && (err != 0x81))
2032 ata_dev_try_classify(ap, 1);
2034 /* re-enable interrupts */
2035 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2036 ata_irq_on(ap);
2038 /* is double-select really necessary? */
2039 if (ap->device[1].class != ATA_DEV_NONE)
2040 ap->ops->dev_select(ap, 1);
2041 if (ap->device[0].class != ATA_DEV_NONE)
2042 ap->ops->dev_select(ap, 0);
2044 /* if no devices were detected, disable this port */
2045 if ((ap->device[0].class == ATA_DEV_NONE) &&
2046 (ap->device[1].class == ATA_DEV_NONE))
2047 goto err_out;
2049 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2050 /* set up device control for ATA_FLAG_SATA_RESET */
2051 if (ap->flags & ATA_FLAG_MMIO)
2052 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2053 else
2054 outb(ap->ctl, ioaddr->ctl_addr);
2057 DPRINTK("EXIT\n");
2058 return;
2060 err_out:
2061 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2062 ap->ops->port_disable(ap);
2064 DPRINTK("EXIT\n");
2067 static void ata_pr_blacklisted(const struct ata_port *ap,
2068 const struct ata_device *dev)
2070 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2071 ap->id, dev->devno);
2074 static const char * ata_dma_blacklist [] = {
2075 "WDC AC11000H",
2076 "WDC AC22100H",
2077 "WDC AC32500H",
2078 "WDC AC33100H",
2079 "WDC AC31600H",
2080 "WDC AC32100H",
2081 "WDC AC23200L",
2082 "Compaq CRD-8241B",
2083 "CRD-8400B",
2084 "CRD-8480B",
2085 "CRD-8482B",
2086 "CRD-84",
2087 "SanDisk SDP3B",
2088 "SanDisk SDP3B-64",
2089 "SANYO CD-ROM CRD",
2090 "HITACHI CDR-8",
2091 "HITACHI CDR-8335",
2092 "HITACHI CDR-8435",
2093 "Toshiba CD-ROM XM-6202B",
2094 "TOSHIBA CD-ROM XM-1702BC",
2095 "CD-532E-A",
2096 "E-IDE CD-ROM CR-840",
2097 "CD-ROM Drive/F5A",
2098 "WPI CDD-820",
2099 "SAMSUNG CD-ROM SC-148C",
2100 "SAMSUNG CD-ROM SC",
2101 "SanDisk SDP3B-64",
2102 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2103 "_NEC DV5800A",
2106 static int ata_dma_blacklisted(const struct ata_device *dev)
2108 unsigned char model_num[40];
2109 char *s;
2110 unsigned int len;
2111 int i;
2113 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2114 sizeof(model_num));
2115 s = &model_num[0];
2116 len = strnlen(s, sizeof(model_num));
2118 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2119 while ((len > 0) && (s[len - 1] == ' ')) {
2120 len--;
2121 s[len] = 0;
2124 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2125 if (!strncmp(ata_dma_blacklist[i], s, len))
2126 return 1;
2128 return 0;
2131 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2133 const struct ata_device *master, *slave;
2134 unsigned int mask;
2136 master = &ap->device[0];
2137 slave = &ap->device[1];
2139 assert (ata_dev_present(master) || ata_dev_present(slave));
2141 if (shift == ATA_SHIFT_UDMA) {
2142 mask = ap->udma_mask;
2143 if (ata_dev_present(master)) {
2144 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2145 if (ata_dma_blacklisted(master)) {
2146 mask = 0;
2147 ata_pr_blacklisted(ap, master);
2150 if (ata_dev_present(slave)) {
2151 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2152 if (ata_dma_blacklisted(slave)) {
2153 mask = 0;
2154 ata_pr_blacklisted(ap, slave);
2158 else if (shift == ATA_SHIFT_MWDMA) {
2159 mask = ap->mwdma_mask;
2160 if (ata_dev_present(master)) {
2161 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2162 if (ata_dma_blacklisted(master)) {
2163 mask = 0;
2164 ata_pr_blacklisted(ap, master);
2167 if (ata_dev_present(slave)) {
2168 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2169 if (ata_dma_blacklisted(slave)) {
2170 mask = 0;
2171 ata_pr_blacklisted(ap, slave);
2175 else if (shift == ATA_SHIFT_PIO) {
2176 mask = ap->pio_mask;
2177 if (ata_dev_present(master)) {
2178 /* spec doesn't return explicit support for
2179 * PIO0-2, so we fake it
2181 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2182 tmp_mode <<= 3;
2183 tmp_mode |= 0x7;
2184 mask &= tmp_mode;
2186 if (ata_dev_present(slave)) {
2187 /* spec doesn't return explicit support for
2188 * PIO0-2, so we fake it
2190 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2191 tmp_mode <<= 3;
2192 tmp_mode |= 0x7;
2193 mask &= tmp_mode;
2196 else {
2197 mask = 0xffffffff; /* shut up compiler warning */
2198 BUG();
2201 return mask;
2204 /* find greatest bit */
2205 static int fgb(u32 bitmap)
2207 unsigned int i;
2208 int x = -1;
2210 for (i = 0; i < 32; i++)
2211 if (bitmap & (1 << i))
2212 x = i;
2214 return x;
2218 * ata_choose_xfer_mode - attempt to find best transfer mode
2219 * @ap: Port for which an xfer mode will be selected
2220 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2221 * @xfer_shift_out: (output) bit shift that selects this mode
2223 * Based on host and device capabilities, determine the
2224 * maximum transfer mode that is amenable to all.
2226 * LOCKING:
2227 * PCI/etc. bus probe sem.
2229 * RETURNS:
2230 * Zero on success, negative on error.
2233 static int ata_choose_xfer_mode(const struct ata_port *ap,
2234 u8 *xfer_mode_out,
2235 unsigned int *xfer_shift_out)
2237 unsigned int mask, shift;
2238 int x, i;
2240 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2241 shift = xfer_mode_classes[i].shift;
2242 mask = ata_get_mode_mask(ap, shift);
2244 x = fgb(mask);
2245 if (x >= 0) {
2246 *xfer_mode_out = xfer_mode_classes[i].base + x;
2247 *xfer_shift_out = shift;
2248 return 0;
2252 return -1;
2256 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2257 * @ap: Port associated with device @dev
2258 * @dev: Device to which command will be sent
2260 * Issue SET FEATURES - XFER MODE command to device @dev
2261 * on port @ap.
2263 * LOCKING:
2264 * PCI/etc. bus probe sem.
2267 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2269 DECLARE_COMPLETION(wait);
2270 struct ata_queued_cmd *qc;
2271 int rc;
2272 unsigned long flags;
2274 /* set up set-features taskfile */
2275 DPRINTK("set features - xfer mode\n");
2277 qc = ata_qc_new_init(ap, dev);
2278 BUG_ON(qc == NULL);
2280 qc->tf.command = ATA_CMD_SET_FEATURES;
2281 qc->tf.feature = SETFEATURES_XFER;
2282 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2283 qc->tf.protocol = ATA_PROT_NODATA;
2284 qc->tf.nsect = dev->xfer_mode;
2286 qc->waiting = &wait;
2287 qc->complete_fn = ata_qc_complete_noop;
2289 spin_lock_irqsave(&ap->host_set->lock, flags);
2290 rc = ata_qc_issue(qc);
2291 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2293 if (rc)
2294 ata_port_disable(ap);
2295 else
2296 ata_qc_wait_err(qc, &wait);
2298 DPRINTK("EXIT\n");
2302 * ata_dev_reread_id - Reread the device identify device info
2303 * @ap: port where the device is
2304 * @dev: device to reread the identify device info
2306 * LOCKING:
2309 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2311 DECLARE_COMPLETION(wait);
2312 struct ata_queued_cmd *qc;
2313 unsigned long flags;
2314 int rc;
2316 qc = ata_qc_new_init(ap, dev);
2317 BUG_ON(qc == NULL);
2319 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2320 qc->dma_dir = DMA_FROM_DEVICE;
2322 if (dev->class == ATA_DEV_ATA) {
2323 qc->tf.command = ATA_CMD_ID_ATA;
2324 DPRINTK("do ATA identify\n");
2325 } else {
2326 qc->tf.command = ATA_CMD_ID_ATAPI;
2327 DPRINTK("do ATAPI identify\n");
2330 qc->tf.flags |= ATA_TFLAG_DEVICE;
2331 qc->tf.protocol = ATA_PROT_PIO;
2332 qc->nsect = 1;
2334 qc->waiting = &wait;
2335 qc->complete_fn = ata_qc_complete_noop;
2337 spin_lock_irqsave(&ap->host_set->lock, flags);
2338 rc = ata_qc_issue(qc);
2339 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2341 if (rc)
2342 goto err_out;
2344 ata_qc_wait_err(qc, &wait);
2346 swap_buf_le16(dev->id, ATA_ID_WORDS);
2348 ata_dump_id(dev);
2350 DPRINTK("EXIT\n");
2352 return;
2353 err_out:
2354 ata_port_disable(ap);
2358 * ata_dev_init_params - Issue INIT DEV PARAMS command
2359 * @ap: Port associated with device @dev
2360 * @dev: Device to which command will be sent
2362 * LOCKING:
2365 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2367 DECLARE_COMPLETION(wait);
2368 struct ata_queued_cmd *qc;
2369 int rc;
2370 unsigned long flags;
2371 u16 sectors = dev->id[6];
2372 u16 heads = dev->id[3];
2374 /* Number of sectors per track 1-255. Number of heads 1-16 */
2375 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2376 return;
2378 /* set up init dev params taskfile */
2379 DPRINTK("init dev params \n");
2381 qc = ata_qc_new_init(ap, dev);
2382 BUG_ON(qc == NULL);
2384 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2385 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2386 qc->tf.protocol = ATA_PROT_NODATA;
2387 qc->tf.nsect = sectors;
2388 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2390 qc->waiting = &wait;
2391 qc->complete_fn = ata_qc_complete_noop;
2393 spin_lock_irqsave(&ap->host_set->lock, flags);
2394 rc = ata_qc_issue(qc);
2395 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2397 if (rc)
2398 ata_port_disable(ap);
2399 else
2400 ata_qc_wait_err(qc, &wait);
2402 DPRINTK("EXIT\n");
2406 * ata_sg_clean - Unmap DMA memory associated with command
2407 * @qc: Command containing DMA memory to be released
2409 * Unmap all mapped DMA memory associated with this command.
