3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
128 #define FORCED_DEBUG 1
132 #define FORCED_DEBUG 0
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 /* Legal flag mask for kmem_cache_create(). */
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 * Bufctl's are used for linking objs within a slab
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t
;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit
;
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head
;
247 struct kmem_cache
*cachep
;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount
;
267 unsigned int touched
;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
311 #define SIZE_L3 (1 + MAX_NUMNODES)
314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
317 static __always_inline
int index_of(const size_t size
)
319 extern void __bad_size(void);
321 if (__builtin_constant_p(size
)) {
329 #include "linux/kmalloc_sizes.h"
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static void kmem_list3_init(struct kmem_list3
*parent
)
342 INIT_LIST_HEAD(&parent
->slabs_full
);
343 INIT_LIST_HEAD(&parent
->slabs_partial
);
344 INIT_LIST_HEAD(&parent
->slabs_free
);
345 parent
->shared
= NULL
;
346 parent
->alien
= NULL
;
347 parent
->colour_next
= 0;
348 spin_lock_init(&parent
->list_lock
);
349 parent
->free_objects
= 0;
350 parent
->free_touched
= 0;
353 #define MAKE_LIST(cachep, listp, slab, nodeid) \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
359 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 /* 1) per-cpu data, touched during every alloc/free */
374 struct array_cache
*array
[NR_CPUS
];
375 /* 2) Cache tunables. Protected by cache_chain_mutex */
376 unsigned int batchcount
;
380 unsigned int buffer_size
;
381 /* 3) touched by every alloc & free from the backend */
382 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
384 unsigned int flags
; /* constant flags */
385 unsigned int num
; /* # of objs per slab */
387 /* 4) cache_grow/shrink */
388 /* order of pgs per slab (2^n) */
389 unsigned int gfporder
;
391 /* force GFP flags, e.g. GFP_DMA */
394 size_t colour
; /* cache colouring range */
395 unsigned int colour_off
; /* colour offset */
396 struct kmem_cache
*slabp_cache
;
397 unsigned int slab_size
;
398 unsigned int dflags
; /* dynamic flags */
400 /* constructor func */
401 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
403 /* de-constructor func */
404 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
406 /* 5) cache creation/removal */
408 struct list_head next
;
412 unsigned long num_active
;
413 unsigned long num_allocations
;
414 unsigned long high_mark
;
416 unsigned long reaped
;
417 unsigned long errors
;
418 unsigned long max_freeable
;
419 unsigned long node_allocs
;
420 unsigned long node_frees
;
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
438 #define CFLGS_OFF_SLAB (0x80000000UL)
439 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
441 #define BATCHREFILL_LIMIT 16
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
446 * OTOH the cpuarrays can contain lots of objects,
447 * which could lock up otherwise freeable slabs.
449 #define REAPTIMEOUT_CPUC (2*HZ)
450 #define REAPTIMEOUT_LIST3 (4*HZ)
453 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
454 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456 #define STATS_INC_GROWN(x) ((x)->grown++)
457 #define STATS_INC_REAPED(x) ((x)->reaped++)
458 #define STATS_SET_HIGH(x) \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
463 #define STATS_INC_ERR(x) ((x)->errors++)
464 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
465 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
466 #define STATS_SET_FREEABLE(x, i) \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
471 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
476 #define STATS_INC_ACTIVE(x) do { } while (0)
477 #define STATS_DEC_ACTIVE(x) do { } while (0)
478 #define STATS_INC_ALLOCED(x) do { } while (0)
479 #define STATS_INC_GROWN(x) do { } while (0)
480 #define STATS_INC_REAPED(x) do { } while (0)
481 #define STATS_SET_HIGH(x) do { } while (0)
482 #define STATS_INC_ERR(x) do { } while (0)
483 #define STATS_INC_NODEALLOCS(x) do { } while (0)
484 #define STATS_INC_NODEFREES(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
506 * memory layout of objects:
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache
*cachep
)
520 return cachep
->obj_offset
;
523 static int obj_size(struct kmem_cache
*cachep
)
525 return cachep
->obj_size
;
528 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
530 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
531 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
534 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
536 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
537 if (cachep
->flags
& SLAB_STORE_USER
)
538 return (unsigned long *)(objp
+ cachep
->buffer_size
-
540 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
543 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
545 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
546 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
588 page
->lru
.next
= (struct list_head
*)cache
;
591 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
593 if (unlikely(PageCompound(page
)))
594 page
= (struct page
*)page_private(page
);
595 return (struct kmem_cache
