1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
36 char stat_string
[ETH_GSTRING_LEN
];
41 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
42 offsetof(struct e1000_adapter, m)
43 static const struct e1000_stats e1000_gstrings_stats
[] = {
44 { "rx_packets", E1000_STAT(net_stats
.rx_packets
) },
45 { "tx_packets", E1000_STAT(net_stats
.tx_packets
) },
46 { "rx_bytes", E1000_STAT(net_stats
.rx_bytes
) },
47 { "tx_bytes", E1000_STAT(net_stats
.tx_bytes
) },
48 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
49 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
50 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
51 { "multicast", E1000_STAT(net_stats
.multicast
) },
52 { "collisions", E1000_STAT(net_stats
.collisions
) },
53 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
54 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
55 { "rx_crc_errors", E1000_STAT(net_stats
.rx_crc_errors
) },
56 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
57 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
58 { "rx_missed_errors", E1000_STAT(net_stats
.rx_missed_errors
) },
59 { "tx_aborted_errors", E1000_STAT(net_stats
.tx_aborted_errors
) },
60 { "tx_carrier_errors", E1000_STAT(net_stats
.tx_carrier_errors
) },
61 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
62 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
63 { "tx_window_errors", E1000_STAT(net_stats
.tx_window_errors
) },
64 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
65 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
66 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
67 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
68 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
69 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
70 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
71 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
72 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
73 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
74 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
75 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
76 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
77 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
78 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
79 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
80 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
81 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
82 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
85 #define E1000_QUEUE_STATS_LEN 0
86 #define E1000_GLOBAL_STATS_LEN \
87 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
88 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
89 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
90 "Register test (offline)", "Eeprom test (offline)",
91 "Interrupt test (offline)", "Loopback test (offline)",
92 "Link test (on/offline)"
94 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
97 e1000_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
99 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
100 struct e1000_hw
*hw
= &adapter
->hw
;
102 if (hw
->media_type
== e1000_media_type_copper
) {
104 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
105 SUPPORTED_10baseT_Full
|
106 SUPPORTED_100baseT_Half
|
107 SUPPORTED_100baseT_Full
|
108 SUPPORTED_1000baseT_Full
|
112 ecmd
->advertising
= ADVERTISED_TP
;
114 if (hw
->autoneg
== 1) {
115 ecmd
->advertising
|= ADVERTISED_Autoneg
;
117 /* the e1000 autoneg seems to match ethtool nicely */
119 ecmd
->advertising
|= hw
->autoneg_advertised
;
122 ecmd
->port
= PORT_TP
;
123 ecmd
->phy_address
= hw
->phy_addr
;
125 if (hw
->mac_type
== e1000_82543
)
126 ecmd
->transceiver
= XCVR_EXTERNAL
;
128 ecmd
->transceiver
= XCVR_INTERNAL
;
131 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
135 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
139 ecmd
->port
= PORT_FIBRE
;
141 if (hw
->mac_type
>= e1000_82545
)
142 ecmd
->transceiver
= XCVR_INTERNAL
;
144 ecmd
->transceiver
= XCVR_EXTERNAL
;
147 if (netif_carrier_ok(adapter
->netdev
)) {
149 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
150 &adapter
->link_duplex
);
151 ecmd
->speed
= adapter
->link_speed
;
153 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
154 * and HALF_DUPLEX != DUPLEX_HALF */
156 if (adapter
->link_duplex
== FULL_DUPLEX
)
157 ecmd
->duplex
= DUPLEX_FULL
;
159 ecmd
->duplex
= DUPLEX_HALF
;
165 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
166 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
171 e1000_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
173 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
174 struct e1000_hw
*hw
= &adapter
->hw
;
176 /* When SoL/IDER sessions are active, autoneg/speed/duplex
177 * cannot be changed */
178 if (e1000_check_phy_reset_block(hw
)) {
179 DPRINTK(DRV
, ERR
, "Cannot change link characteristics "
180 "when SoL/IDER is active.\n");
184 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
186 if (hw
->media_type
== e1000_media_type_fiber
)
187 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
191 hw
->autoneg_advertised
= ADVERTISED_10baseT_Half
|
192 ADVERTISED_10baseT_Full
|
193 ADVERTISED_100baseT_Half
|
194 ADVERTISED_100baseT_Full
|
195 ADVERTISED_1000baseT_Full
|
198 ecmd
->advertising
= hw
->autoneg_advertised
;
200 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
))
205 if (netif_running(adapter
->netdev
)) {
207 e1000_reset(adapter
);
210 e1000_reset(adapter
);
216 e1000_get_pauseparam(struct net_device
*netdev
,
217 struct ethtool_pauseparam
*pause
)
219 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
220 struct e1000_hw
*hw
= &adapter
->hw
;
223 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
225 if (hw
->fc
== e1000_fc_rx_pause
)
227 else if (hw
->fc
== e1000_fc_tx_pause
)
229 else if (hw
->fc
== e1000_fc_full
) {
236 e1000_set_pauseparam(struct net_device
*netdev
,
237 struct ethtool_pauseparam
*pause
)
239 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
240 struct e1000_hw
*hw
= &adapter
->hw
;
242 adapter
->fc_autoneg
= pause
->autoneg
;
244 if (pause
->rx_pause
&& pause
->tx_pause
)
245 hw
->fc
= e1000_fc_full
;
246 else if (pause
->rx_pause
&& !pause
->tx_pause
)
247 hw
->fc
= e1000_fc_rx_pause
;
248 else if (!pause
->rx_pause
&& pause
->tx_pause
)
249 hw
->fc
= e1000_fc_tx_pause
;
250 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
251 hw
->fc
= e1000_fc_none
;
253 hw
->original_fc
= hw
->fc
;
255 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
256 if (netif_running(adapter
->netdev
)) {
260 e1000_reset(adapter
);
262 return ((hw
->media_type
== e1000_media_type_fiber
) ?
