[PATCH] w1: new family structure.
[linux-2.6/verdex.git] / fs / bio.c
blob3a1472acc361ef0e95f03843cac07f5b92f23e61
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static kmem_cache_t *bio_slab;
33 #define BIOVEC_NR_POOLS 6
36 * a small number of entries is fine, not going to be performance critical.
37 * basically we just need to survive
39 #define BIO_SPLIT_ENTRIES 8
40 mempool_t *bio_split_pool;
42 struct biovec_slab {
43 int nr_vecs;
44 char *name;
45 kmem_cache_t *slab;
49 * if you change this list, also change bvec_alloc or things will
50 * break badly! cannot be bigger than what you can fit into an
51 * unsigned short
54 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
55 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] = {
56 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
58 #undef BV
61 * bio_set is used to allow other portions of the IO system to
62 * allocate their own private memory pools for bio and iovec structures.
63 * These memory pools in turn all allocate from the bio_slab
64 * and the bvec_slabs[].
66 struct bio_set {
67 mempool_t *bio_pool;
68 mempool_t *bvec_pools[BIOVEC_NR_POOLS];
72 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
73 * IO code that does not need private memory pools.
75 static struct bio_set *fs_bio_set;
77 static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
79 struct bio_vec *bvl;
80 struct biovec_slab *bp;
83 * see comment near bvec_array define!
85 switch (nr) {
86 case 1 : *idx = 0; break;
87 case 2 ... 4: *idx = 1; break;
88 case 5 ... 16: *idx = 2; break;
89 case 17 ... 64: *idx = 3; break;
90 case 65 ... 128: *idx = 4; break;
91 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
92 default:
93 return NULL;
96 * idx now points to the pool we want to allocate from
99 bp = bvec_slabs + *idx;
100 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
101 if (bvl)
102 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
104 return bvl;
108 * default destructor for a bio allocated with bio_alloc_bioset()
110 static void bio_destructor(struct bio *bio)
112 const int pool_idx = BIO_POOL_IDX(bio);
113 struct bio_set *bs = bio->bi_set;
115 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
117 mempool_free(bio->bi_io_vec, bs->bvec_pools[pool_idx]);
118 mempool_free(bio, bs->bio_pool);
121 inline void bio_init(struct bio *bio)
123 bio->bi_next = NULL;
124 bio->bi_flags = 1 << BIO_UPTODATE;
125 bio->bi_rw = 0;
126 bio->bi_vcnt = 0;
127 bio->bi_idx = 0;
128 bio->bi_phys_segments = 0;
129 bio->bi_hw_segments = 0;
130 bio->bi_hw_front_size = 0;
131 bio->bi_hw_back_size = 0;
132 bio->bi_size = 0;
133 bio->bi_max_vecs = 0;
134 bio->bi_end_io = NULL;
135 atomic_set(&bio->bi_cnt, 1);
136 bio->bi_private = NULL;
140 * bio_alloc_bioset - allocate a bio for I/O
141 * @gfp_mask: the GFP_ mask given to the slab allocator
142 * @nr_iovecs: number of iovecs to pre-allocate
143 * @bs: the bio_set to allocate from
145 * Description:
146 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
147 * If %__GFP_WAIT is set then we will block on the internal pool waiting
148 * for a &struct bio to become free.
150 * allocate bio and iovecs from the memory pools specified by the
151 * bio_set structure.
153 struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs)
155 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
157 if (likely(bio)) {
158 struct bio_vec *bvl = NULL;
160 bio_init(bio);
161 if (likely(nr_iovecs)) {
162 unsigned long idx;
164 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
165 if (unlikely(!bvl)) {
166 mempool_free(bio, bs->bio_pool);
167 bio = NULL;
168 goto out;
170 bio->bi_flags |= idx << BIO_POOL_OFFSET;
171 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
173 bio->bi_io_vec = bvl;
174 bio->bi_destructor = bio_destructor;
175 bio->bi_set = bs;
177 out:
178 return bio;
181 struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs)
183 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
186 void zero_fill_bio(struct bio *bio)
188 unsigned long flags;
189 struct bio_vec *bv;
190 int i;
192 bio_for_each_segment(bv, bio, i) {
193 char *data = bvec_kmap_irq(bv, &flags);
194 memset(data, 0, bv->bv_len);
195 flush_dcache_page(bv->bv_page);
196 bvec_kunmap_irq(data, &flags);
199 EXPORT_SYMBOL(zero_fill_bio);
202 * bio_put - release a reference to a bio
203 * @bio: bio to release reference to
205 * Description:
206 * Put a reference to a &struct bio, either one you have gotten with
207 * bio_alloc or bio_get. The last put of a bio will free it.