2411 * LOCKING:
2412 * spin_lock_irqsave(host_set lock)
2415 static void ata_sg_clean(struct ata_queued_cmd *qc)
2417 struct ata_port *ap = qc->ap;
2418 struct scatterlist *sg = qc->__sg;
2419 int dir = qc->dma_dir;
2420 void *pad_buf = NULL;
2422 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2423 assert(sg != NULL);
2425 if (qc->flags & ATA_QCFLAG_SINGLE)
2426 assert(qc->n_elem == 1);
2428 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2430 /* if we padded the buffer out to 32-bit bound, and data
2431 * xfer direction is from-device, we must copy from the
2432 * pad buffer back into the supplied buffer
2434 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2435 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2437 if (qc->flags & ATA_QCFLAG_SG) {
2438 if (qc->n_elem)
2439 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2440 /* restore last sg */
2441 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2442 if (pad_buf) {
2443 struct scatterlist *psg = &qc->pad_sgent;
2444 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2445 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2446 kunmap_atomic(addr, KM_IRQ0);
2448 } else {
2449 if (sg_dma_len(&sg[0]) > 0)
2450 dma_unmap_single(ap->host_set->dev,
2451 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2452 dir);
2453 /* restore sg */
2454 sg->length += qc->pad_len;
2455 if (pad_buf)
2456 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2457 pad_buf, qc->pad_len);
2460 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2461 qc->__sg = NULL;
2465 * ata_fill_sg - Fill PCI IDE PRD table
2466 * @qc: Metadata associated with taskfile to be transferred
2468 * Fill PCI IDE PRD (scatter-gather) table with segments
2469 * associated with the current disk command.
2471 * LOCKING:
2472 * spin_lock_irqsave(host_set lock)
2475 static void ata_fill_sg(struct ata_queued_cmd *qc)
2477 struct ata_port *ap = qc->ap;
2478 struct scatterlist *sg;
2479 unsigned int idx;
2481 assert(qc->__sg != NULL);
2482 assert(qc->n_elem > 0);
2484 idx = 0;
2485 ata_for_each_sg(sg, qc) {
2486 u32 addr, offset;
2487 u32 sg_len, len;
2489 /* determine if physical DMA addr spans 64K boundary.
2490 * Note h/w doesn't support 64-bit, so we unconditionally
2491 * truncate dma_addr_t to u32.
2493 addr = (u32) sg_dma_address(sg);
2494 sg_len = sg_dma_len(sg);
2496 while (sg_len) {
2497 offset = addr & 0xffff;
2498 len = sg_len;
2499 if ((offset + sg_len) > 0x10000)
2500 len = 0x10000 - offset;
2502 ap->prd[idx].addr = cpu_to_le32(addr);
2503 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2504 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2506 idx++;
2507 sg_len -= len;
2508 addr += len;
2512 if (idx)
2513 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2516 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2517 * @qc: Metadata associated with taskfile to check
2519 * Allow low-level driver to filter ATA PACKET commands, returning
2520 * a status indicating whether or not it is OK to use DMA for the
2521 * supplied PACKET command.
2523 * LOCKING:
2524 * spin_lock_irqsave(host_set lock)
2526 * RETURNS: 0 when ATAPI DMA can be used
2527 * nonzero otherwise
2529 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2531 struct ata_port *ap = qc->ap;
2532 int rc = 0; /* Assume ATAPI DMA is OK by default */
2534 if (ap->ops->check_atapi_dma)
2535 rc = ap->ops->check_atapi_dma(qc);
2537 return rc;
2540 * ata_qc_prep - Prepare taskfile for submission
2541 * @qc: Metadata associated with taskfile to be prepared
2543 * Prepare ATA taskfile for submission.
2545 * LOCKING:
2546 * spin_lock_irqsave(host_set lock)
2548 void ata_qc_prep(struct ata_queued_cmd *qc)
2550 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2551 return;
2553 ata_fill_sg(qc);
2557 * ata_sg_init_one - Associate command with memory buffer
2558 * @qc: Command to be associated
2559 * @buf: Memory buffer
2560 * @buflen: Length of memory buffer, in bytes.
2562 * Initialize the data-related elements of queued_cmd @qc
2563 * to point to a single memory buffer, @buf of byte length @buflen.
2565 * LOCKING:
2566 * spin_lock_irqsave(host_set lock)
2569 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2571 struct scatterlist *sg;
2573 qc->flags |= ATA_QCFLAG_SINGLE;
2575 memset(&qc->sgent, 0, sizeof(qc->sgent));
2576 qc->__sg = &qc->sgent;
2577 qc->n_elem = 1;
2578 qc->orig_n_elem = 1;
2579 qc->buf_virt = buf;
2581 sg = qc->__sg;
2582 sg_init_one(sg, buf, buflen);
2586 * ata_sg_init - Associate command with scatter-gather table.
2587 * @qc: Command to be associated
2588 * @sg: Scatter-gather table.
2589 * @n_elem: Number of elements in s/g table.
2591 * Initialize the data-related elements of queued_cmd @qc
2592 * to point to a scatter-gather table @sg, containing @n_elem
2593 * elements.
2595 * LOCKING:
2596 * spin_lock_irqsave(host_set lock)
2599 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2600 unsigned int n_elem)
2602 qc->flags |= ATA_QCFLAG_SG;
2603 qc->__sg = sg;
2604 qc->n_elem = n_elem;
2605 qc->orig_n_elem = n_elem;
2609 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2610 * @qc: Command with memory buffer to be mapped.
2612 * DMA-map the memory buffer associated with queued_cmd @qc.
2614 * LOCKING:
2615 * spin_lock_irqsave(host_set lock)
2617 * RETURNS:
2618 * Zero on success, negative on error.
2621 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2623 struct ata_port *ap = qc->ap;
2624 int dir = qc->dma_dir;
2625 struct scatterlist *sg = qc->__sg;
2626 dma_addr_t dma_address;
2628 /* we must lengthen transfers to end on a 32-bit boundary */
2629 qc->pad_len = sg->length & 3;
2630 if (qc->pad_len) {
2631 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2632 struct scatterlist *psg = &qc->pad_sgent;
2634 assert(qc->dev->class == ATA_DEV_ATAPI);
2636 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2638 if (qc->tf.flags & ATA_TFLAG_WRITE)
2639 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2640 qc->pad_len);
2642 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2643 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2644 /* trim sg */
2645 sg->length -= qc->pad_len;
2647 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2648 sg->length, qc->pad_len);
2651 if (!sg->length) {
2652 sg_dma_address(sg) = 0;
2653 goto skip_map;
2656 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2657 sg->length, dir);
2658 if (dma_mapping_error(dma_address)) {
2659 /* restore sg */
2660 sg->length += qc->pad_len;
2661 return -1;
2664 sg_dma_address(sg) = dma_address;
2665 skip_map:
2666 sg_dma_len(sg) = sg->length;
2668 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2669 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2671 return 0;
2675 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2676 * @qc: Command with scatter-gather table to be mapped.
2678 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2680 * LOCKING:
2681 * spin_lock_irqsave(host_set lock)
2683 * RETURNS:
2684 * Zero on success, negative on error.
2688 static int ata_sg_setup(struct ata_queued_cmd *qc)
2690 struct ata_port *ap = qc->ap;
2691 struct scatterlist *sg = qc->__sg;
2692 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2693 int n_elem, pre_n_elem, dir, trim_sg = 0;
2695 VPRINTK("ENTER, ata%u\n", ap->id);
2696 assert(qc->flags & ATA_QCFLAG_SG);
2698 /* we must lengthen transfers to end on a 32-bit boundary */
2699 qc->pad_len = lsg->length & 3;
2700 if (qc->pad_len) {
2701 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2702 struct scatterlist *psg = &qc->pad_sgent;
2703 unsigned int offset;
2705 assert(qc->dev->class == ATA_DEV_ATAPI);
2707 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2710 * psg->page/offset are used to copy to-be-written
2711 * data in this function or read data in ata_sg_clean.