263 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
269 e1000_get_rx_csum(struct net_device
*netdev
)
271 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
272 return adapter
->rx_csum
;
276 e1000_set_rx_csum(struct net_device
*netdev
, uint32_t data
)
278 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
279 adapter
->rx_csum
= data
;
281 if (netif_running(netdev
)) {
285 e1000_reset(adapter
);
290 e1000_get_tx_csum(struct net_device
*netdev
)
292 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
296 e1000_set_tx_csum(struct net_device
*netdev
, uint32_t data
)
298 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
300 if (adapter
->hw
.mac_type
< e1000_82543
) {
307 netdev
->features
|= NETIF_F_HW_CSUM
;
309 netdev
->features
&= ~NETIF_F_HW_CSUM
;
316 e1000_set_tso(struct net_device
*netdev
, uint32_t data
)
318 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
319 if ((adapter
->hw
.mac_type
< e1000_82544
) ||
320 (adapter
->hw
.mac_type
== e1000_82547
))
321 return data
? -EINVAL
: 0;
324 netdev
->features
|= NETIF_F_TSO
;
326 netdev
->features
&= ~NETIF_F_TSO
;
328 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
329 adapter
->tso_force
= TRUE
;
332 #endif /* NETIF_F_TSO */
335 e1000_get_msglevel(struct net_device
*netdev
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
338 return adapter
->msg_enable
;
342 e1000_set_msglevel(struct net_device
*netdev
, uint32_t data
)
344 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
345 adapter
->msg_enable
= data
;
349 e1000_get_regs_len(struct net_device
*netdev
)
351 #define E1000_REGS_LEN 32
352 return E1000_REGS_LEN
* sizeof(uint32_t);
356 e1000_get_regs(struct net_device
*netdev
,
357 struct ethtool_regs
*regs
, void *p
)
359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
360 struct e1000_hw
*hw
= &adapter
->hw
;
361 uint32_t *regs_buff
= p
;
364 memset(p
, 0, E1000_REGS_LEN
* sizeof(uint32_t));
366 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
368 regs_buff
[0] = E1000_READ_REG(hw
, CTRL
);
369 regs_buff
[1] = E1000_READ_REG(hw
, STATUS
);
371 regs_buff
[2] = E1000_READ_REG(hw
, RCTL
);
372 regs_buff
[3] = E1000_READ_REG(hw
, RDLEN
);
373 regs_buff
[4] = E1000_READ_REG(hw
, RDH
);
374 regs_buff
[5] = E1000_READ_REG(hw
, RDT
);
375 regs_buff
[6] = E1000_READ_REG(hw
, RDTR
);
377 regs_buff
[7] = E1000_READ_REG(hw
, TCTL
);
378 regs_buff
[8] = E1000_READ_REG(hw
, TDLEN
);
379 regs_buff
[9] = E1000_READ_REG(hw
, TDH
);
380 regs_buff
[10] = E1000_READ_REG(hw
, TDT
);
381 regs_buff
[11] = E1000_READ_REG(hw
, TIDV
);
383 regs_buff
[12] = adapter
->hw
.phy_type
; /* PHY type (IGP=1, M88=0) */
384 if (hw
->phy_type
== e1000_phy_igp
) {
385 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
386 IGP01E1000_PHY_AGC_A
);
387 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
388 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
389 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
390 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
391 IGP01E1000_PHY_AGC_B
);
392 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
393 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
394 regs_buff
[14] = (uint32_t)phy_data
; /* cable length */
395 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
396 IGP01E1000_PHY_AGC_C
);
397 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
398 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
399 regs_buff
[15] = (uint32_t)phy_data
; /* cable length */
400 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
401 IGP01E1000_PHY_AGC_D
);
402 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
403 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
404 regs_buff
[16] = (uint32_t)phy_data
; /* cable length */
405 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
406 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
407 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
408 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
409 regs_buff
[18] = (uint32_t)phy_data
; /* cable polarity */
410 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
411 IGP01E1000_PHY_PCS_INIT_REG
);
412 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
413 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
414 regs_buff
[19] = (uint32_t)phy_data
; /* cable polarity */
415 regs_buff
[20] = 0; /* polarity correction enabled (always) */
416 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
417 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
418 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
420 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
421 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
422 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
425 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
426 regs_buff
[17] = (uint32_t)phy_data
; /* extended 10bt distance */
427 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
428 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
430 /* phy receive errors */
431 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
432 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
434 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
435 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
436 regs_buff
[24] = (uint32_t)phy_data
; /* phy local receiver status */
437 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
438 if (hw
->mac_type
>= e1000_82540
&&
439 hw
->media_type
== e1000_media_type_copper
) {
440 regs_buff
[26] = E1000_READ_REG(hw
, MANC
);
445 e1000_get_eeprom_len(struct net_device
*netdev
)
447 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
448 return adapter
->hw
.eeprom
.word_size
* 2;
452 e1000_get_eeprom(struct net_device
*netdev
,
453 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
455 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
456 struct e1000_hw
*hw
= &adapter
->hw
;
457 uint16_t *eeprom_buff
;
458 int first_word
, last_word
;
462 if (eeprom
->len
== 0)
465 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
467 first_word
= eeprom
->offset
>> 1;
468 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
470 eeprom_buff
= kmalloc(sizeof(uint16_t) *
471 (last_word
- first_word
+ 1), GFP_KERNEL
);
475 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
476 ret_val
= e1000_read_eeprom(hw
, first_word
,
477 last_word
- first_word
+ 1,
480 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
481 if ((ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
486 /* Device's eeprom is always little-endian, word addressable */
487 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
488 le16_to_cpus(&eeprom_buff
[i
]);
490 memcpy(bytes
, (uint8_t *)eeprom_buff
+ (eeprom
->offset
& 1),
498 e1000_set_eeprom(struct net_device
*netdev
,
499 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
501 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