*)page
->lru
.next
;
598 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
600 page
->lru
.prev
= (struct list_head
*)slab
;
603 static inline struct slab
*page_get_slab(struct page
*page
)
605 if (unlikely(PageCompound(page
)))
606 page
= (struct page
*)page_private(page
);
607 return (struct slab
*)page
->lru
.prev
;
610 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
612 struct page
*page
= virt_to_page(obj
);
613 return page_get_cache(page
);
616 static inline struct slab
*virt_to_slab(const void *obj
)
618 struct page
*page
= virt_to_page(obj
);
619 return page_get_slab(page
);
622 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
625 return slab
->s_mem
+ cache
->buffer_size
* idx
;
628 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
629 struct slab
*slab
, void *obj
)
631 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 struct cache_sizes malloc_sizes
[] = {
638 #define CACHE(x) { .cs_size = (x) },
639 #include <linux/kmalloc_sizes.h>
643 EXPORT_SYMBOL(malloc_sizes
);
645 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
651 static struct cache_names __initdata cache_names
[] = {
652 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653 #include <linux/kmalloc_sizes.h>
658 static struct arraycache_init initarray_cache __initdata
=
659 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
660 static struct arraycache_init initarray_generic
=
661 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
663 /* internal cache of cache description objs */
664 static struct kmem_cache cache_cache
= {
666 .limit
= BOOT_CPUCACHE_ENTRIES
,
668 .buffer_size
= sizeof(struct kmem_cache
),
669 .name
= "kmem_cache",
671 .obj_size
= sizeof(struct kmem_cache
),
675 /* Guard access to the cache-chain. */
676 static DEFINE_MUTEX(cache_chain_mutex
);
677 static struct list_head cache_chain
;
680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
685 atomic_t slab_reclaim_pages
;
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
698 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
700 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
702 static void enable_cpucache(struct kmem_cache
*cachep
);
703 static void cache_reap(void *unused
);
704 static int __node_shrink(struct kmem_cache
*cachep
, int node
);
706 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
708 return cachep
->array
[smp_processor_id()];
711 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
714 struct cache_sizes
*csizep
= malloc_sizes
;
717 /* This happens if someone tries to call
718 * kmem_cache_create(), or __kmalloc(), before
719 * the generic caches are initialized.
721 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
723 while (size
> csizep
->cs_size
)
727 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
728 * has cs_{dma,}cachep==NULL. Thus no special case
729 * for large kmalloc calls required.
731 if (unlikely(gfpflags
& GFP_DMA
))
732 return csizep
->cs_dmacachep
;
733 return csizep
->cs_cachep
;
736 struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
738 return __find_general_cachep(size
, gfpflags
);
740 EXPORT_SYMBOL(kmem_find_general_cachep
);
742 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
744 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
748 * Calculate the number of objects and left-over bytes for a given buffer size.
750 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
751 size_t align
, int flags
, size_t *left_over
,
756 size_t slab_size
= PAGE_SIZE
<< gfporder
;
759 * The slab management structure can be either off the slab or
760 * on it. For the latter case, the memory allocated for a
764 * - One kmem_bufctl_t for each object
765 * - Padding to respect alignment of @align
766 * - @buffer_size bytes for each object
768 * If the slab management structure is off the slab, then the
769 * alignment will already be calculated into the size. Because
770 * the slabs are all pages aligned, the objects will be at the
771 * correct alignment when allocated.
773 if (flags
& CFLGS_OFF_SLAB
) {
775 nr_objs
= slab_size
/ buffer_size
;
777 if (nr_objs
> SLAB_LIMIT
)
778 nr_objs
= SLAB_LIMIT
;
781 * Ignore padding for the initial guess. The padding
782 * is at most @align-1 bytes, and @buffer_size is at
783 * least @align. In the worst case, this result will
784 * be one greater than the number of objects that fit
785 * into the memory allocation when taking the padding
788 nr_objs
= (slab_size
- sizeof(struct slab
)) /
789 (buffer_size
+ sizeof(kmem_bufctl_t
));
792 * This calculated number will be either the right
793 * amount, or one greater than what we want.
795 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
799 if (nr_objs
> SLAB_LIMIT
)
800 nr_objs
= SLAB_LIMIT
;
802 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
805 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
808 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
810 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
813 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
814 function
, cachep
->name
, msg
);
820 * Special reaping functions for NUMA systems called from cache_reap().
821 * These take care of doing round robin flushing of alien caches (containing
822 * objects freed on different nodes from which they were allocated) and the
823 * flushing of remote pcps by calling drain_node_pages.