2713 offset = lsg->offset + lsg->length - qc->pad_len;
2714 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2715 psg->offset = offset_in_page(offset);
2717 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2718 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2719 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2720 kunmap_atomic(addr, KM_IRQ0);
2723 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2724 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2725 /* trim last sg */
2726 lsg->length -= qc->pad_len;
2727 if (lsg->length == 0)
2728 trim_sg = 1;
2730 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2731 qc->n_elem - 1, lsg->length, qc->pad_len);
2734 pre_n_elem = qc->n_elem;
2735 if (trim_sg && pre_n_elem)
2736 pre_n_elem--;
2738 if (!pre_n_elem) {
2739 n_elem = 0;
2740 goto skip_map;
2743 dir = qc->dma_dir;
2744 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2745 if (n_elem < 1) {
2746 /* restore last sg */
2747 lsg->length += qc->pad_len;
2748 return -1;
2751 DPRINTK("%d sg elements mapped\n", n_elem);
2753 skip_map:
2754 qc->n_elem = n_elem;
2756 return 0;
2760 * ata_poll_qc_complete - turn irq back on and finish qc
2761 * @qc: Command to complete
2762 * @err_mask: ATA status register content
2764 * LOCKING:
2765 * None. (grabs host lock)
2768 void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
2770 struct ata_port *ap = qc->ap;
2771 unsigned long flags;
2773 spin_lock_irqsave(&ap->host_set->lock, flags);
2774 ap->flags &= ~ATA_FLAG_NOINTR;
2775 ata_irq_on(ap);
2776 ata_qc_complete(qc, err_mask);
2777 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2781 * ata_pio_poll -
2782 * @ap: the target ata_port
2784 * LOCKING:
2785 * None. (executing in kernel thread context)
2787 * RETURNS:
2788 * timeout value to use
2791 static unsigned long ata_pio_poll(struct ata_port *ap)
2793 u8 status;
2794 unsigned int poll_state = HSM_ST_UNKNOWN;
2795 unsigned int reg_state = HSM_ST_UNKNOWN;
2797 switch (ap->hsm_task_state) {
2798 case HSM_ST:
2799 case HSM_ST_POLL:
2800 poll_state = HSM_ST_POLL;
2801 reg_state = HSM_ST;
2802 break;
2803 case HSM_ST_LAST:
2804 case HSM_ST_LAST_POLL:
2805 poll_state = HSM_ST_LAST_POLL;
2806 reg_state = HSM_ST_LAST;
2807 break;
2808 default:
2809 BUG();
2810 break;
2813 status = ata_chk_status(ap);
2814 if (status & ATA_BUSY) {
2815 if (time_after(jiffies, ap->pio_task_timeout)) {
2816 ap->hsm_task_state = HSM_ST_TMOUT;
2817 return 0;
2819 ap->hsm_task_state = poll_state;
2820 return ATA_SHORT_PAUSE;
2823 ap->hsm_task_state = reg_state;
2824 return 0;
2828 * ata_pio_complete - check if drive is busy or idle
2829 * @ap: the target ata_port
2831 * LOCKING:
2832 * None. (executing in kernel thread context)
2834 * RETURNS:
2835 * Non-zero if qc completed, zero otherwise.
2838 static int ata_pio_complete (struct ata_port *ap)
2840 struct ata_queued_cmd *qc;
2841 u8 drv_stat;
2844 * This is purely heuristic. This is a fast path. Sometimes when
2845 * we enter, BSY will be cleared in a chk-status or two. If not,
2846 * the drive is probably seeking or something. Snooze for a couple
2847 * msecs, then chk-status again. If still busy, fall back to
2848 * HSM_ST_POLL state.
2850 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2851 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2852 msleep(2);
2853 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2854 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2855 ap->hsm_task_state = HSM_ST_LAST_POLL;
2856 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2857 return 0;
2861 drv_stat = ata_wait_idle(ap);
2862 if (!ata_ok(drv_stat)) {
2863 ap->hsm_task_state = HSM_ST_ERR;
2864 return 0;
2867 qc = ata_qc_from_tag(ap, ap->active_tag);
2868 assert(qc != NULL);
2870 ap->hsm_task_state = HSM_ST_IDLE;
2872 ata_poll_qc_complete(qc, 0);
2874 /* another command may start at this point */
2876 return 1;
2881 * swap_buf_le16 - swap halves of 16-words in place
2882 * @buf: Buffer to swap
2883 * @buf_words: Number of 16-bit words in buffer.
2885 * Swap halves of 16-bit words if needed to convert from
2886 * little-endian byte order to native cpu byte order, or
2887 * vice-versa.
2889 * LOCKING:
2890 * Inherited from caller.
2892 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2894 #ifdef __BIG_ENDIAN
2895 unsigned int i;
2897 for (i = 0; i < buf_words; i++)
2898 buf[i] = le16_to_cpu(buf[i]);
2899 #endif /* __BIG_ENDIAN */
2903 * ata_mmio_data_xfer - Transfer data by MMIO
2904 * @ap: port to read/write
2905 * @buf: data buffer
2906 * @buflen: buffer length
2907 * @write_data: read/write
2909 * Transfer data from/to the device data register by MMIO.
2911 * LOCKING:
2912 * Inherited from caller.
2915 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2916 unsigned int buflen, int write_data)
2918 unsigned int i;
2919 unsigned int words = buflen >> 1;
2920 u16 *buf16 = (u16 *) buf;
2921 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2923 /* Transfer multiple of 2 bytes */
2924 if (write_data) {
2925 for (i = 0; i < words; i++)
2926 writew(le16_to_cpu(buf16[i]), mmio);
2927 } else {
2928 for (i = 0; i < words; i++)
2929 buf16[i] = cpu_to_le16(readw(mmio));
2932 /* Transfer trailing 1 byte, if any. */
2933 if (unlikely(buflen & 0x01)) {
2934 u16 align_buf[1] = { 0 };
2935 unsigned char *trailing_buf = buf + buflen - 1;
2937 if (write_data) {
2938 memcpy(align_buf, trailing_buf, 1);
2939 writew(le16_to_cpu(align_buf[0]), mmio);
2940 } else {
2941 align_buf[0] = cpu_to_le16(readw(mmio));
2942 memcpy(trailing_buf, align_buf, 1);
2948 * ata_pio_data_xfer - Transfer data by PIO
2949 * @ap: port to read/write
2950 * @buf: data buffer
2951 * @buflen: buffer length
2952 * @write_data: read/write
2954 * Transfer data from/to the device data register by PIO.
2956 * LOCKING:
2957 * Inherited from caller.
2960 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2961 unsigned int buflen, int write_data)
2963 unsigned int words = buflen >> 1;
2965 /* Transfer multiple of 2 bytes */
2966 if (write_data)
2967 outsw(ap->ioaddr.data_addr, buf, words);
2968 else
2969 insw(ap->ioaddr.data_addr, buf, words);
2971 /* Transfer trailing 1 byte, if any. */
2972 if (unlikely(buflen & 0x01)) {
2973 u16 align_buf[1] = { 0 };
2974 unsigned char *trailing_buf = buf + buflen - 1;
2976 if (write_data) {
2977 memcpy(align_buf, trailing_buf, 1);
2978 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2979 } else {
2980 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2981 memcpy(trailing_buf, align_buf, 1);
2987 * ata_data_xfer - Transfer data from/to the data register.
2988 * @ap: port to read/write
2989 * @buf: data buffer
2990 * @buflen: buffer length
2991 * @do_write: read/write
2993 * Transfer data from/to the device data register.
2995 * LOCKING:
2996 * Inherited from caller.
2999 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3000 unsigned int buflen, int do_write)
3002 if (ap->flags & ATA_FLAG_MMIO)
3003 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3004 else
3005 ata_pio_data_xfer(ap, buf, buflen, do_write);
3009 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3010 * @qc: Command on going
3012 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3014 * LOCKING:
3015 * Inherited from caller.
3018 static void ata_pio_sector(struct ata_queued_cmd *qc)
3020 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3021 struct scatterlist *sg = qc->__sg;
3022 struct ata_port *ap = qc->ap;
3023 struct page *page;
3024 unsigned int offset;
3025 unsigned char *buf;
3027 if (qc->cursect == (qc->nsect - 1))
3028 ap->hsm_task_state = HSM_ST_LAST;
3030 page = sg[qc->cursg].page;
3031 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3033 /* get the current page and offset */
3034 page = nth_page(page, (offset >> PAGE_SHIFT));
3035 offset %= PAGE_SIZE;
3037 buf = kmap(page) + offset;
3039 qc->cursect++;
3040 qc->cursg_ofs++;
3042 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3043 qc->cursg++;
3044 qc->cursg_ofs = 0;
3047 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3049 /* do the actual data transfer */
3050 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3051 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3053 kunmap(page);
3057 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3058 * @qc: Command on going
3059 * @bytes: number of bytes
3061 * Transfer Transfer data from/to the ATAPI device.
3063 * LOCKING:
3064 * Inherited from caller.
3068 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3070 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3071 struct scatterlist *sg = qc->__sg;
3072 struct ata_port *ap = qc->ap;
3073 struct page *page;
3074 unsigned char *buf;
3075 unsigned int offset, count;
3077 if (qc->curbytes + bytes >= qc->nbytes)
3078 ap->hsm_task_state = HSM_ST_LAST;
3080 next_sg:
3081 if (unlikely(qc->cursg >= qc->n_elem)) {
3083 * The end of qc->sg is reached and the device expects
3084 * more data to transfer. In order not to overrun qc->sg
3085 * and fulfill length specified in the byte count register,
3086 * - for read case, discard trailing data from the device
3087 * - for write case, padding zero data to the device
3089 u16 pad_buf[1] = { 0 };
3090 unsigned int words = bytes >> 1;
3091 unsigned int i;
3093 if (words) /* warning if bytes > 1 */
3094 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3095 ap->id, bytes);
3097 for (i = 0; i < words; i++)
3098 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3100 ap->hsm_task_state = HSM_ST_LAST;
3101 return;
3104 sg = &qc->__sg[qc->cursg];
3106 page = sg->page;
3107 offset = sg->offset + qc->cursg_ofs;
3109 /* get the current page and offset */
3110 page = nth_page(page, (offset >> PAGE_SHIFT));
3111 offset %= PAGE_SIZE;
3113 /* don't overrun current sg */
3114 count = min(sg->length - qc->cursg_ofs, bytes);
3116 /* don't cross page boundaries */
3117 count = min(count, (unsigned int)PAGE_SIZE - offset);
3119 buf = kmap(page) + offset;
3121 bytes -= count;
3122 qc->curbytes += count;
3123 qc->cursg_ofs += count;
3125 if (qc->cursg_ofs == sg->length) {
3126 qc->cursg++;
3127 qc->cursg_ofs = 0;
3130 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3132 /* do the actual data transfer */
3133 ata_data_xfer(ap, buf, count, do_write);
3135 kunmap(page);
3137 if (bytes)
3138 goto next_sg;
3142 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3143 * @qc: Command on going
3145 * Transfer Transfer data from/to the ATAPI device.