209 void bio_put(struct bio *bio)
211 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
214 * last put frees it
216 if (atomic_dec_and_test(&bio->bi_cnt)) {
217 bio->bi_next = NULL;
218 bio->bi_destructor(bio);
222 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
224 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
225 blk_recount_segments(q, bio);
227 return bio->bi_phys_segments;
230 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
232 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
233 blk_recount_segments(q, bio);
235 return bio->bi_hw_segments;
239 * __bio_clone - clone a bio
240 * @bio: destination bio
241 * @bio_src: bio to clone
243 * Clone a &bio. Caller will own the returned bio, but not
244 * the actual data it points to. Reference count of returned
245 * bio will be one.
247 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
249 request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
251 memcpy(bio->bi_io_vec, bio_src->bi_io_vec, bio_src->bi_max_vecs * sizeof(struct bio_vec));
253 bio->bi_sector = bio_src->bi_sector;
254 bio->bi_bdev = bio_src->bi_bdev;
255 bio->bi_flags |= 1 << BIO_CLONED;
256 bio->bi_rw = bio_src->bi_rw;
259 * notes -- maybe just leave bi_idx alone. assume identical mapping
260 * for the clone
262 bio->bi_vcnt = bio_src->bi_vcnt;
263 bio->bi_size = bio_src->bi_size;
264 bio_phys_segments(q, bio);
265 bio_hw_segments(q, bio);
269 * bio_clone - clone a bio
270 * @bio: bio to clone
271 * @gfp_mask: allocation priority
273 * Like __bio_clone, only also allocates the returned bio
275 struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask)
277 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
279 if (b)
280 __bio_clone(b, bio);
282 return b;
286 * bio_get_nr_vecs - return approx number of vecs
287 * @bdev: I/O target
289 * Return the approximate number of pages we can send to this target.
290 * There's no guarantee that you will be able to fit this number of pages
291 * into a bio, it does not account for dynamic restrictions that vary
292 * on offset.
294 int bio_get_nr_vecs(struct block_device *bdev)
296 request_queue_t *q = bdev_get_queue(bdev);
297 int nr_pages;
299 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
300 if (nr_pages > q->max_phys_segments)
301 nr_pages = q->max_phys_segments;
302 if (nr_pages > q->max_hw_segments)
303 nr_pages = q->max_hw_segments;
305 return nr_pages;
308 static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
309 *page, unsigned int len, unsigned int offset)
311 int retried_segments = 0;
312 struct bio_vec *bvec;
315 * cloned bio must not modify vec list
317 if (unlikely(bio_flagged(bio, BIO_CLONED)))
318 return 0;
320 if (bio->bi_vcnt >= bio->bi_max_vecs)
321 return 0;
323 if (((bio->bi_size + len) >> 9) > q->max_sectors)
324 return 0;
327 * we might lose a segment or two here, but rather that than
328 * make this too complex.
331 while (bio->bi_phys_segments >= q->max_phys_segments
332 || bio->bi_hw_segments >= q->max_hw_segments
333 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
335 if (retried_segments)
336 return 0;
338 retried_segments = 1;
339 blk_recount_segments(q, bio);
343 * setup the new entry, we might clear it again later if we
344 * cannot add the page
346 bvec = &bio->bi_io_vec[bio->bi_vcnt];
347 bvec->bv_page = page;
348 bvec->bv_len = len;
349 bvec->bv_offset = offset;
352 * if queue has other restrictions (eg varying max sector size
353 * depending on offset), it can specify a merge_bvec_fn in the
354 * queue to get further control
356 if (q->merge_bvec_fn) {
358 * merge_bvec_fn() returns number of bytes it can accept
359 * at this offset
361 if (q->merge_bvec_fn(q, bio, bvec) < len) {
362 bvec->bv_page = NULL;
363 bvec->bv_len = 0;
364 bvec->bv_offset = 0;
365 return 0;
369 /* If we may be able to merge these biovecs, force a recount */
370 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
371 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
372 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
374 bio->bi_vcnt++;
375 bio->bi_phys_segments++;
376 bio->bi_hw_segments++;
377 bio->bi_size += len;
378 return len;
382 * bio_add_page - attempt to add page to bio
383 * @bio: destination bio
384 * @page: page to add
385 * @len: vec entry length
386 * @offset: vec entry offset
388 * Attempt to add a page to the bio_vec maplist. This can fail for a
389 * number of reasons, such as the bio being full or target block
390 * device limitations. The target block device must allow bio's
391 * smaller than PAGE_SIZE, so it is always possible to add a single
392 * page to an empty bio.