825 static DEFINE_PER_CPU(unsigned long, reap_node
);
827 static void init_reap_node(int cpu
)
831 node
= next_node(cpu_to_node(cpu
), node_online_map
);
832 if (node
== MAX_NUMNODES
)
833 node
= first_node(node_online_map
);
835 __get_cpu_var(reap_node
) = node
;
838 static void next_reap_node(void)
840 int node
= __get_cpu_var(reap_node
);
843 * Also drain per cpu pages on remote zones
845 if (node
!= numa_node_id())
846 drain_node_pages(node
);
848 node
= next_node(node
, node_online_map
);
849 if (unlikely(node
>= MAX_NUMNODES
))
850 node
= first_node(node_online_map
);
851 __get_cpu_var(reap_node
) = node
;
855 #define init_reap_node(cpu) do { } while (0)
856 #define next_reap_node(void) do { } while (0)
860 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
861 * via the workqueue/eventd.
862 * Add the CPU number into the expiration time to minimize the possibility of
863 * the CPUs getting into lockstep and contending for the global cache chain
866 static void __devinit
start_cpu_timer(int cpu
)
868 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
871 * When this gets called from do_initcalls via cpucache_init(),
872 * init_workqueues() has already run, so keventd will be setup
875 if (keventd_up() && reap_work
->func
== NULL
) {
877 INIT_WORK(reap_work
, cache_reap
, NULL
);
878 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
882 static struct array_cache
*alloc_arraycache(int node
, int entries
,
885 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
886 struct array_cache
*nc
= NULL
;
888 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
892 nc
->batchcount
= batchcount
;
894 spin_lock_init(&nc
->lock
);
900 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
902 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
904 struct array_cache
**ac_ptr
;
905 int memsize
= sizeof(void *) * MAX_NUMNODES
;
910 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
913 if (i
== node
|| !node_online(i
)) {
917 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
919 for (i
--; i
<= 0; i
--)
929 static void free_alien_cache(struct array_cache
**ac_ptr
)
940 static void __drain_alien_cache(struct kmem_cache
*cachep
,
941 struct array_cache
*ac
, int node
)
943 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
946 spin_lock(&rl3
->list_lock
);
947 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
949 spin_unlock(&rl3
->list_lock
);
954 * Called from cache_reap() to regularly drain alien caches round robin.
956 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
958 int node
= __get_cpu_var(reap_node
);
961 struct array_cache
*ac
= l3
->alien
[node
];
962 if (ac
&& ac
->avail
) {
963 spin_lock_irq(&ac
->lock
);
964 __drain_alien_cache(cachep
, ac
, node
);
965 spin_unlock_irq(&ac
->lock
);
970 static void drain_alien_cache(struct kmem_cache
*cachep
,
971 struct array_cache
**alien
)
974 struct array_cache
*ac
;
977 for_each_online_node(i
) {
980 spin_lock_irqsave(&ac
->lock
, flags
);
981 __drain_alien_cache(cachep
, ac
, i
);
982 spin_unlock_irqrestore(&ac
->lock
, flags
);
988 #define drain_alien_cache(cachep, alien) do { } while (0)
989 #define reap_alien(cachep, l3) do { } while (0)
991 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
993 return (struct array_cache
**) 0x01020304ul
;
996 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1002 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
1003 unsigned long action
, void *hcpu
)
1005 long cpu
= (long)hcpu
;
1006 struct kmem_cache
*cachep
;
1007 struct kmem_list3
*l3
= NULL
;
1008 int node
= cpu_to_node(cpu
);
1009 int memsize
= sizeof(struct kmem_list3
);
1012 case CPU_UP_PREPARE
:
1013 mutex_lock(&cache_chain_mutex
);
1015 * We need to do this right in the beginning since
1016 * alloc_arraycache's are going to use this list.