3147 * LOCKING:
3148 * Inherited from caller.
3151 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3153 struct ata_port *ap = qc->ap;
3154 struct ata_device *dev = qc->dev;
3155 unsigned int ireason, bc_lo, bc_hi, bytes;
3156 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3158 ap->ops->tf_read(ap, &qc->tf);
3159 ireason = qc->tf.nsect;
3160 bc_lo = qc->tf.lbam;
3161 bc_hi = qc->tf.lbah;
3162 bytes = (bc_hi << 8) | bc_lo;
3164 /* shall be cleared to zero, indicating xfer of data */
3165 if (ireason & (1 << 0))
3166 goto err_out;
3168 /* make sure transfer direction matches expected */
3169 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3170 if (do_write != i_write)
3171 goto err_out;
3173 __atapi_pio_bytes(qc, bytes);
3175 return;
3177 err_out:
3178 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3179 ap->id, dev->devno);
3180 ap->hsm_task_state = HSM_ST_ERR;
3184 * ata_pio_block - start PIO on a block
3185 * @ap: the target ata_port
3187 * LOCKING:
3188 * None. (executing in kernel thread context)
3191 static void ata_pio_block(struct ata_port *ap)
3193 struct ata_queued_cmd *qc;
3194 u8 status;
3197 * This is purely heuristic. This is a fast path.
3198 * Sometimes when we enter, BSY will be cleared in
3199 * a chk-status or two. If not, the drive is probably seeking
3200 * or something. Snooze for a couple msecs, then
3201 * chk-status again. If still busy, fall back to
3202 * HSM_ST_POLL state.
3204 status = ata_busy_wait(ap, ATA_BUSY, 5);
3205 if (status & ATA_BUSY) {
3206 msleep(2);
3207 status = ata_busy_wait(ap, ATA_BUSY, 10);
3208 if (status & ATA_BUSY) {
3209 ap->hsm_task_state = HSM_ST_POLL;
3210 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3211 return;
3215 qc = ata_qc_from_tag(ap, ap->active_tag);
3216 assert(qc != NULL);
3218 if (is_atapi_taskfile(&qc->tf)) {
3219 /* no more data to transfer or unsupported ATAPI command */
3220 if ((status & ATA_DRQ) == 0) {
3221 ap->hsm_task_state = HSM_ST_LAST;
3222 return;
3225 atapi_pio_bytes(qc);
3226 } else {
3227 /* handle BSY=0, DRQ=0 as error */
3228 if ((status & ATA_DRQ) == 0) {
3229 ap->hsm_task_state = HSM_ST_ERR;
3230 return;
3233 ata_pio_sector(qc);
3237 static void ata_pio_error(struct ata_port *ap)
3239 struct ata_queued_cmd *qc;
3241 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3243 qc = ata_qc_from_tag(ap, ap->active_tag);
3244 assert(qc != NULL);
3246 ap->hsm_task_state = HSM_ST_IDLE;
3248 ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
3251 static void ata_pio_task(void *_data)
3253 struct ata_port *ap = _data;
3254 unsigned long timeout;
3255 int qc_completed;
3257 fsm_start:
3258 timeout = 0;
3259 qc_completed = 0;
3261 switch (ap->hsm_task_state) {
3262 case HSM_ST_IDLE:
3263 return;
3265 case HSM_ST:
3266 ata_pio_block(ap);
3267 break;
3269 case HSM_ST_LAST:
3270 qc_completed = ata_pio_complete(ap);
3271 break;
3273 case HSM_ST_POLL:
3274 case HSM_ST_LAST_POLL:
3275 timeout = ata_pio_poll(ap);
3276 break;
3278 case HSM_ST_TMOUT:
3279 case HSM_ST_ERR:
3280 ata_pio_error(ap);
3281 return;
3284 if (timeout)
3285 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3286 else if (!qc_completed)
3287 goto fsm_start;
3291 * ata_qc_timeout - Handle timeout of queued command
3292 * @qc: Command that timed out
3294 * Some part of the kernel (currently, only the SCSI layer)
3295 * has noticed that the active command on port @ap has not
3296 * completed after a specified length of time. Handle this
3297 * condition by disabling DMA (if necessary) and completing
3298 * transactions, with error if necessary.
3300 * This also handles the case of the "lost interrupt", where
3301 * for some reason (possibly hardware bug, possibly driver bug)
3302 * an interrupt was not delivered to the driver, even though the
3303 * transaction completed successfully.
3305 * LOCKING:
3306 * Inherited from SCSI layer (none, can sleep)
3309 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3311 struct ata_port *ap = qc->ap;
3312 struct ata_host_set *host_set = ap->host_set;
3313 u8 host_stat = 0, drv_stat;
3314 unsigned long flags;
3316 DPRINTK("ENTER\n");
3318 spin_lock_irqsave(&host_set->lock, flags);
3320 /* hack alert! We cannot use the supplied completion
3321 * function from inside the ->eh_strategy_handler() thread.
3322 * libata is the only user of ->eh_strategy_handler() in
3323 * any kernel, so the default scsi_done() assumes it is
3324 * not being called from the SCSI EH.
3326 qc->scsidone = scsi_finish_command;
3328 switch (qc->tf.protocol) {
3330 case ATA_PROT_DMA:
3331 case ATA_PROT_ATAPI_DMA:
3332 host_stat = ap->ops->bmdma_status(ap);
3334 /* before we do anything else, clear DMA-Start bit */
3335 ap->ops->bmdma_stop(qc);
3337 /* fall through */
3339 default:
3340 ata_altstatus(ap);
3341 drv_stat = ata_chk_status(ap);
3343 /* ack bmdma irq events */
3344 ap->ops->irq_clear(ap);
3346 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3347 ap->id, qc->tf.command, drv_stat, host_stat);
3349 /* complete taskfile transaction */
3350 ata_qc_complete(qc, ac_err_mask(drv_stat));
3351 break;
3354 spin_unlock_irqrestore(&host_set->lock, flags);
3356 DPRINTK("EXIT\n");
3360 * ata_eng_timeout - Handle timeout of queued command
3361 * @ap: Port on which timed-out command is active
3363 * Some part of the kernel (currently, only the SCSI layer)
3364 * has noticed that the active command on port @ap has not
3365 * completed after a specified length of time. Handle this
3366 * condition by disabling DMA (if necessary) and completing
3367 * transactions, with error if necessary.
3369 * This also handles the case of the "lost interrupt", where
3370 * for some reason (possibly hardware bug, possibly driver bug)
3371 * an interrupt was not delivered to the driver, even though the
3372 * transaction completed successfully.
3374 * LOCKING:
3375 * Inherited from SCSI layer (none, can sleep)
3378 void ata_eng_timeout(struct ata_port *ap)
3380 struct ata_queued_cmd *qc;
3382 DPRINTK("ENTER\n");
3384 qc = ata_qc_from_tag(ap, ap->active_tag);
3385 if (qc)
3386 ata_qc_timeout(qc);
3387 else {
3388 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3389 ap->id);
3390 goto out;
3393 out:
3394 DPRINTK("EXIT\n");
3398 * ata_qc_new - Request an available ATA command, for queueing
3399 * @ap: Port associated with device @dev
3400 * @dev: Device from whom we request an available command structure
3402 * LOCKING:
3403 * None.
3406 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3408 struct ata_queued_cmd *qc = NULL;
3409 unsigned int i;
3411 for (i = 0; i < ATA_MAX_QUEUE; i++)
3412 if (!test_and_set_bit(i, &ap->qactive)) {
3413 qc = ata_qc_from_tag(ap, i);
3414 break;
3417 if (qc)
3418 qc->tag = i;
3420 return qc;
3424 * ata_qc_new_init - Request an available ATA command, and initialize it
3425 * @ap: Port associated with device @dev
3426 * @dev: Device from whom we request an available command structure
3428 * LOCKING:
3429 * None.
3432 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3433 struct ata_device *dev)
3435 struct ata_queued_cmd *qc;
3437 qc = ata_qc_new(ap);
3438 if (qc) {
3439 qc->scsicmd = NULL;
3440 qc->ap = ap;
3441 qc->dev = dev;
3443 ata_qc_reinit(qc);
3446 return qc;
3449 int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask)
3451 return 0;
3454 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3456 struct ata_port *ap = qc->ap;
3457 unsigned int tag, do_clear = 0;
3459 qc->flags = 0;
3460 tag = qc->tag;
3461 if (likely(ata_tag_valid(tag))) {
3462 if (tag == ap->active_tag)
3463 ap->active_tag = ATA_TAG_POISON;
3464 qc->tag = ATA_TAG_POISON;
3465 do_clear = 1;
3468 if (qc->waiting) {
3469 struct completion *waiting = qc->waiting;
3470 qc->waiting = NULL;
3471 complete(waiting);
3474 if (likely(do_clear))
3475 clear_bit(tag, &ap->qactive);
3479 * ata_qc_free - free unused ata_queued_cmd
3480 * @qc: Command to complete
3482 * Designed to free unused ata_queued_cmd object
3483 * in case something prevents using it.
3485 * LOCKING:
3486 * spin_lock_irqsave(host_set lock)
3488 void ata_qc_free(struct ata_queued_cmd *qc)
3490 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3491 assert(qc->waiting == NULL); /* nothing should be waiting */
3493 __ata_qc_complete(qc);
3497 * ata_qc_complete - Complete an active ATA command
3498 * @qc: Command to complete
3499 * @err_mask: ATA Status register contents
3501 * Indicate to the mid and upper layers that an ATA
3502 * command has completed, with either an ok or not-ok status.