394 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
395 unsigned int offset)
397 return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
398 len, offset);
401 struct bio_map_data {
402 struct bio_vec *iovecs;
403 void __user *userptr;
406 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
408 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
409 bio->bi_private = bmd;
412 static void bio_free_map_data(struct bio_map_data *bmd)
414 kfree(bmd->iovecs);
415 kfree(bmd);
418 static struct bio_map_data *bio_alloc_map_data(int nr_segs)
420 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
422 if (!bmd)
423 return NULL;
425 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
426 if (bmd->iovecs)
427 return bmd;
429 kfree(bmd);
430 return NULL;
434 * bio_uncopy_user - finish previously mapped bio
435 * @bio: bio being terminated
437 * Free pages allocated from bio_copy_user() and write back data
438 * to user space in case of a read.
440 int bio_uncopy_user(struct bio *bio)
442 struct bio_map_data *bmd = bio->bi_private;
443 const int read = bio_data_dir(bio) == READ;
444 struct bio_vec *bvec;
445 int i, ret = 0;
447 __bio_for_each_segment(bvec, bio, i, 0) {
448 char *addr = page_address(bvec->bv_page);
449 unsigned int len = bmd->iovecs[i].bv_len;
451 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
452 ret = -EFAULT;
454 __free_page(bvec->bv_page);
455 bmd->userptr += len;
457 bio_free_map_data(bmd);
458 bio_put(bio);
459 return ret;
463 * bio_copy_user - copy user data to bio
464 * @q: destination block queue
465 * @uaddr: start of user address
466 * @len: length in bytes
467 * @write_to_vm: bool indicating writing to pages or not
469 * Prepares and returns a bio for indirect user io, bouncing data
470 * to/from kernel pages as necessary. Must be paired with
471 * call bio_uncopy_user() on io completion.
473 struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
474 unsigned int len, int write_to_vm)
476 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
477 unsigned long start = uaddr >> PAGE_SHIFT;
478 struct bio_map_data *bmd;
479 struct bio_vec *bvec;
480 struct page *page;
481 struct bio *bio;
482 int i, ret;
484 bmd = bio_alloc_map_data(end - start);
485 if (!bmd)
486 return ERR_PTR(-ENOMEM);
488 bmd->userptr = (void __user *) uaddr;
490 ret = -ENOMEM;
491 bio = bio_alloc(GFP_KERNEL, end - start);
492 if (!bio)
493 goto out_bmd;
495 bio->bi_rw |= (!write_to_vm << BIO_RW);
497 ret = 0;
498 while (len) {
499 unsigned int bytes = PAGE_SIZE;
501 if (bytes > len)
502 bytes = len;
504 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
505 if (!page) {
506 ret = -ENOMEM;
507 break;
510 if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
511 ret = -EINVAL;
512 break;
515 len -= bytes;
518 if (ret)
519 goto cleanup;
522 * success
524 if (!write_to_vm) {
525 char __user *p = (char __user *) uaddr;
528 * for a write, copy in data to kernel pages
530 ret = -EFAULT;
531 bio_for_each_segment(bvec, bio, i) {
532 char *addr = page_address(bvec->bv_page);
534 if (copy_from_user(addr, p, bvec->bv_len))
535 goto cleanup;
536 p += bvec->bv_len;
540 bio_set_map_data(bmd, bio);
541 return bio;
542 cleanup:
543 bio_for_each_segment(bvec, bio, i)
544 __free_page(bvec->bv_page);
546 bio_put(bio);
547 out_bmd:
548 bio_free_map_data(bmd);
549 return ERR_PTR(ret);
552 static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
553 unsigned long uaddr, unsigned int len,
554 int write_to_vm)
556 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
557 unsigned long start = uaddr >> PAGE_SHIFT;
558 const int nr_pages = end - start;
559 int ret, offset, i;
560 struct page **pages;
561 struct bio *bio;
564 * transfer and buffer must be aligned to at least hardsector
565 * size for now, in the future we can relax this restriction
567 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
568 return ERR_PTR(-EINVAL);
570 bio = bio_alloc(GFP_KERNEL, nr_pages);
571 if (!bio)
572 return ERR_PTR(-ENOMEM);
574 ret = -ENOMEM;
575 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
576 if (!pages)
577 goto out;
579 down_read(&current->mm->mmap_sem);
580 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
581 write_to_vm, 0, pages, NULL);
582 up_read(&current->mm->mmap_sem);
584 if (ret < nr_pages)
585 goto out;
587 bio->bi_bdev = bdev;
589 offset = uaddr & ~PAGE_MASK;
590 for (i = 0; i < nr_pages; i++) {
591 unsigned int bytes = PAGE_SIZE - offset;
593 if (len <= 0)
594 break;
596 if (bytes > len)
597 bytes = len;
600 * sorry...