502 struct e1000_hw
*hw
= &adapter
->hw
;
503 uint16_t *eeprom_buff
;
505 int max_len
, first_word
, last_word
, ret_val
= 0;
508 if (eeprom
->len
== 0)
511 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
514 max_len
= hw
->eeprom
.word_size
* 2;
516 first_word
= eeprom
->offset
>> 1;
517 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
518 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
522 ptr
= (void *)eeprom_buff
;
524 if (eeprom
->offset
& 1) {
525 /* need read/modify/write of first changed EEPROM word */
526 /* only the second byte of the word is being modified */
527 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
531 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
532 /* need read/modify/write of last changed EEPROM word */
533 /* only the first byte of the word is being modified */
534 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
535 &eeprom_buff
[last_word
- first_word
]);
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
540 le16_to_cpus(&eeprom_buff
[i
]);
542 memcpy(ptr
, bytes
, eeprom
->len
);
544 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
545 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
547 ret_val
= e1000_write_eeprom(hw
, first_word
,
548 last_word
- first_word
+ 1, eeprom_buff
);
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 conrollers */
552 if ((ret_val
== 0) && ((first_word
<= EEPROM_CHECKSUM_REG
) ||
553 (hw
->mac_type
== e1000_82573
)))
554 e1000_update_eeprom_checksum(hw
);
561 e1000_get_drvinfo(struct net_device
*netdev
,
562 struct ethtool_drvinfo
*drvinfo
)
564 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
565 char firmware_version
[32];
566 uint16_t eeprom_data
;
568 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
569 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
571 /* EEPROM image version # is reported as firmware version # for
572 * 8257{1|2|3} controllers */
573 e1000_read_eeprom(&adapter
->hw
, 5, 1, &eeprom_data
);
574 switch (adapter
->hw
.mac_type
) {
578 case e1000_80003es2lan
:
579 sprintf(firmware_version
, "%d.%d-%d",
580 (eeprom_data
& 0xF000) >> 12,
581 (eeprom_data
& 0x0FF0) >> 4,
582 eeprom_data
& 0x000F);
585 sprintf(firmware_version
, "N/A");
588 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
589 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
590 drvinfo
->n_stats
= E1000_STATS_LEN
;
591 drvinfo
->testinfo_len
= E1000_TEST_LEN
;
592 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
593 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
597 e1000_get_ringparam(struct net_device
*netdev
,
598 struct ethtool_ringparam
*ring
)
600 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
601 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
602 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
603 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
605 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
607 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
609 ring
->rx_mini_max_pending
= 0;
610 ring
->rx_jumbo_max_pending
= 0;
611 ring
->rx_pending
= rxdr
->count
;
612 ring
->tx_pending
= txdr
->count
;
613 ring
->rx_mini_pending
= 0;
614 ring
->rx_jumbo_pending
= 0;
618 e1000_set_ringparam(struct net_device
*netdev
,
619 struct ethtool_ringparam
*ring
)
621 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
622 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
623 struct e1000_tx_ring
*txdr
, *tx_old
, *tx_new
;
624 struct e1000_rx_ring
*rxdr
, *rx_old
, *rx_new
;
625 int i
, err
, tx_ring_size
, rx_ring_size
;
627 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
630 tx_ring_size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
631 rx_ring_size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
633 if (netif_running(adapter
->netdev
))
636 tx_old
= adapter
->tx_ring
;
637 rx_old
= adapter
->rx_ring
;
639 adapter
->tx_ring
= kmalloc(tx_ring_size
, GFP_KERNEL
);
640 if (!adapter
->tx_ring
) {
644 memset(adapter
->tx_ring
, 0, tx_ring_size
);
646 adapter
->rx_ring
= kmalloc(rx_ring_size
, GFP_KERNEL
);
647 if (!adapter
->rx_ring
) {
648 kfree(adapter
->tx_ring
);
652 memset(adapter
->rx_ring
, 0, rx_ring_size
);
654 txdr
= adapter
->tx_ring
;
655 rxdr
= adapter
->rx_ring
;
657 rxdr
->count
= max(ring
->rx_pending
,(uint32_t)E1000_MIN_RXD
);
658 rxdr
->count
= min(rxdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
659 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
660 E1000_ROUNDUP(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
662 txdr
->count
= max(ring
->tx_pending
,(uint32_t)E1000_MIN_TXD
);
663 txdr
->count
= min(txdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
664 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
665 E1000_ROUNDUP(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
667 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
668 txdr
[i
].count
= txdr
->count
;
669 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
670 rxdr
[i
].count
= rxdr
->count
;
672 if (netif_running(adapter
->netdev
)) {
673 /* Try to get new resources before deleting old */
674 if ((err
= e1000_setup_all_rx_resources(adapter
)))
676 if ((err
= e1000_setup_all_tx_resources(adapter
)))
679 /* save the new, restore the old in order to free it,
680 * then restore the new back again */
682 rx_new
= adapter
->rx_ring
;
683 tx_new
= adapter
->tx_ring
;
684 adapter
->rx_ring
= rx_old
;
685 adapter
->tx_ring
= tx_old
;
686 e1000_free_all_rx_resources(adapter
);
687 e1000_free_all_tx_resources(adapter
);
690 adapter
->rx_ring
= rx_new
;
691 adapter
->tx_ring
= tx_new
;
692 if ((err
= e1000_up(adapter
)))
698 e1000_free_all_rx_resources(adapter
);
700 adapter
->rx_ring
= rx_old
;
701 adapter
->tx_ring
= tx_old
;
706 #define REG_PATTERN_TEST(R, M, W) \
708 uint32_t pat, value; \
710 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
711 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
712 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
713 value = E1000_READ_REG(&adapter->hw, R); \
714 if (value != (test[pat] & W & M)) { \
715 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
716 "0x%08X expected 0x%08X\n", \
717 E1000_##R, value, (test[pat] & W & M)); \
718 *data = (adapter->hw.mac_type < e1000_82543) ? \
719 E1000_82542_##R : E1000_##R; \
725 #define REG_SET_AND_CHECK(R, M, W) \
728 E1000_WRITE_REG(&adapter->hw, R, W & M); \
729 value = E1000_READ_REG(&adapter->hw, R); \
730 if ((W & M) != (value & M)) { \
731 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
732 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
733 *data = (adapter->hw.mac_type < e1000_82543) ? \
734 E1000_82542_##R : E1000_##R; \
740 e1000_reg_test(struct e1000_adapter
*adapter
, uint64_t *data
)
742 uint32_t value
, before
, after
;
745 /* The status register is Read Only, so a write should fail.