3504 * LOCKING:
3505 * spin_lock_irqsave(host_set lock)
3508 void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
3510 int rc;
3512 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3513 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3515 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3516 ata_sg_clean(qc);
3518 /* atapi: mark qc as inactive to prevent the interrupt handler
3519 * from completing the command twice later, before the error handler
3520 * is called. (when rc != 0 and atapi request sense is needed)
3522 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3524 /* call completion callback */
3525 rc = qc->complete_fn(qc, err_mask);
3527 /* if callback indicates not to complete command (non-zero),
3528 * return immediately
3530 if (rc != 0)
3531 return;
3533 __ata_qc_complete(qc);
3535 VPRINTK("EXIT\n");
3538 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3540 struct ata_port *ap = qc->ap;
3542 switch (qc->tf.protocol) {
3543 case ATA_PROT_DMA:
3544 case ATA_PROT_ATAPI_DMA:
3545 return 1;
3547 case ATA_PROT_ATAPI:
3548 case ATA_PROT_PIO:
3549 case ATA_PROT_PIO_MULT:
3550 if (ap->flags & ATA_FLAG_PIO_DMA)
3551 return 1;
3553 /* fall through */
3555 default:
3556 return 0;
3559 /* never reached */
3563 * ata_qc_issue - issue taskfile to device
3564 * @qc: command to issue to device
3566 * Prepare an ATA command to submission to device.
3567 * This includes mapping the data into a DMA-able
3568 * area, filling in the S/G table, and finally
3569 * writing the taskfile to hardware, starting the command.
3571 * LOCKING:
3572 * spin_lock_irqsave(host_set lock)
3574 * RETURNS:
3575 * Zero on success, negative on error.
3578 int ata_qc_issue(struct ata_queued_cmd *qc)
3580 struct ata_port *ap = qc->ap;
3582 if (ata_should_dma_map(qc)) {
3583 if (qc->flags & ATA_QCFLAG_SG) {
3584 if (ata_sg_setup(qc))
3585 goto err_out;
3586 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3587 if (ata_sg_setup_one(qc))
3588 goto err_out;
3590 } else {
3591 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3594 ap->ops->qc_prep(qc);
3596 qc->ap->active_tag = qc->tag;
3597 qc->flags |= ATA_QCFLAG_ACTIVE;
3599 return ap->ops->qc_issue(qc);
3601 err_out:
3602 return -1;
3607 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3608 * @qc: command to issue to device
3610 * Using various libata functions and hooks, this function
3611 * starts an ATA command. ATA commands are grouped into
3612 * classes called "protocols", and issuing each type of protocol
3613 * is slightly different.
3615 * May be used as the qc_issue() entry in ata_port_operations.
3617 * LOCKING:
3618 * spin_lock_irqsave(host_set lock)
3620 * RETURNS:
3621 * Zero on success, negative on error.
3624 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3626 struct ata_port *ap = qc->ap;
3628 ata_dev_select(ap, qc->dev->devno, 1, 0);
3630 switch (qc->tf.protocol) {
3631 case ATA_PROT_NODATA:
3632 ata_tf_to_host(ap, &qc->tf);
3633 break;
3635 case ATA_PROT_DMA:
3636 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3637 ap->ops->bmdma_setup(qc); /* set up bmdma */
3638 ap->ops->bmdma_start(qc); /* initiate bmdma */
3639 break;
3641 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3642 ata_qc_set_polling(qc);
3643 ata_tf_to_host(ap, &qc->tf);
3644 ap->hsm_task_state = HSM_ST;
3645 queue_work(ata_wq, &ap->pio_task);
3646 break;
3648 case ATA_PROT_ATAPI:
3649 ata_qc_set_polling(qc);
3650 ata_tf_to_host(ap, &qc->tf);
3651 queue_work(ata_wq, &ap->packet_task);
3652 break;
3654 case ATA_PROT_ATAPI_NODATA:
3655 ap->flags |= ATA_FLAG_NOINTR;
3656 ata_tf_to_host(ap, &qc->tf);
3657 queue_work(ata_wq, &ap->packet_task);
3658 break;
3660 case ATA_PROT_ATAPI_DMA:
3661 ap->flags |= ATA_FLAG_NOINTR;
3662 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3663 ap->ops->bmdma_setup(qc); /* set up bmdma */
3664 queue_work(ata_wq, &ap->packet_task);
3665 break;
3667 default:
3668 WARN_ON(1);
3669 return -1;
3672 return 0;
3676 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3677 * @qc: Info associated with this ATA transaction.
3679 * LOCKING:
3680 * spin_lock_irqsave(host_set lock)
3683 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3685 struct ata_port *ap = qc->ap;
3686 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3687 u8 dmactl;
3688 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3690 /* load PRD table addr. */
3691 mb(); /* make sure PRD table writes are visible to controller */
3692 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3694 /* specify data direction, triple-check start bit is clear */
3695 dmactl = readb(mmio + ATA_DMA_CMD);
3696 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3697 if (!rw)
3698 dmactl |= ATA_DMA_WR;
3699 writeb(dmactl, mmio + ATA_DMA_CMD);
3701 /* issue r/w command */
3702 ap->ops->exec_command(ap, &qc->tf);
3706 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3707 * @qc: Info associated with this ATA transaction.
3709 * LOCKING:
3710 * spin_lock_irqsave(host_set lock)
3713 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3715 struct ata_port *ap = qc->ap;
3716 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3717 u8 dmactl;
3719 /* start host DMA transaction */
3720 dmactl = readb(mmio + ATA_DMA_CMD);
3721 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3723 /* Strictly, one may wish to issue a readb() here, to
3724 * flush the mmio write. However, control also passes
3725 * to the hardware at this point, and it will interrupt
3726 * us when we are to resume control. So, in effect,
3727 * we don't care when the mmio write flushes.
3728 * Further, a read of the DMA status register _immediately_
3729 * following the write may not be what certain flaky hardware
3730 * is expected, so I think it is best to not add a readb()
3731 * without first all the MMIO ATA cards/mobos.
3732 * Or maybe I'm just being paranoid.
3737 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3738 * @qc: Info associated with this ATA transaction.
3740 * LOCKING:
3741 * spin_lock_irqsave(host_set lock)
3744 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3746 struct ata_port *ap = qc->ap;
3747 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3748 u8 dmactl;
3750 /* load PRD table addr. */
3751 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3753 /* specify data direction, triple-check start bit is clear */
3754 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3755 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3756 if (!rw)
3757 dmactl |= ATA_DMA_WR;
3758 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3760 /* issue r/w command */
3761 ap->ops->exec_command(ap, &qc->tf);
3765 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3766 * @qc: Info associated with this ATA transaction.
3768 * LOCKING:
3769 * spin_lock_irqsave(host_set lock)
3772 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3774 struct ata_port *ap = qc->ap;
3775 u8 dmactl;
3777 /* start host DMA transaction */
3778 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3779 outb(dmactl | ATA_DMA_START,
3780 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3785 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3786 * @qc: Info associated with this ATA transaction.
3788 * Writes the ATA_DMA_START flag to the DMA command register.
3790 * May be used as the bmdma_start() entry in ata_port_operations.
3792 * LOCKING:
3793 * spin_lock_irqsave(host_set lock)
3795 void ata_bmdma_start(struct ata_queued_cmd *qc)
3797 if (qc->ap->flags & ATA_FLAG_MMIO)
3798 ata_bmdma_start_mmio(qc);
3799 else
3800 ata_bmdma_start_pio(qc);
3805 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3806 * @qc: Info associated with this ATA transaction.
3808 * Writes address of PRD table to device's PRD Table Address
3809 * register, sets the DMA control register, and calls
3810 * ops->exec_command() to start the transfer.
3812 * May be used as the bmdma_setup() entry in ata_port_operations.
3814 * LOCKING:
3815 * spin_lock_irqsave(host_set lock)
3817 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3819 if (qc->ap->flags & ATA_FLAG_MMIO)
3820 ata_bmdma_setup_mmio(qc);
3821 else
3822 ata_bmdma_setup_pio(qc);
3827 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3828 * @ap: Port associated with this ATA transaction.
3830 * Clear interrupt and error flags in DMA status register.
3832 * May be used as the irq_clear() entry in ata_port_operations.
3834 * LOCKING:
3835 * spin_lock_irqsave(host_set lock)
3838 void ata_bmdma_irq_clear(struct ata_port *ap)
3840 if (ap->flags & ATA_FLAG_MMIO) {
3841 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3842 writeb(readb(mmio), mmio);
3843 } else {
3844 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3845 outb(inb(addr), addr);
3852 * ata_bmdma_status - Read PCI IDE BMDMA status
3853 * @ap: Port associated with this ATA transaction.
3855 * Read and return BMDMA status register.
3857 * May be used as the bmdma_status() entry in ata_port_operations.
3859 * LOCKING:
3860 * spin_lock_irqsave(host_set lock)
3863 u8 ata_bmdma_status(struct ata_port *ap)
3865 u8 host_stat;
3866 if (ap->flags & ATA_FLAG_MMIO) {
3867 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3868 host_stat = readb(mmio + ATA_DMA_STATUS);
3869 } else
3870 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3871 return host_stat;
3876 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3877 * @qc: Command we are ending DMA for
3879 * Clears the ATA_DMA_START flag in the dma control register
3881 * May be used as the bmdma_stop() entry in ata_port_operations.
3883 * LOCKING:
3884 * spin_lock_irqsave(host_set lock)
3887 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3889 struct ata_port *ap = qc->ap;
3890 if (ap->flags & ATA_FLAG_MMIO) {
3891 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3893 /* clear start/stop bit */
3894 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3895 mmio + ATA_DMA_CMD);
3896 } else {
3897 /* clear start/stop bit */
3898 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3899 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3902 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3903 ata_altstatus(ap); /* dummy read */
3907 * ata_host_intr - Handle host interrupt for given (port, task)
3908 * @ap: Port on which interrupt arrived (possibly...)