602 if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
603 break;
605 len -= bytes;
606 offset = 0;
610 * release the pages we didn't map into the bio, if any
612 while (i < nr_pages)
613 page_cache_release(pages[i++]);
615 kfree(pages);
618 * set data direction, and check if mapped pages need bouncing
620 if (!write_to_vm)
621 bio->bi_rw |= (1 << BIO_RW);
623 bio->bi_flags |= (1 << BIO_USER_MAPPED);
624 return bio;
625 out:
626 kfree(pages);
627 bio_put(bio);
628 return ERR_PTR(ret);
632 * bio_map_user - map user address into bio
633 * @q: the request_queue_t for the bio
634 * @bdev: destination block device
635 * @uaddr: start of user address
636 * @len: length in bytes
637 * @write_to_vm: bool indicating writing to pages or not
639 * Map the user space address into a bio suitable for io to a block
640 * device. Returns an error pointer in case of error.
642 struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
643 unsigned long uaddr, unsigned int len, int write_to_vm)
645 struct bio *bio;
647 bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
649 if (IS_ERR(bio))
650 return bio;
653 * subtle -- if __bio_map_user() ended up bouncing a bio,
654 * it would normally disappear when its bi_end_io is run.
655 * however, we need it for the unmap, so grab an extra
656 * reference to it
658 bio_get(bio);
660 if (bio->bi_size == len)
661 return bio;
664 * don't support partial mappings
666 bio_endio(bio, bio->bi_size, 0);
667 bio_unmap_user(bio);
668 return ERR_PTR(-EINVAL);
671 static void __bio_unmap_user(struct bio *bio)
673 struct bio_vec *bvec;
674 int i;
677 * make sure we dirty pages we wrote to
679 __bio_for_each_segment(bvec, bio, i, 0) {
680 if (bio_data_dir(bio) == READ)
681 set_page_dirty_lock(bvec->bv_page);
683 page_cache_release(bvec->bv_page);
686 bio_put(bio);
690 * bio_unmap_user - unmap a bio
691 * @bio: the bio being unmapped
693 * Unmap a bio previously mapped by bio_map_user(). Must be called with
694 * a process context.
696 * bio_unmap_user() may sleep.
698 void bio_unmap_user(struct bio *bio)
700 __bio_unmap_user(bio);
701 bio_put(bio);
705 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
706 * for performing direct-IO in BIOs.
708 * The problem is that we cannot run set_page_dirty() from interrupt context
709 * because the required locks are not interrupt-safe. So what we can do is to
710 * mark the pages dirty _before_ performing IO. And in interrupt context,
711 * check that the pages are still dirty. If so, fine. If not, redirty them
712 * in process context.
714 * We special-case compound pages here: normally this means reads into hugetlb
715 * pages. The logic in here doesn't really work right for compound pages
716 * because the VM does not uniformly chase down the head page in all cases.
717 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
718 * handle them at all. So we skip compound pages here at an early stage.
720 * Note that this code is very hard to test under normal circumstances because
721 * direct-io pins the pages with get_user_pages(). This makes
722 * is_page_cache_freeable return false, and the VM will not clean the pages.
723 * But other code (eg, pdflush) could clean the pages if they are mapped
724 * pagecache.
726 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
727 * deferred bio dirtying paths.
731 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
733 void bio_set_pages_dirty(struct bio *bio)
735 struct bio_vec *bvec = bio->bi_io_vec;
736 int i;
738 for (i = 0; i < bio->bi_vcnt; i++) {
739 struct page *page = bvec[i].bv_page;
741 if (page && !PageCompound(page))
742 set_page_dirty_lock(page);
746 static void bio_release_pages(struct bio *bio)
748 struct bio_vec *bvec = bio->bi_io_vec;
749 int i;
751 for (i = 0; i < bio->bi_vcnt; i++) {
752 struct page *page = bvec[i].bv_page;
754 if (page)
755 put_page(page);
760 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
761 * If they are, then fine. If, however, some pages are clean then they must
762 * have been written out during the direct-IO read. So we take another ref on
763 * the BIO and the offending pages and re-dirty the pages in process context.