746 * Some bits that get toggled are ignored.
748 switch (adapter
->hw
.mac_type
) {
749 /* there are several bits on newer hardware that are r/w */
752 case e1000_80003es2lan
:
763 before
= E1000_READ_REG(&adapter
->hw
, STATUS
);
764 value
= (E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
);
765 E1000_WRITE_REG(&adapter
->hw
, STATUS
, toggle
);
766 after
= E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
;
767 if (value
!= after
) {
768 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
769 "0x%08X expected: 0x%08X\n", after
, value
);
773 /* restore previous status */
774 E1000_WRITE_REG(&adapter
->hw
, STATUS
, before
);
776 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
783 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
784 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
786 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
787 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
788 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
791 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
792 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0x003FFFFB);
793 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
795 if (adapter
->hw
.mac_type
>= e1000_82543
) {
797 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
799 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
801 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
803 for (i
= 0; i
< E1000_RAR_ENTRIES
; i
++) {
804 REG_PATTERN_TEST(RA
+ ((i
<< 1) << 2), 0xFFFFFFFF,
806 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
812 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
813 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
814 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
815 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
819 for (i
= 0; i
< E1000_MC_TBL_SIZE
; i
++)
820 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
827 e1000_eeprom_test(struct e1000_adapter
*adapter
, uint64_t *data
)
830 uint16_t checksum
= 0;
834 /* Read and add up the contents of the EEPROM */
835 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
836 if ((e1000_read_eeprom(&adapter
->hw
, i
, 1, &temp
)) < 0) {
843 /* If Checksum is not Correct return error else test passed */
844 if ((checksum
!= (uint16_t) EEPROM_SUM
) && !(*data
))
851 e1000_test_intr(int irq
,
853 struct pt_regs
*regs
)
855 struct net_device
*netdev
= (struct net_device
*) data
;
856 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
858 adapter
->test_icr
|= E1000_READ_REG(&adapter
->hw
, ICR
);
864 e1000_intr_test(struct e1000_adapter
*adapter
, uint64_t *data
)
866 struct net_device
*netdev
= adapter
->netdev
;
867 uint32_t mask
, i
=0, shared_int
= TRUE
;
868 uint32_t irq
= adapter
->pdev
->irq
;
872 /* Hook up test interrupt handler just for this test */
873 if (!request_irq(irq
, &e1000_test_intr
, 0, netdev
->name
, netdev
)) {
875 } else if (request_irq(irq
, &e1000_test_intr
, SA_SHIRQ
,
876 netdev
->name
, netdev
)){
881 /* Disable all the interrupts */
882 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
885 /* Test each interrupt */
886 for (; i
< 10; i
++) {
888 /* Interrupt to test */
892 /* Disable the interrupt to be reported in
893 * the cause register and then force the same
894 * interrupt and see if one gets posted. If
895 * an interrupt was posted to the bus, the
898 adapter
->test_icr
= 0;
899 E1000_WRITE_REG(&adapter
->hw
, IMC
, mask
);
900 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
903 if (adapter
->test_icr
& mask
) {
909 /* Enable the interrupt to be reported in
910 * the cause register and then force the same
911 * interrupt and see if one gets posted. If
912 * an interrupt was not posted to the bus, the
915 adapter
->test_icr
= 0;
916 E1000_WRITE_REG(&adapter
->hw
, IMS
, mask
);
917 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
920 if (!(adapter
->test_icr
& mask
)) {
926 /* Disable the other interrupts to be reported in
927 * the cause register and then force the other
928 * interrupts and see if any get posted. If
929 * an interrupt was posted to the bus, the
932 adapter
->test_icr
= 0;
933 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~mask
& 0x00007FFF);
934 E1000_WRITE_REG(&adapter
->hw
, ICS
, ~mask
& 0x00007FFF);
937 if (adapter
->test_icr
) {
944 /* Disable all the interrupts */
945 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
948 /* Unhook test interrupt handler */
949 free_irq(irq
, netdev
);
955 e1000_free_desc_rings(struct e1000_adapter
*adapter
)
957 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
958 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
959 struct pci_dev
*pdev
= adapter
->pdev
;
962 if (txdr
->desc
&& txdr
->buffer_info
) {
963 for (i
= 0; i
< txdr
->count
; i
++) {
964 if (txdr
->buffer_info
[i
].dma
)
965 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
966 txdr
->buffer_info
[i
].length
,
968 if (txdr
->buffer_info
[i
].skb
)
969 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
973 if (rxdr
->desc
&& rxdr
->buffer_info
) {
974 for (i
= 0; i
< rxdr
->count
; i
++) {
975 if (rxdr
->buffer_info
[i
].dma
)
976 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
977 rxdr
->buffer_info
[i
].length
,
979 if (rxdr
->buffer_info
[i
].skb
)
980 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
985 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
989 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
993 kfree(txdr
->buffer_info
);
994 txdr
->buffer_info
= NULL
;
995 kfree(rxdr
->buffer_info
);
996 rxdr
->buffer_info
= NULL
;
1002 e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1004 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1005 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1006 struct pci_dev
*pdev
= adapter
->pdev
;
1008 int size
, i
, ret_val
;
1010 /* Setup Tx descriptor ring and Tx buffers */
1013 txdr
->count
= E1000_DEFAULT_TXD
;
1015 size
= txdr
->count
* sizeof(struct e1000_buffer
);
1016 if (!(txdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
1020 memset(txdr
->buffer_info
, 0, size
);
1022 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1023 E1000_ROUNDUP(txdr
->size
, 4096);
1024 if (!(txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
))) {
1028 memset(txdr
->desc
, 0, txdr
->size
);
1029 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1031 E1000_WRITE_REG(&adapter
->hw
, TDBAL
,
1032 ((uint64_t) txdr
->dma
& 0x00000000FFFFFFFF));
1033 E1000_WRITE_REG(&adapter
->hw
, TDBAH
, ((uint64_t) txdr
->dma
>> 32));
1034 E1000_WRITE_REG(&adapter
->hw
, TDLEN
,
1035 txdr
->count
* sizeof(struct e1000_tx_desc
));
1036 E1000_WRITE_REG(&adapter
->hw
, TDH
, 0);
1037 E1000_WRITE_REG(&adapter
->hw
, TDT
, 0);
1038 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
1039 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1040 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1041 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1043 for (i
= 0; i
< txdr
->count
; i
++) {
1044 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1045 struct sk_buff
*skb
;
1046 unsigned int size
= 1024;
1048 if (!(skb
= alloc_skb(size
, GFP_KERNEL
))) {
1053 txdr
->buffer_info
[i
].skb
= skb
;