3909 * @qc: Taskfile currently active in engine
3911 * Handle host interrupt for given queued command. Currently,
3912 * only DMA interrupts are handled. All other commands are
3913 * handled via polling with interrupts disabled (nIEN bit).
3915 * LOCKING:
3916 * spin_lock_irqsave(host_set lock)
3918 * RETURNS:
3919 * One if interrupt was handled, zero if not (shared irq).
3922 inline unsigned int ata_host_intr (struct ata_port *ap,
3923 struct ata_queued_cmd *qc)
3925 u8 status, host_stat;
3927 switch (qc->tf.protocol) {
3929 case ATA_PROT_DMA:
3930 case ATA_PROT_ATAPI_DMA:
3931 case ATA_PROT_ATAPI:
3932 /* check status of DMA engine */
3933 host_stat = ap->ops->bmdma_status(ap);
3934 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3936 /* if it's not our irq... */
3937 if (!(host_stat & ATA_DMA_INTR))
3938 goto idle_irq;
3940 /* before we do anything else, clear DMA-Start bit */
3941 ap->ops->bmdma_stop(qc);
3943 /* fall through */
3945 case ATA_PROT_ATAPI_NODATA:
3946 case ATA_PROT_NODATA:
3947 /* check altstatus */
3948 status = ata_altstatus(ap);
3949 if (status & ATA_BUSY)
3950 goto idle_irq;
3952 /* check main status, clearing INTRQ */
3953 status = ata_chk_status(ap);
3954 if (unlikely(status & ATA_BUSY))
3955 goto idle_irq;
3956 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3957 ap->id, qc->tf.protocol, status);
3959 /* ack bmdma irq events */
3960 ap->ops->irq_clear(ap);
3962 /* complete taskfile transaction */
3963 ata_qc_complete(qc, ac_err_mask(status));
3964 break;
3966 default:
3967 goto idle_irq;
3970 return 1; /* irq handled */
3972 idle_irq:
3973 ap->stats.idle_irq++;
3975 #ifdef ATA_IRQ_TRAP
3976 if ((ap->stats.idle_irq % 1000) == 0) {
3977 handled = 1;
3978 ata_irq_ack(ap, 0); /* debug trap */
3979 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3981 #endif
3982 return 0; /* irq not handled */
3986 * ata_interrupt - Default ATA host interrupt handler
3987 * @irq: irq line (unused)
3988 * @dev_instance: pointer to our ata_host_set information structure
3989 * @regs: unused
3991 * Default interrupt handler for PCI IDE devices. Calls
3992 * ata_host_intr() for each port that is not disabled.
3994 * LOCKING:
3995 * Obtains host_set lock during operation.
3997 * RETURNS:
3998 * IRQ_NONE or IRQ_HANDLED.
4001 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4003 struct ata_host_set *host_set = dev_instance;
4004 unsigned int i;
4005 unsigned int handled = 0;
4006 unsigned long flags;
4008 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4009 spin_lock_irqsave(&host_set->lock, flags);
4011 for (i = 0; i < host_set->n_ports; i++) {
4012 struct ata_port *ap;
4014 ap = host_set->ports[i];
4015 if (ap &&
4016 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4017 struct ata_queued_cmd *qc;
4019 qc = ata_qc_from_tag(ap, ap->active_tag);
4020 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4021 (qc->flags & ATA_QCFLAG_ACTIVE))
4022 handled |= ata_host_intr(ap, qc);
4026 spin_unlock_irqrestore(&host_set->lock, flags);
4028 return IRQ_RETVAL(handled);
4032 * atapi_packet_task - Write CDB bytes to hardware
4033 * @_data: Port to which ATAPI device is attached.
4035 * When device has indicated its readiness to accept
4036 * a CDB, this function is called. Send the CDB.
4037 * If DMA is to be performed, exit immediately.
4038 * Otherwise, we are in polling mode, so poll
4039 * status under operation succeeds or fails.
4041 * LOCKING:
4042 * Kernel thread context (may sleep)
4045 static void atapi_packet_task(void *_data)
4047 struct ata_port *ap = _data;
4048 struct ata_queued_cmd *qc;
4049 u8 status;
4051 qc = ata_qc_from_tag(ap, ap->active_tag);
4052 assert(qc != NULL);
4053 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4055 /* sleep-wait for BSY to clear */
4056 DPRINTK("busy wait\n");
4057 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
4058 goto err_out_status;
4060 /* make sure DRQ is set */
4061 status = ata_chk_status(ap);
4062 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
4063 goto err_out;
4065 /* send SCSI cdb */
4066 DPRINTK("send cdb\n");
4067 assert(ap->cdb_len >= 12);
4069 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4070 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4071 unsigned long flags;
4073 /* Once we're done issuing command and kicking bmdma,
4074 * irq handler takes over. To not lose irq, we need
4075 * to clear NOINTR flag before sending cdb, but
4076 * interrupt handler shouldn't be invoked before we're
4077 * finished. Hence, the following locking.
4079 spin_lock_irqsave(&ap->host_set->lock, flags);
4080 ap->flags &= ~ATA_FLAG_NOINTR;
4081 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4082 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4083 ap->ops->bmdma_start(qc); /* initiate bmdma */
4084 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4085 } else {
4086 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4088 /* PIO commands are handled by polling */
4089 ap->hsm_task_state = HSM_ST;
4090 queue_work(ata_wq, &ap->pio_task);
4093 return;
4095 err_out_status:
4096 status = ata_chk_status(ap);
4097 err_out:
4098 ata_poll_qc_complete(qc, __ac_err_mask(status));
4103 * ata_port_start - Set port up for dma.
4104 * @ap: Port to initialize
4106 * Called just after data structures for each port are
4107 * initialized. Allocates space for PRD table.
4109 * May be used as the port_start() entry in ata_port_operations.
4111 * LOCKING:
4112 * Inherited from caller.
4115 int ata_port_start (struct ata_port *ap)
4117 struct device *dev = ap->host_set->dev;
4118 int rc;
4120 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4121 if (!ap->prd)
4122 return -ENOMEM;
4124 rc = ata_pad_alloc(ap, dev);
4125 if (rc) {
4126 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4127 return rc;
4130 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4132 return 0;
4137 * ata_port_stop - Undo ata_port_start()
4138 * @ap: Port to shut down
4140 * Frees the PRD table.
4142 * May be used as the port_stop() entry in ata_port_operations.
4144 * LOCKING:
4145 * Inherited from caller.
4148 void ata_port_stop (struct ata_port *ap)
4150 struct device *dev = ap->host_set->dev;
4152 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4153 ata_pad_free(ap, dev);
4156 void ata_host_stop (struct ata_host_set *host_set)
4158 if (host_set->mmio_base)
4159 iounmap(host_set->mmio_base);
4164 * ata_host_remove - Unregister SCSI host structure with upper layers
4165 * @ap: Port to unregister
4166 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4168 * LOCKING:
4169 * Inherited from caller.
4172 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4174 struct Scsi_Host *sh = ap->host;
4176 DPRINTK("ENTER\n");
4178 if (do_unregister)
4179 scsi_remove_host(sh);
4181 ap->ops->port_stop(ap);
4185 * ata_host_init - Initialize an ata_port structure
4186 * @ap: Structure to initialize
4187 * @host: associated SCSI mid-layer structure
4188 * @host_set: Collection of hosts to which @ap belongs
4189 * @ent: Probe information provided by low-level driver
4190 * @port_no: Port number associated with this ata_port
4192 * Initialize a new ata_port structure, and its associated
4193 * scsi_host.
4195 * LOCKING:
4196 * Inherited from caller.
4199 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4200 struct ata_host_set *host_set,
4201 const struct ata_probe_ent *ent, unsigned int port_no)
4203 unsigned int i;
4205 host->max_id = 16;
4206 host->max_lun = 1;
4207 host->max_channel = 1;
4208 host->unique_id = ata_unique_id++;
4209 host->max_cmd_len = 12;
4211 ap->flags = ATA_FLAG_PORT_DISABLED;
4212 ap->id = host->unique_id;
4213 ap->host = host;
4214 ap->ctl = ATA_DEVCTL_OBS;
4215 ap->host_set = host_set;
4216 ap->port_no = port_no;
4217 ap->hard_port_no =
4218 ent->legacy_mode ? ent->hard_port_no : port_no;
4219 ap->pio_mask = ent->pio_mask;
4220 ap->mwdma_mask = ent->mwdma_mask;
4221 ap->udma_mask = ent->udma_mask;
4222 ap->flags |= ent->host_flags;
4223 ap->ops = ent->port_ops;
4224 ap->cbl = ATA_CBL_NONE;
4225 ap->active_tag = ATA_TAG_POISON;
4226 ap->last_ctl = 0xFF;
4228 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4229 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4231 for (i = 0; i < ATA_MAX_DEVICES; i++)
4232 ap->device[i].devno = i;
4234 #ifdef ATA_IRQ_TRAP
4235 ap->stats.unhandled_irq = 1;
4236 ap->stats.idle_irq = 1;
4237 #endif
4239 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4243 * ata_host_add - Attach low-level ATA driver to system
4244 * @ent: Information provided by low-level driver
4245 * @host_set: Collections of ports to which we add
4246 * @port_no: Port number associated with this host
4248 * Attach low-level ATA driver to system.
4250 * LOCKING:
4251 * PCI/etc. bus probe sem.
4253 * RETURNS:
4254 * New ata_port on success, for NULL on error.