765 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
766 * here on. It will run one page_cache_release() against each page and will
767 * run one bio_put() against the BIO.
770 static void bio_dirty_fn(void *data);
772 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
773 static DEFINE_SPINLOCK(bio_dirty_lock);
774 static struct bio *bio_dirty_list;
777 * This runs in process context
779 static void bio_dirty_fn(void *data)
781 unsigned long flags;
782 struct bio *bio;
784 spin_lock_irqsave(&bio_dirty_lock, flags);
785 bio = bio_dirty_list;
786 bio_dirty_list = NULL;
787 spin_unlock_irqrestore(&bio_dirty_lock, flags);
789 while (bio) {
790 struct bio *next = bio->bi_private;
792 bio_set_pages_dirty(bio);
793 bio_release_pages(bio);
794 bio_put(bio);
795 bio = next;
799 void bio_check_pages_dirty(struct bio *bio)
801 struct bio_vec *bvec = bio->bi_io_vec;
802 int nr_clean_pages = 0;
803 int i;
805 for (i = 0; i < bio->bi_vcnt; i++) {
806 struct page *page = bvec[i].bv_page;
808 if (PageDirty(page) || PageCompound(page)) {
809 page_cache_release(page);
810 bvec[i].bv_page = NULL;
811 } else {
812 nr_clean_pages++;
816 if (nr_clean_pages) {
817 unsigned long flags;
819 spin_lock_irqsave(&bio_dirty_lock, flags);
820 bio->bi_private = bio_dirty_list;
821 bio_dirty_list = bio;
822 spin_unlock_irqrestore(&bio_dirty_lock, flags);
823 schedule_work(&bio_dirty_work);
824 } else {
825 bio_put(bio);
830 * bio_endio - end I/O on a bio
831 * @bio: bio
832 * @bytes_done: number of bytes completed
833 * @error: error, if any
835 * Description:
836 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
837 * just a partial part of the bio, or it may be the whole bio. bio_endio()
838 * is the preferred way to end I/O on a bio, it takes care of decrementing
839 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
840 * and one of the established -Exxxx (-EIO, for instance) error values in
841 * case something went wrong. Noone should call bi_end_io() directly on
842 * a bio unless they own it and thus know that it has an end_io function.
844 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
846 if (error)
847 clear_bit(BIO_UPTODATE, &bio->bi_flags);
849 if (unlikely(bytes_done > bio->bi_size)) {
850 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
851 bytes_done, bio->bi_size);
852 bytes_done = bio->bi_size;
855 bio->bi_size -= bytes_done;
856 bio->bi_sector += (bytes_done >> 9);
858 if (bio->bi_end_io)
859 bio->bi_end_io(bio, bytes_done, error);
862 void bio_pair_release(struct bio_pair *bp)
864 if (atomic_dec_and_test(&bp->cnt)) {
865 struct bio *master = bp->bio1.bi_private;
867 bio_endio(master, master->bi_size, bp->error);
868 mempool_free(bp, bp->bio2.bi_private);
872 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
874 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
876 if (err)
877 bp->error = err;
879 if (bi->bi_size)
880 return 1;
882 bio_pair_release(bp);
883 return 0;
886 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
888 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
890 if (err)
891 bp->error = err;
893 if (bi->bi_size)
894 return 1;
896 bio_pair_release(bp);
897 return 0;
901 * split a bio - only worry about a bio with a single page
902 * in it's iovec
904 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
906 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
908 if (!bp)
909 return bp;
911 BUG_ON(bi->bi_vcnt != 1);
912 BUG_ON(bi->bi_idx != 0);
913 atomic_set(&bp->cnt, 3);
914 bp->error = 0;
915 bp->bio1 = *bi;
916 bp->bio2 = *bi;
917 bp->bio2.bi_sector += first_sectors;
918 bp->bio2.bi_size -= first_sectors << 9;
919 bp->bio1.bi_size = first_sectors << 9;
921 bp->bv1 = bi->bi_io_vec[0];
922 bp->bv2 = bi->bi_io_vec[0];
923 bp->bv2.bv_offset += first_sectors << 9;
924 bp->bv2.bv_len -= first_sectors << 9;
925 bp->bv1.bv_len = first_sectors << 9;
927 bp->bio1.bi_io_vec = &bp->bv1;
928 bp->bio2.bi_io_vec = &bp->bv2;
930 bp->bio1.bi_end_io = bio_pair_end_1;
931 bp->bio2.bi_end_io = bio_pair_end_2;
933 bp->bio1.bi_private = bi;
934 bp->bio2.bi_private = pool;
936 return bp;
939 static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data)
941 return kmalloc(sizeof(struct bio_pair), gfp_flags);
944 static void bio_pair_free(void *bp, void *data)
946 kfree(bp);
951 * create memory pools for biovec's in a bio_set.