1054 txdr
->buffer_info
[i
].length
= skb
->len
;
1055 txdr
->buffer_info
[i
].dma
=
1056 pci_map_single(pdev
, skb
->data
, skb
->len
,
1058 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1059 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1060 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1061 E1000_TXD_CMD_IFCS
|
1063 tx_desc
->upper
.data
= 0;
1066 /* Setup Rx descriptor ring and Rx buffers */
1069 rxdr
->count
= E1000_DEFAULT_RXD
;
1071 size
= rxdr
->count
* sizeof(struct e1000_buffer
);
1072 if (!(rxdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
1076 memset(rxdr
->buffer_info
, 0, size
);
1078 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1079 if (!(rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
))) {
1083 memset(rxdr
->desc
, 0, rxdr
->size
);
1084 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1086 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1087 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1088 E1000_WRITE_REG(&adapter
->hw
, RDBAL
,
1089 ((uint64_t) rxdr
->dma
& 0xFFFFFFFF));
1090 E1000_WRITE_REG(&adapter
->hw
, RDBAH
, ((uint64_t) rxdr
->dma
>> 32));
1091 E1000_WRITE_REG(&adapter
->hw
, RDLEN
, rxdr
->size
);
1092 E1000_WRITE_REG(&adapter
->hw
, RDH
, 0);
1093 E1000_WRITE_REG(&adapter
->hw
, RDT
, 0);
1094 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1095 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1096 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1097 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1099 for (i
= 0; i
< rxdr
->count
; i
++) {
1100 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1101 struct sk_buff
*skb
;
1103 if (!(skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
,
1108 skb_reserve(skb
, NET_IP_ALIGN
);
1109 rxdr
->buffer_info
[i
].skb
= skb
;
1110 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1111 rxdr
->buffer_info
[i
].dma
=
1112 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1113 PCI_DMA_FROMDEVICE
);
1114 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1115 memset(skb
->data
, 0x00, skb
->len
);
1121 e1000_free_desc_rings(adapter
);
1126 e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001F);
1130 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FFC);
1131 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001A);
1132 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FF0);
1136 e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141 * Extended PHY Specific Control Register to 25MHz clock. This
1142 * value defaults back to a 2.5MHz clock when the PHY is reset.
1144 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1145 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1146 e1000_write_phy_reg(&adapter
->hw
,
1147 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1149 /* In addition, because of the s/w reset above, we need to enable
1150 * CRS on TX. This must be set for both full and half duplex
1153 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1154 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1155 e1000_write_phy_reg(&adapter
->hw
,
1156 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1160 e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1165 /* Setup the Device Control Register for PHY loopback test. */
1167 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1168 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1169 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1170 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1171 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1172 E1000_CTRL_FD
); /* Force Duplex to FULL */
1174 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1176 /* Read the PHY Specific Control Register (0x10) */
1177 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1179 /* Clear Auto-Crossover bits in PHY Specific Control Register
1182 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1183 e1000_write_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1185 /* Perform software reset on the PHY */
1186 e1000_phy_reset(&adapter
->hw
);
1188 /* Have to setup TX_CLK and TX_CRS after software reset */
1189 e1000_phy_reset_clk_and_crs(adapter
);
1191 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8100);
1193 /* Wait for reset to complete. */
1196 /* Have to setup TX_CLK and TX_CRS after software reset */
1197 e1000_phy_reset_clk_and_crs(adapter
);
1199 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200 e1000_phy_disable_receiver(adapter
);
1202 /* Set the loopback bit in the PHY control register. */
1203 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1204 phy_reg
|= MII_CR_LOOPBACK
;
1205 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1207 /* Setup TX_CLK and TX_CRS one more time. */
1208 e1000_phy_reset_clk_and_crs(adapter
);
1210 /* Check Phy Configuration */
1211 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1212 if (phy_reg
!= 0x4100)
1215 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1216 if (phy_reg
!= 0x0070)
1219 e1000_read_phy_reg(&adapter
->hw
, 29, &phy_reg
);
1220 if (phy_reg
!= 0x001A)
1227 e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1229 uint32_t ctrl_reg
= 0;
1230 uint32_t stat_reg
= 0;
1232 adapter
->hw
.autoneg
= FALSE
;
1234 if (adapter
->hw
.phy_type
== e1000_phy_m88
) {
1235 /* Auto-MDI/MDIX Off */
1236 e1000_write_phy_reg(&adapter
->hw
,
1237 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1238 /* reset to update Auto-MDI/MDIX */
1239 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x9140);
1241 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8140);
1242 } else if (adapter
->hw
.phy_type
== e1000_phy_gg82563
) {
1243 e1000_write_phy_reg(&adapter
->hw
,
1244 GG82563_PHY_KMRN_MODE_CTRL
,
1247 /* force 1000, set loopback */
1248 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x4140);
1250 /* Now set up the MAC to the same speed/duplex as the PHY. */
1251 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1252 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1253 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1254 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1255 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1256 E1000_CTRL_FD
); /* Force Duplex to FULL */
1258 if (adapter
->hw
.media_type
== e1000_media_type_copper
&&
1259 adapter
->hw
.phy_type
== e1000_phy_m88
) {
1260 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1262 /* Set the ILOS bit on the fiber Nic is half
1263 * duplex link is detected. */
1264 stat_reg
= E1000_READ_REG(&adapter
->hw
, STATUS
);
1265 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1266 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1269 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1271 /* Disable the receiver on the PHY so when a cable is plugged in, the
1272 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1274 if (adapter
->hw
.phy_type
== e1000_phy_m88
)
1275 e1000_phy_disable_receiver(adapter
);
1283 e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1285 uint16_t phy_reg
= 0;
1288 switch (adapter
->hw
.mac_type
) {
1290 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
1291 /* Attempt to setup Loopback mode on Non-integrated PHY.