1017 * kmalloc_node allows us to add the slab to the right
1018 * kmem_list3 and not this cpu's kmem_list3
1021 list_for_each_entry(cachep
, &cache_chain
, next
) {
1023 * Set up the size64 kmemlist for cpu before we can
1024 * begin anything. Make sure some other cpu on this
1025 * node has not already allocated this
1027 if (!cachep
->nodelists
[node
]) {
1028 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1031 kmem_list3_init(l3
);
1032 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1033 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1036 * The l3s don't come and go as CPUs come and
1037 * go. cache_chain_mutex is sufficient
1040 cachep
->nodelists
[node
] = l3
;
1043 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1044 cachep
->nodelists
[node
]->free_limit
=
1045 (1 + nr_cpus_node(node
)) *
1046 cachep
->batchcount
+ cachep
->num
;
1047 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1051 * Now we can go ahead with allocating the shared arrays and
1054 list_for_each_entry(cachep
, &cache_chain
, next
) {
1055 struct array_cache
*nc
;
1056 struct array_cache
*shared
;
1057 struct array_cache
**alien
;
1059 nc
= alloc_arraycache(node
, cachep
->limit
,
1060 cachep
->batchcount
);
1063 shared
= alloc_arraycache(node
,
1064 cachep
->shared
* cachep
->batchcount
,
1069 alien
= alloc_alien_cache(node
, cachep
->limit
);
1072 cachep
->array
[cpu
] = nc
;
1073 l3
= cachep
->nodelists
[node
];
1076 spin_lock_irq(&l3
->list_lock
);
1079 * We are serialised from CPU_DEAD or
1080 * CPU_UP_CANCELLED by the cpucontrol lock
1082 l3
->shared
= shared
;
1091 spin_unlock_irq(&l3
->list_lock
);
1093 free_alien_cache(alien
);
1095 mutex_unlock(&cache_chain_mutex
);
1098 start_cpu_timer(cpu
);
1100 #ifdef CONFIG_HOTPLUG_CPU
1103 * Even if all the cpus of a node are down, we don't free the
1104 * kmem_list3 of any cache. This to avoid a race between
1105 * cpu_down, and a kmalloc allocation from another cpu for
1106 * memory from the node of the cpu going down. The list3
1107 * structure is usually allocated from kmem_cache_create() and
1108 * gets destroyed at kmem_cache_destroy().
1111 case CPU_UP_CANCELED
:
1112 mutex_lock(&cache_chain_mutex
);
1113 list_for_each_entry(cachep
, &cache_chain
, next
) {
1114 struct array_cache
*nc
;
1115 struct array_cache
*shared
;
1116 struct array_cache
**alien
;
1119 mask
= node_to_cpumask(node
);
1120 /* cpu is dead; no one can alloc from it. */
1121 nc
= cachep
->array
[cpu
];
1122 cachep
->array
[cpu
] = NULL
;
1123 l3
= cachep
->nodelists
[node
];
1126 goto free_array_cache
;
1128 spin_lock_irq(&l3
->list_lock
);
1130 /* Free limit for this kmem_list3 */
1131 l3
->free_limit
-= cachep
->batchcount
;
1133 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1135 if (!cpus_empty(mask
)) {
1136 spin_unlock_irq(&l3
->list_lock
);
1137 goto free_array_cache
;
1140 shared
= l3
->shared
;
1142 free_block(cachep
, l3
->shared
->entry
,
1143 l3
->shared
->avail
, node
);
1150 spin_unlock_irq(&l3
->list_lock
);
1154 drain_alien_cache(cachep
, alien
);
1155 free_alien_cache(alien
);
1161 * In the previous loop, all the objects were freed to
1162 * the respective cache's slabs, now we can go ahead and
1163 * shrink each nodelist to its limit.
1165 list_for_each_entry(cachep
, &cache_chain
, next
) {
1166 l3
= cachep
->nodelists
[node
];
1169 spin_lock_irq(&l3
->list_lock
);
1170 /* free slabs belonging to this node */
1171 __node_shrink(cachep
, node
);
1172 spin_unlock_irq(&l3
->list_lock
);
1174 mutex_unlock(&cache_chain_mutex
);
1180 mutex_unlock(&cache_chain_mutex
);
1184 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
1187 * swap the static kmem_list3 with kmalloced memory
1189 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1192 struct kmem_list3
*ptr
;
1194 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1195 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1198 local_irq_disable();
1199 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1200 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1201 cachep
->nodelists
[nodeid
] = ptr
;
1206 * Initialisation. Called after the page allocator have been initialised and
1207 * before smp_init().
1209 void __init
kmem_cache_init(void)
1212 struct cache_sizes
*sizes
;
1213 struct cache_names
*names
;
1217 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1218 kmem_list3_init(&initkmem_list3
[i
]);
1219 if (i
< MAX_NUMNODES
)
1220 cache_cache
.nodelists
[i
] = NULL
;
1224 * Fragmentation resistance on low memory - only use bigger
1225 * page orders on machines with more than 32MB of memory.
1227 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1228 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1230 /* Bootstrap is tricky, because several objects are allocated
1231 * from caches that do not exist yet:
1232 * 1) initialize the cache_cache cache: it contains the struct
1233 * kmem_cache structures of all caches, except cache_cache itself:
1234 * cache_cache is statically allocated.
1235 * Initially an __init data area is used for the head array and the
1236 * kmem_list3 structures, it's replaced with a kmalloc allocated
1237 * array at the end of the bootstrap.
1238 * 2) Create the first kmalloc cache.