4257 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4258 struct ata_host_set *host_set,
4259 unsigned int port_no)
4261 struct Scsi_Host *host;
4262 struct ata_port *ap;
4263 int rc;
4265 DPRINTK("ENTER\n");
4266 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4267 if (!host)
4268 return NULL;
4270 ap = (struct ata_port *) &host->hostdata[0];
4272 ata_host_init(ap, host, host_set, ent, port_no);
4274 rc = ap->ops->port_start(ap);
4275 if (rc)
4276 goto err_out;
4278 return ap;
4280 err_out:
4281 scsi_host_put(host);
4282 return NULL;
4286 * ata_device_add - Register hardware device with ATA and SCSI layers
4287 * @ent: Probe information describing hardware device to be registered
4289 * This function processes the information provided in the probe
4290 * information struct @ent, allocates the necessary ATA and SCSI
4291 * host information structures, initializes them, and registers
4292 * everything with requisite kernel subsystems.
4294 * This function requests irqs, probes the ATA bus, and probes
4295 * the SCSI bus.
4297 * LOCKING:
4298 * PCI/etc. bus probe sem.
4300 * RETURNS:
4301 * Number of ports registered. Zero on error (no ports registered).
4304 int ata_device_add(const struct ata_probe_ent *ent)
4306 unsigned int count = 0, i;
4307 struct device *dev = ent->dev;
4308 struct ata_host_set *host_set;
4310 DPRINTK("ENTER\n");
4311 /* alloc a container for our list of ATA ports (buses) */
4312 host_set = kzalloc(sizeof(struct ata_host_set) +
4313 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4314 if (!host_set)
4315 return 0;
4316 spin_lock_init(&host_set->lock);
4318 host_set->dev = dev;
4319 host_set->n_ports = ent->n_ports;
4320 host_set->irq = ent->irq;
4321 host_set->mmio_base = ent->mmio_base;
4322 host_set->private_data = ent->private_data;
4323 host_set->ops = ent->port_ops;
4325 /* register each port bound to this device */
4326 for (i = 0; i < ent->n_ports; i++) {
4327 struct ata_port *ap;
4328 unsigned long xfer_mode_mask;
4330 ap = ata_host_add(ent, host_set, i);
4331 if (!ap)
4332 goto err_out;
4334 host_set->ports[i] = ap;
4335 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4336 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4337 (ap->pio_mask << ATA_SHIFT_PIO);
4339 /* print per-port info to dmesg */
4340 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4341 "bmdma 0x%lX irq %lu\n",
4342 ap->id,
4343 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4344 ata_mode_string(xfer_mode_mask),
4345 ap->ioaddr.cmd_addr,
4346 ap->ioaddr.ctl_addr,
4347 ap->ioaddr.bmdma_addr,
4348 ent->irq);
4350 ata_chk_status(ap);
4351 host_set->ops->irq_clear(ap);
4352 count++;
4355 if (!count)
4356 goto err_free_ret;
4358 /* obtain irq, that is shared between channels */
4359 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4360 DRV_NAME, host_set))
4361 goto err_out;
4363 /* perform each probe synchronously */
4364 DPRINTK("probe begin\n");
4365 for (i = 0; i < count; i++) {
4366 struct ata_port *ap;
4367 int rc;
4369 ap = host_set->ports[i];
4371 DPRINTK("ata%u: probe begin\n", ap->id);
4372 rc = ata_bus_probe(ap);
4373 DPRINTK("ata%u: probe end\n", ap->id);
4375 if (rc) {
4376 /* FIXME: do something useful here?
4377 * Current libata behavior will
4378 * tear down everything when
4379 * the module is removed
4380 * or the h/w is unplugged.
4384 rc = scsi_add_host(ap->host, dev);
4385 if (rc) {
4386 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4387 ap->id);
4388 /* FIXME: do something useful here */
4389 /* FIXME: handle unconditional calls to
4390 * scsi_scan_host and ata_host_remove, below,
4391 * at the very least
4396 /* probes are done, now scan each port's disk(s) */
4397 DPRINTK("probe begin\n");
4398 for (i = 0; i < count; i++) {
4399 struct ata_port *ap = host_set->ports[i];
4401 ata_scsi_scan_host(ap);
4404 dev_set_drvdata(dev, host_set);
4406 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4407 return ent->n_ports; /* success */
4409 err_out:
4410 for (i = 0; i < count; i++) {
4411 ata_host_remove(host_set->ports[i], 1);
4412 scsi_host_put(host_set->ports[i]->host);
4414 err_free_ret:
4415 kfree(host_set);
4416 VPRINTK("EXIT, returning 0\n");
4417 return 0;
4421 * ata_host_set_remove - PCI layer callback for device removal
4422 * @host_set: ATA host set that was removed
4424 * Unregister all objects associated with this host set. Free those
4425 * objects.
4427 * LOCKING:
4428 * Inherited from calling layer (may sleep).
4431 void ata_host_set_remove(struct ata_host_set *host_set)
4433 struct ata_port *ap;
4434 unsigned int i;
4436 for (i = 0; i < host_set->n_ports; i++) {
4437 ap = host_set->ports[i];
4438 scsi_remove_host(ap->host);
4441 free_irq(host_set->irq, host_set);
4443 for (i = 0; i < host_set->n_ports; i++) {
4444 ap = host_set->ports[i];
4446 ata_scsi_release(ap->host);
4448 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4449 struct ata_ioports *ioaddr = &ap->ioaddr;
4451 if (ioaddr->cmd_addr == 0x1f0)
4452 release_region(0x1f0, 8);
4453 else if (ioaddr->cmd_addr == 0x170)
4454 release_region(0x170, 8);
4457 scsi_host_put(ap->host);
4460 if (host_set->ops->host_stop)
4461 host_set->ops->host_stop(host_set);
4463 kfree(host_set);
4467 * ata_scsi_release - SCSI layer callback hook for host unload
4468 * @host: libata host to be unloaded
4470 * Performs all duties necessary to shut down a libata port...
4471 * Kill port kthread, disable port, and release resources.
4473 * LOCKING:
4474 * Inherited from SCSI layer.
4476 * RETURNS:
4477 * One.
4480 int ata_scsi_release(struct Scsi_Host *host)
4482 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4484 DPRINTK("ENTER\n");
4486 ap->ops->port_disable(ap);
4487 ata_host_remove(ap, 0);
4489 DPRINTK("EXIT\n");
4490 return 1;
4494 * ata_std_ports - initialize ioaddr with standard port offsets.
4495 * @ioaddr: IO address structure to be initialized
4497 * Utility function which initializes data_addr, error_addr,
4498 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4499 * device_addr, status_addr, and command_addr to standard offsets
4500 * relative to cmd_addr.
4502 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4505 void ata_std_ports(struct ata_ioports *ioaddr)
4507 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4508 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4509 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4510 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4511 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4512 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4513 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4514 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4515 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4516 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4519 static struct ata_probe_ent *
4520 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4522 struct ata_probe_ent *probe_ent;
4524 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4525 if (!probe_ent) {
4526 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4527 kobject_name(&(dev->kobj)));
4528 return NULL;
4531 INIT_LIST_HEAD(&probe_ent->node);
4532 probe_ent->dev = dev;
4534 probe_ent->sht = port->sht;
4535 probe_ent->host_flags = port->host_flags;
4536 probe_ent->pio_mask = port->pio_mask;
4537 probe_ent->mwdma_mask = port->mwdma_mask;
4538 probe_ent->udma_mask = port->udma_mask;
4539 probe_ent->port_ops = port->port_ops;
4541 return probe_ent;
4546 #ifdef CONFIG_PCI
4548 void ata_pci_host_stop (struct ata_host_set *host_set)
4550 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4552 pci_iounmap(pdev, host_set->mmio_base);
4556 * ata_pci_init_native_mode - Initialize native-mode driver
4557 * @pdev: pci device to be initialized
4558 * @port: array[2] of pointers to port info structures.
4559 * @ports: bitmap of ports present
4561 * Utility function which allocates and initializes an
4562 * ata_probe_ent structure for a standard dual-port
4563 * PIO-based IDE controller. The returned ata_probe_ent
4564 * structure can be passed to ata_device_add(). The returned
4565 * ata_probe_ent structure should then be freed with kfree().
4567 * The caller need only pass the address of the primary port, the
4568 * secondary will be deduced automatically. If the device has non
4569 * standard secondary port mappings this function can be called twice,
4570 * once for each interface.
4573 struct ata_probe_ent *
4574 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4576 struct ata_probe_ent *probe_ent =
4577 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4578 int p = 0;
4580 if (!probe_ent)
4581 return NULL;
4583 probe_ent->irq = pdev->irq;
4584 probe_ent->irq_flags = SA_SHIRQ;
4585 probe_ent->private_data = port[0]->private_data;
4587 if (ports & ATA_PORT_PRIMARY) {
4588 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4589 probe_ent->port[p].altstatus_addr =
4590 probe_ent->port[p].ctl_addr =
4591 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4592 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4593 ata_std_ports(&probe_ent->port[p]);
4594 p++;
4597 if (ports & ATA_PORT_SECONDARY) {
4598 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4599 probe_ent->port[p].altstatus_addr =
4600 probe_ent->port[p].ctl_addr =
4601 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4602 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4603 ata_std_ports(&probe_ent->port[p]);
4604 p++;
4607 probe_ent->n_ports = p;
4608 return probe_ent;
4611 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4613 struct ata_probe_ent *probe_ent;
4615 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4616 if (!probe_ent)
4617 return NULL;
4619 probe_ent->legacy_mode = 1;
4620 probe_ent->n_ports = 1;
4621 probe_ent->hard_port_no = port_num;
4622 probe_ent->private_data = port->private_data;
4624 switch(port_num)
4626 case 0:
4627 probe_ent->irq = 14;
4628 probe_ent->port[0].cmd_addr = 0x1f0;
4629 probe_ent->port[0].altstatus_addr =
4630 probe_ent->port[0].ctl_addr = 0x3f6;
4631 break;
4632 case 1:
4633 probe_ent->irq = 15;
4634 probe_ent->port[0].cmd_addr = 0x170;
4635 probe_ent->port[0].altstatus_addr =
4636 probe_ent->port[0].ctl_addr = 0x376;
4637 break;
4639 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4640 ata_std_ports(&probe_ent->port[0]);
4641 return probe_ent;
4645 * ata_pci_init_one - Initialize/register PCI IDE host controller
4646 * @pdev: Controller to be initialized
4647 * @port_info: Information from low-level host driver
4648 * @n_ports: Number of ports attached to host controller
4650 * This is a helper function which can be called from a driver's
4651 * xxx_init_one() probe function if the hardware uses traditional
4652 * IDE taskfile registers.