1292 * Some PHY registers get corrupted at random, so
1293 * attempt this 10 times.
1295 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1305 case e1000_82545_rev_3
:
1307 case e1000_82546_rev_3
:
1309 case e1000_82541_rev_2
:
1311 case e1000_82547_rev_2
:
1315 case e1000_80003es2lan
:
1316 return e1000_integrated_phy_loopback(adapter
);
1320 /* Default PHY loopback work is to read the MII
1321 * control register and assert bit 14 (loopback mode).
1323 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1324 phy_reg
|= MII_CR_LOOPBACK
;
1325 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1334 e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1336 struct e1000_hw
*hw
= &adapter
->hw
;
1339 if (hw
->media_type
== e1000_media_type_fiber
||
1340 hw
->media_type
== e1000_media_type_internal_serdes
) {
1341 switch (hw
->mac_type
) {
1344 case e1000_82545_rev_3
:
1345 case e1000_82546_rev_3
:
1346 return e1000_set_phy_loopback(adapter
);
1350 #define E1000_SERDES_LB_ON 0x410
1351 e1000_set_phy_loopback(adapter
);
1352 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_ON
);
1357 rctl
= E1000_READ_REG(hw
, RCTL
);
1358 rctl
|= E1000_RCTL_LBM_TCVR
;
1359 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1362 } else if (hw
->media_type
== e1000_media_type_copper
)
1363 return e1000_set_phy_loopback(adapter
);
1369 e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1371 struct e1000_hw
*hw
= &adapter
->hw
;
1375 rctl
= E1000_READ_REG(hw
, RCTL
);
1376 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1377 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1379 switch (hw
->mac_type
) {
1382 if (hw
->media_type
== e1000_media_type_fiber
||
1383 hw
->media_type
== e1000_media_type_internal_serdes
) {
1384 #define E1000_SERDES_LB_OFF 0x400
1385 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_OFF
);
1392 case e1000_82545_rev_3
:
1393 case e1000_82546_rev_3
:
1396 if (hw
->phy_type
== e1000_phy_gg82563
) {
1397 e1000_write_phy_reg(hw
,
1398 GG82563_PHY_KMRN_MODE_CTRL
,
1401 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1402 if (phy_reg
& MII_CR_LOOPBACK
) {
1403 phy_reg
&= ~MII_CR_LOOPBACK
;
1404 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1405 e1000_phy_reset(hw
);
1412 e1000_create_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1414 memset(skb
->data
, 0xFF, frame_size
);
1416 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1417 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1418 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1422 e1000_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1425 if (*(skb
->data
+ 3) == 0xFF) {
1426 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1427 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1435 e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1437 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1438 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1439 struct pci_dev
*pdev
= adapter
->pdev
;
1440 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1443 E1000_WRITE_REG(&adapter
->hw
, RDT
, rxdr
->count
- 1);
1445 /* Calculate the loop count based on the largest descriptor ring
1446 * The idea is to wrap the largest ring a number of times using 64
1447 * send/receive pairs during each loop
1450 if (rxdr
->count
<= txdr
->count
)
1451 lc
= ((txdr
->count
/ 64) * 2) + 1;
1453 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1456 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1457 for (i
= 0; i
< 64; i
++) { /* send the packets */
1458 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1460 pci_dma_sync_single_for_device(pdev
,
1461 txdr
->buffer_info
[k
].dma
,
1462 txdr
->buffer_info
[k
].length
,
1464 if (unlikely(++k
== txdr
->count
)) k
= 0;
1466 E1000_WRITE_REG(&adapter
->hw
, TDT
, k
);
1468 time
= jiffies
; /* set the start time for the receive */
1470 do { /* receive the sent packets */
1471 pci_dma_sync_single_for_cpu(pdev
,
1472 rxdr
->buffer_info
[l
].dma
,
1473 rxdr
->buffer_info
[l
].length
,
1474 PCI_DMA_FROMDEVICE
);
1476 ret_val
= e1000_check_lbtest_frame(
1477 rxdr
->buffer_info
[l
].skb
,
1481 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1482 /* time + 20 msecs (200 msecs on 2.4) is more than
1483 * enough time to complete the receives, if it's
1484 * exceeded, break and error off
1486 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1487 if (good_cnt
!= 64) {
1488 ret_val
= 13; /* ret_val is the same as mis-compare */
1491 if (jiffies
>= (time
+ 2)) {
1492 ret_val
= 14; /* error code for time out error */
1495 } /* end loop count loop */
1500 e1000_loopback_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1502 /* PHY loopback cannot be performed if SoL/IDER
1503 * sessions are active */
1504 if (e1000_check_phy_reset_block(&adapter
->hw
)) {
1505 DPRINTK(DRV
, ERR
, "Cannot do PHY loopback test "
1506 "when SoL/IDER is active.\n");
1511 if ((*data
= e1000_setup_desc_rings(adapter
)))
1513 if ((*data
= e1000_setup_loopback_test(adapter
)))
1515 *data
= e1000_run_loopback_test(adapter
);
1516 e1000_loopback_cleanup(adapter
);
1519 e1000_free_desc_rings(adapter
);