952 * use the global biovec slabs created for general use.
954 static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
956 int i;
958 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
959 struct biovec_slab *bp = bvec_slabs + i;
960 mempool_t **bvp = bs->bvec_pools + i;
962 if (i >= scale)
963 pool_entries >>= 1;
965 *bvp = mempool_create(pool_entries, mempool_alloc_slab,
966 mempool_free_slab, bp->slab);
967 if (!*bvp)
968 return -ENOMEM;
970 return 0;
973 static void biovec_free_pools(struct bio_set *bs)
975 int i;
977 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
978 mempool_t *bvp = bs->bvec_pools[i];
980 if (bvp)
981 mempool_destroy(bvp);
986 void bioset_free(struct bio_set *bs)
988 if (bs->bio_pool)
989 mempool_destroy(bs->bio_pool);
991 biovec_free_pools(bs);
993 kfree(bs);
996 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
998 struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
1000 if (!bs)
1001 return NULL;
1003 memset(bs, 0, sizeof(*bs));
1004 bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
1005 mempool_free_slab, bio_slab);
1007 if (!bs->bio_pool)
1008 goto bad;
1010 if (!biovec_create_pools(bs, bvec_pool_size, scale))
1011 return bs;
1013 bad:
1014 bioset_free(bs);
1015 return NULL;
1018 static void __init biovec_init_slabs(void)
1020 int i;
1022 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1023 int size;
1024 struct biovec_slab *bvs = bvec_slabs + i;
1026 size = bvs->nr_vecs * sizeof(struct bio_vec);
1027 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1028 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1032 static int __init init_bio(void)
1034 int megabytes, bvec_pool_entries;
1035 int scale = BIOVEC_NR_POOLS;
1037 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
1038 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1040 biovec_init_slabs();
1042 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
1045 * find out where to start scaling
1047 if (megabytes <= 16)
1048 scale = 0;
1049 else if (megabytes <= 32)
1050 scale = 1;
1051 else if (megabytes <= 64)
1052 scale = 2;
1053 else if (megabytes <= 96)
1054 scale = 3;
1055 else if (megabytes <= 128)
1056 scale = 4;
1059 * scale number of entries
1061 bvec_pool_entries = megabytes * 2;
1062 if (bvec_pool_entries > 256)
1063 bvec_pool_entries = 256;
1065 fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
1066 if (!fs_bio_set)
1067 panic("bio: can't allocate bios\n");
1069 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
1070 bio_pair_alloc, bio_pair_free, NULL);
1071 if (!bio_split_pool)
1072 panic("bio: can't create split pool\n");
1074 return 0;
1077 subsys_initcall(init_bio);
1079 EXPORT_SYMBOL(bio_alloc);
1080 EXPORT_SYMBOL(bio_put);
1081 EXPORT_SYMBOL(bio_endio);
1082 EXPORT_SYMBOL(bio_init);
1083 EXPORT_SYMBOL(__bio_clone);
1084 EXPORT_SYMBOL(bio_clone);
1085 EXPORT_SYMBOL(bio_phys_segments);
1086 EXPORT_SYMBOL(bio_hw_segments);
1087 EXPORT_SYMBOL(bio_add_page);
1088 EXPORT_SYMBOL(bio_get_nr_vecs);
1089 EXPORT_SYMBOL(bio_map_user);
1090 EXPORT_SYMBOL(bio_unmap_user);
1091 EXPORT_SYMBOL(bio_pair_release);
1092 EXPORT_SYMBOL(bio_split);
1093 EXPORT_SYMBOL(bio_split_pool);
1094 EXPORT_SYMBOL(bio_copy_user);
1095 EXPORT_SYMBOL(bio_uncopy_user);
1096 EXPORT_SYMBOL(bioset_create);
1097 EXPORT_SYMBOL(bioset_free);
1098 EXPORT_SYMBOL(bio_alloc_bioset);