4654 * This function calls pci_enable_device(), reserves its register
4655 * regions, sets the dma mask, enables bus master mode, and calls
4656 * ata_device_add()
4658 * LOCKING:
4659 * Inherited from PCI layer (may sleep).
4661 * RETURNS:
4662 * Zero on success, negative on errno-based value on error.
4665 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4666 unsigned int n_ports)
4668 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4669 struct ata_port_info *port[2];
4670 u8 tmp8, mask;
4671 unsigned int legacy_mode = 0;
4672 int disable_dev_on_err = 1;
4673 int rc;
4675 DPRINTK("ENTER\n");
4677 port[0] = port_info[0];
4678 if (n_ports > 1)
4679 port[1] = port_info[1];
4680 else
4681 port[1] = port[0];
4683 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4684 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4685 /* TODO: What if one channel is in native mode ... */
4686 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4687 mask = (1 << 2) | (1 << 0);
4688 if ((tmp8 & mask) != mask)
4689 legacy_mode = (1 << 3);
4692 /* FIXME... */
4693 if ((!legacy_mode) && (n_ports > 2)) {
4694 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4695 n_ports = 2;
4696 /* For now */
4699 /* FIXME: Really for ATA it isn't safe because the device may be
4700 multi-purpose and we want to leave it alone if it was already
4701 enabled. Secondly for shared use as Arjan says we want refcounting
4703 Checking dev->is_enabled is insufficient as this is not set at
4704 boot for the primary video which is BIOS enabled
4707 rc = pci_enable_device(pdev);
4708 if (rc)
4709 return rc;
4711 rc = pci_request_regions(pdev, DRV_NAME);
4712 if (rc) {
4713 disable_dev_on_err = 0;
4714 goto err_out;
4717 /* FIXME: Should use platform specific mappers for legacy port ranges */
4718 if (legacy_mode) {
4719 if (!request_region(0x1f0, 8, "libata")) {
4720 struct resource *conflict, res;
4721 res.start = 0x1f0;
4722 res.end = 0x1f0 + 8 - 1;
4723 conflict = ____request_resource(&ioport_resource, &res);
4724 if (!strcmp(conflict->name, "libata"))
4725 legacy_mode |= (1 << 0);
4726 else {
4727 disable_dev_on_err = 0;
4728 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4730 } else
4731 legacy_mode |= (1 << 0);
4733 if (!request_region(0x170, 8, "libata")) {
4734 struct resource *conflict, res;
4735 res.start = 0x170;
4736 res.end = 0x170 + 8 - 1;
4737 conflict = ____request_resource(&ioport_resource, &res);
4738 if (!strcmp(conflict->name, "libata"))
4739 legacy_mode |= (1 << 1);
4740 else {
4741 disable_dev_on_err = 0;
4742 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4744 } else
4745 legacy_mode |= (1 << 1);
4748 /* we have legacy mode, but all ports are unavailable */
4749 if (legacy_mode == (1 << 3)) {
4750 rc = -EBUSY;
4751 goto err_out_regions;
4754 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4755 if (rc)
4756 goto err_out_regions;
4757 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4758 if (rc)
4759 goto err_out_regions;
4761 if (legacy_mode) {
4762 if (legacy_mode & (1 << 0))
4763 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4764 if (legacy_mode & (1 << 1))
4765 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4766 } else {
4767 if (n_ports == 2)
4768 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4769 else
4770 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4772 if (!probe_ent && !probe_ent2) {
4773 rc = -ENOMEM;
4774 goto err_out_regions;
4777 pci_set_master(pdev);
4779 /* FIXME: check ata_device_add return */
4780 if (legacy_mode) {
4781 if (legacy_mode & (1 << 0))
4782 ata_device_add(probe_ent);
4783 if (legacy_mode & (1 << 1))
4784 ata_device_add(probe_ent2);
4785 } else
4786 ata_device_add(probe_ent);
4788 kfree(probe_ent);
4789 kfree(probe_ent2);
4791 return 0;
4793 err_out_regions:
4794 if (legacy_mode & (1 << 0))
4795 release_region(0x1f0, 8);
4796 if (legacy_mode & (1 << 1))
4797 release_region(0x170, 8);
4798 pci_release_regions(pdev);
4799 err_out:
4800 if (disable_dev_on_err)
4801 pci_disable_device(pdev);
4802 return rc;
4806 * ata_pci_remove_one - PCI layer callback for device removal
4807 * @pdev: PCI device that was removed
4809 * PCI layer indicates to libata via this hook that
4810 * hot-unplug or module unload event has occurred.
4811 * Handle this by unregistering all objects associated
4812 * with this PCI device. Free those objects. Then finally
4813 * release PCI resources and disable device.
4815 * LOCKING:
4816 * Inherited from PCI layer (may sleep).
4819 void ata_pci_remove_one (struct pci_dev *pdev)
4821 struct device *dev = pci_dev_to_dev(pdev);
4822 struct ata_host_set *host_set = dev_get_drvdata(dev);
4824 ata_host_set_remove(host_set);
4825 pci_release_regions(pdev);
4826 pci_disable_device(pdev);
4827 dev_set_drvdata(dev, NULL);
4830 /* move to PCI subsystem */
4831 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4833 unsigned long tmp = 0;
4835 switch (bits->width) {
4836 case 1: {
4837 u8 tmp8 = 0;
4838 pci_read_config_byte(pdev, bits->reg, &tmp8);
4839 tmp = tmp8;
4840 break;
4842 case 2: {
4843 u16 tmp16 = 0;
4844 pci_read_config_word(pdev, bits->reg, &tmp16);
4845 tmp = tmp16;
4846 break;
4848 case 4: {
4849 u32 tmp32 = 0;
4850 pci_read_config_dword(pdev, bits->reg, &tmp32);
4851 tmp = tmp32;
4852 break;
4855 default:
4856 return -EINVAL;
4859 tmp &= bits->mask;
4861 return (tmp == bits->val) ? 1 : 0;
4863 #endif /* CONFIG_PCI */
4866 static int __init ata_init(void)
4868 ata_wq = create_workqueue("ata");
4869 if (!ata_wq)
4870 return -ENOMEM;
4872 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4873 return 0;
4876 static void __exit ata_exit(void)
4878 destroy_workqueue(ata_wq);
4881 module_init(ata_init);
4882 module_exit(ata_exit);
4884 static unsigned long ratelimit_time;
4885 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4887 int ata_ratelimit(void)
4889 int rc;
4890 unsigned long flags;
4892 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4894 if (time_after(jiffies, ratelimit_time)) {
4895 rc = 1;
4896 ratelimit_time = jiffies + (HZ/5);
4897 } else
4898 rc = 0;
4900 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4902 return rc;
4906 * libata is essentially a library of internal helper functions for
4907 * low-level ATA host controller drivers. As such, the API/ABI is
4908 * likely to change as new drivers are added and updated.
4909 * Do not depend on ABI/API stability.
4912 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4913 EXPORT_SYMBOL_GPL(ata_std_ports);
4914 EXPORT_SYMBOL_GPL(ata_device_add);
4915 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4916 EXPORT_SYMBOL_GPL(ata_sg_init);
4917 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4918 EXPORT_SYMBOL_GPL(ata_qc_complete);
4919 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4920 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4921 EXPORT_SYMBOL_GPL(ata_tf_load);
4922 EXPORT_SYMBOL_GPL(ata_tf_read);
4923 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4924 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4925 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4926 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4927 EXPORT_SYMBOL_GPL(ata_check_status);
4928 EXPORT_SYMBOL_GPL(ata_altstatus);
4929 EXPORT_SYMBOL_GPL(ata_exec_command);
4930 EXPORT_SYMBOL_GPL(ata_port_start);
4931 EXPORT_SYMBOL_GPL(ata_port_stop);
4932 EXPORT_SYMBOL_GPL(ata_host_stop);
4933 EXPORT_SYMBOL_GPL(ata_interrupt);
4934 EXPORT_SYMBOL_GPL(ata_qc_prep);
4935 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4936 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4937 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4938 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4939 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4940 EXPORT_SYMBOL_GPL(ata_port_probe);
4941 EXPORT_SYMBOL_GPL(sata_phy_reset);
4942 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4943 EXPORT_SYMBOL_GPL(ata_bus_reset);
4944 EXPORT_SYMBOL_GPL(ata_port_disable);
4945 EXPORT_SYMBOL_GPL(ata_ratelimit);
4946 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4948 EXPORT_SYMBOL_GPL(ata_scsi_error);
4949 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4950 EXPORT_SYMBOL_GPL(ata_scsi_release);
4951 EXPORT_SYMBOL_GPL(ata_host_intr);
4952 EXPORT_SYMBOL_GPL(ata_dev_classify);
4953 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4954 EXPORT_SYMBOL_GPL(ata_dev_config);
4955 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4957 EXPORT_SYMBOL_GPL(ata_timing_compute);
4958 EXPORT_SYMBOL_GPL(ata_timing_merge);
4960 #ifdef CONFIG_PCI
4961 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4962 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4963 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4964 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4965 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4966 #endif /* CONFIG_PCI */