1525 e1000_link_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1528 if (adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1530 adapter
->hw
.serdes_link_down
= TRUE
;
1532 /* On some blade server designs, link establishment
1533 * could take as long as 2-3 minutes */
1535 e1000_check_for_link(&adapter
->hw
);
1536 if (adapter
->hw
.serdes_link_down
== FALSE
)
1539 } while (i
++ < 3750);
1543 e1000_check_for_link(&adapter
->hw
);
1544 if (adapter
->hw
.autoneg
) /* if auto_neg is set wait for it */
1547 if (!(E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
)) {
1555 e1000_diag_test_count(struct net_device
*netdev
)
1557 return E1000_TEST_LEN
;
1561 e1000_diag_test(struct net_device
*netdev
,
1562 struct ethtool_test
*eth_test
, uint64_t *data
)
1564 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1565 boolean_t if_running
= netif_running(netdev
);
1567 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1570 /* save speed, duplex, autoneg settings */
1571 uint16_t autoneg_advertised
= adapter
->hw
.autoneg_advertised
;
1572 uint8_t forced_speed_duplex
= adapter
->hw
.forced_speed_duplex
;
1573 uint8_t autoneg
= adapter
->hw
.autoneg
;
1575 /* Link test performed before hardware reset so autoneg doesn't
1576 * interfere with test result */
1577 if (e1000_link_test(adapter
, &data
[4]))
1578 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1581 e1000_down(adapter
);
1583 e1000_reset(adapter
);
1585 if (e1000_reg_test(adapter
, &data
[0]))
1586 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1588 e1000_reset(adapter
);
1589 if (e1000_eeprom_test(adapter
, &data
[1]))
1590 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1592 e1000_reset(adapter
);
1593 if (e1000_intr_test(adapter
, &data
[2]))
1594 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1596 e1000_reset(adapter
);
1597 if (e1000_loopback_test(adapter
, &data
[3]))
1598 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1600 /* restore speed, duplex, autoneg settings */
1601 adapter
->hw
.autoneg_advertised
= autoneg_advertised
;
1602 adapter
->hw
.forced_speed_duplex
= forced_speed_duplex
;
1603 adapter
->hw
.autoneg
= autoneg
;
1605 e1000_reset(adapter
);
1610 if (e1000_link_test(adapter
, &data
[4]))
1611 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1613 /* Offline tests aren't run; pass by default */
1619 msleep_interruptible(4 * 1000);
1623 e1000_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1625 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1626 struct e1000_hw
*hw
= &adapter
->hw
;
1628 switch (adapter
->hw
.device_id
) {
1629 case E1000_DEV_ID_82542
:
1630 case E1000_DEV_ID_82543GC_FIBER
:
1631 case E1000_DEV_ID_82543GC_COPPER
:
1632 case E1000_DEV_ID_82544EI_FIBER
:
1633 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1634 case E1000_DEV_ID_82545EM_FIBER
:
1635 case E1000_DEV_ID_82545EM_COPPER
:
1636 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1641 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1642 /* device id 10B5 port-A supports wol */
1643 if (!adapter
->ksp3_port_a
) {
1647 /* KSP3 does not suppport UCAST wake-ups for any interface */
1648 wol
->supported
= WAKE_MCAST
| WAKE_BCAST
| WAKE_MAGIC
;
1650 if (adapter
->wol
& E1000_WUFC_EX
)
1651 DPRINTK(DRV
, ERR
, "Interface does not support "
1652 "directed (unicast) frame wake-up packets\n");
1656 case E1000_DEV_ID_82546EB_FIBER
:
1657 case E1000_DEV_ID_82546GB_FIBER
:
1658 case E1000_DEV_ID_82571EB_FIBER
:
1659 /* Wake events only supported on port A for dual fiber */
1660 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
) {
1668 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1669 WAKE_BCAST
| WAKE_MAGIC
;
1673 if (adapter
->wol
& E1000_WUFC_EX
)
1674 wol
->wolopts
|= WAKE_UCAST
;
1675 if (adapter
->wol
& E1000_WUFC_MC
)
1676 wol
->wolopts
|= WAKE_MCAST
;
1677 if (adapter
->wol
& E1000_WUFC_BC
)
1678 wol
->wolopts
|= WAKE_BCAST
;
1679 if (adapter
->wol
& E1000_WUFC_MAG
)
1680 wol
->wolopts
|= WAKE_MAGIC
;
1686 e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1688 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1689 struct e1000_hw
*hw
= &adapter
->hw
;
1691 switch (adapter
->hw
.device_id
) {
1692 case E1000_DEV_ID_82542
:
1693 case E1000_DEV_ID_82543GC_FIBER
:
1694 case E1000_DEV_ID_82543GC_COPPER
:
1695 case E1000_DEV_ID_82544EI_FIBER
:
1696 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1697 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1698 case E1000_DEV_ID_82545EM_FIBER
:
1699 case E1000_DEV_ID_82545EM_COPPER
:
1700 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1702 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1703 /* device id 10B5 port-A supports wol */
1704 if (!adapter
->ksp3_port_a
)
1705 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1707 if (wol
->wolopts
& WAKE_UCAST
) {
1708 DPRINTK(DRV
, ERR
, "Interface does not support "
1709 "directed (unicast) frame wake-up packets\n");
1713 case E1000_DEV_ID_82546EB_FIBER
:
1714 case E1000_DEV_ID_82546GB_FIBER
:
1715 case E1000_DEV_ID_82571EB_FIBER
:
1716 /* Wake events only supported on port A for dual fiber */
1717 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1718 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1722 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1727 if (wol
->wolopts
& WAKE_UCAST
)
1728 adapter
->wol
|= E1000_WUFC_EX
;
1729 if (wol
->wolopts
& WAKE_MCAST
)
1730 adapter
->wol
|= E1000_WUFC_MC
;
1731 if (wol
->wolopts
& WAKE_BCAST
)
1732 adapter
->wol
|= E1000_WUFC_BC
;
1733 if (wol
->wolopts
& WAKE_MAGIC
)
1734 adapter
->wol
|= E1000_WUFC_MAG
;
1740 /* toggle LED 4 times per second = 2 "blinks" per second */
1741 #define E1000_ID_INTERVAL (HZ/4)
1743 /* bit defines for adapter->led_status */
1744 #define E1000_LED_ON 0
1747 e1000_led_blink_callback(unsigned long data
)
1749 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1751 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1752 e1000_led_off(&adapter
->hw
);
1754 e1000_led_on(&adapter
->hw
);
1756 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1760 e1000_phys_id(struct net_device
*netdev
, uint32_t data
)
1762 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1764 if (!data
|| data
> (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
1765 data
= (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
1767 if (adapter
->hw
.mac_type
< e1000_82571
) {
1768 if (!adapter
->blink_timer
.function
) {
1769 init_timer(&adapter
->blink_timer
);
1770 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1771 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1773 e1000_setup_led(&adapter
->hw
);
1774 mod_timer(&adapter
->blink_timer
, jiffies
);
1775 msleep_interruptible(data
* 1000);
1776 del_timer_sync(&adapter
->blink_timer
);
1777 } else if (adapter
->hw
.mac_type
< e1000_82573
) {
1778 E1000_WRITE_REG(&adapter
->hw
, LEDCTL
,
1779 (E1000_LEDCTL_LED2_BLINK_RATE
|
1780 E1000_LEDCTL_LED0_BLINK
| E1000_LEDCTL_LED2_BLINK
|
1781 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED2_MODE_SHIFT
) |
1782 (E1000_LEDCTL_MODE_LINK_ACTIVITY
<< E1000_LEDCTL_LED0_MODE_SHIFT
) |
1783 (E1000_LEDCTL_MODE_LED_OFF
<< E1000_LEDCTL_LED1_MODE_SHIFT
)));
1784 msleep_interruptible(data
* 1000);
1786 E1000_WRITE_REG(&adapter
->hw
, LEDCTL
,
1787 (E1000_LEDCTL_LED2_BLINK_RATE
|
1788 E1000_LEDCTL_LED1_BLINK
| E1000_LEDCTL_LED2_BLINK
|
1789 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED2_MODE_SHIFT
) |
1790 (E1000_LEDCTL_MODE_LINK_ACTIVITY
<< E1000_LEDCTL_LED1_MODE_SHIFT
) |
1791 (E1000_LEDCTL_MODE_LED_OFF
<< E1000_LEDCTL_LED0_MODE_SHIFT
)));
1792 msleep_interruptible(data
* 1000);
1795 e1000_led_off(&adapter
->hw
);
1796 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1797 e1000_cleanup_led(&adapter
->hw
);
1803 e1000_nway_reset(struct net_device
*netdev
)
1805 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1806 if (netif_running(netdev
)) {
1807 e1000_down(adapter
);
1814 e1000_get_stats_count(struct net_device
*netdev
)
1816 return E1000_STATS_LEN
;
1820 e1000_get_ethtool_stats(struct net_device
*netdev
,
1821 struct ethtool_stats
*stats
, uint64_t *data
)
1823 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1826 e1000_update_stats(adapter
);
1827 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1828 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1829 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1830 sizeof(uint64_t)) ? *(uint64_t *)p
: *(uint32_t *)p
;
1832 /* BUG_ON(i != E1000_STATS_LEN); */
1836 e1000_get_strings(struct net_device
*netdev
, uint32_t stringset
, uint8_t *data
)
1841 switch (stringset
) {
1843 memcpy(data
, *e1000_gstrings_test
,
1844 E1000_TEST_LEN
*ETH_GSTRING_LEN
);
1847 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1848 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1850 p
+= ETH_GSTRING_LEN
;
1852 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1857 static struct ethtool_ops e1000_ethtool_ops
= {
1858 .get_settings
= e1000_get_settings
,
1859 .set_settings
= e1000_set_settings
,
1860 .get_drvinfo
= e1000_get_drvinfo
,
1861 .get_regs_len
= e1000_get_regs_len
,
1862 .get_regs
= e1000_get_regs
,
1863 .get_wol
= e1000_get_wol
,
1864 .set_wol
= e1000_set_wol
,
1865 .get_msglevel
= e1000_get_msglevel
,
1866 .set_msglevel
= e1000_set_msglevel
,
1867 .nway_reset
= e1000_nway_reset
,
1868 .get_link
= ethtool_op_get_link
,
1869 .get_eeprom_len
= e1000_get_eeprom_len
,
1870 .get_eeprom
= e1000_get_eeprom
,
1871 .set_eeprom
= e1000_set_eeprom
,
1872 .get_ringparam
= e1000_get_ringparam
,
1873 .set_ringparam
= e1000_set_ringparam
,
1874 .get_pauseparam
= e1000_get_pauseparam
,
1875 .set_pauseparam
= e1000_set_pauseparam
,
1876 .get_rx_csum
= e1000_get_rx_csum
,
1877 .set_rx_csum
= e1000_set_rx_csum
,
1878 .get_tx_csum
= e1000_get_tx_csum
,
1879 .set_tx_csum
= e1000_set_tx_csum
,
1880 .get_sg
= ethtool_op_get_sg
,
1881 .set_sg
= ethtool_op_set_sg
,
1883 .get_tso
= ethtool_op_get_tso
,
1884 .set_tso
= e1000_set_tso
,
1886 .self_test_count
= e1000_diag_test_count
,
1887 .self_test
= e1000_diag_test
,
1888 .get_strings
= e1000_get_strings
,
1889 .phys_id
= e1000_phys_id
,
1890 .get_stats_count
= e1000_get_stats_count
,
1891 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1892 .get_perm_addr
= ethtool_op_get_perm_addr
,
1895 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1897 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);