1239 * The struct kmem_cache for the new cache is allocated normally.
1240 * An __init data area is used for the head array.
1241 * 3) Create the remaining kmalloc caches, with minimally sized
1243 * 4) Replace the __init data head arrays for cache_cache and the first
1244 * kmalloc cache with kmalloc allocated arrays.
1245 * 5) Replace the __init data for kmem_list3 for cache_cache and
1246 * the other cache's with kmalloc allocated memory.
1247 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1250 /* 1) create the cache_cache */
1251 INIT_LIST_HEAD(&cache_chain
);
1252 list_add(&cache_cache
.next
, &cache_chain
);
1253 cache_cache
.colour_off
= cache_line_size();
1254 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1255 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1257 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1260 for (order
= 0; order
< MAX_ORDER
; order
++) {
1261 cache_estimate(order
, cache_cache
.buffer_size
,
1262 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1263 if (cache_cache
.num
)
1266 if (!cache_cache
.num
)
1268 cache_cache
.gfporder
= order
;
1269 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1270 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1271 sizeof(struct slab
), cache_line_size());
1273 /* 2+3) create the kmalloc caches */
1274 sizes
= malloc_sizes
;
1275 names
= cache_names
;
1278 * Initialize the caches that provide memory for the array cache and the
1279 * kmem_list3 structures first. Without this, further allocations will
1283 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1284 sizes
[INDEX_AC
].cs_size
,
1285 ARCH_KMALLOC_MINALIGN
,
1286 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1289 if (INDEX_AC
!= INDEX_L3
) {
1290 sizes
[INDEX_L3
].cs_cachep
=
1291 kmem_cache_create(names
[INDEX_L3
].name
,
1292 sizes
[INDEX_L3
].cs_size
,
1293 ARCH_KMALLOC_MINALIGN
,
1294 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1298 while (sizes
->cs_size
!= ULONG_MAX
) {
1300 * For performance, all the general caches are L1 aligned.
1301 * This should be particularly beneficial on SMP boxes, as it
1302 * eliminates "false sharing".
1303 * Note for systems short on memory removing the alignment will
1304 * allow tighter packing of the smaller caches.
1306 if (!sizes
->cs_cachep
) {
1307 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1309 ARCH_KMALLOC_MINALIGN
,
1310 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1314 /* Inc off-slab bufctl limit until the ceiling is hit. */
1315 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
1316 offslab_limit
= sizes
->cs_size
- sizeof(struct slab
);
1317 offslab_limit
/= sizeof(kmem_bufctl_t
);
1320 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1322 ARCH_KMALLOC_MINALIGN
,
1323 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1329 /* 4) Replace the bootstrap head arrays */
1333 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1335 local_irq_disable();
1336 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1337 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1338 sizeof(struct arraycache_init
));
1339 cache_cache
.array
[smp_processor_id()] = ptr
;
1342 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1344 local_irq_disable();
1345 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1346 != &initarray_generic
.cache
);
1347 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1348 sizeof(struct arraycache_init
));
1349 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1353 /* 5) Replace the bootstrap kmem_list3's */
1356 /* Replace the static kmem_list3 structures for the boot cpu */
1357 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1360 for_each_online_node(node
) {
1361 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1362 &initkmem_list3
[SIZE_AC
+ node
], node
);
1364 if (INDEX_AC
!= INDEX_L3
) {
1365 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1366 &initkmem_list3
[SIZE_L3
+ node
],
1372 /* 6) resize the head arrays to their final sizes */
1374 struct kmem_cache
*cachep
;
1375 mutex_lock(&cache_chain_mutex
);
1376 list_for_each_entry(cachep
, &cache_chain
, next
)
1377 enable_cpucache(cachep
);
1378 mutex_unlock(&cache_chain_mutex
);
1382 g_cpucache_up
= FULL
;
1385 * Register a cpu startup notifier callback that initializes
1386 * cpu_cache_get for all new cpus
1388 register_cpu_notifier(&cpucache_notifier
);
1391 * The reap timers are started later, with a module init call: That part
1392 * of the kernel is not yet operational.
1396 static int __init
cpucache_init(void)
1401 * Register the timers that return unneeded pages to the page allocator
1403 for_each_online_cpu(cpu
)
1404 start_cpu_timer(cpu
);
1407 __initcall(cpucache_init
);
1410 * Interface to system's page allocator. No need to hold the cache-lock.
1412 * If we requested dmaable memory, we will get it. Even if we
1413 * did not request dmaable memory, we might get it, but that
1414 * would be relatively rare and ignorable.
1416 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1422 flags
|= cachep
->gfpflags
;
1423 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1426 addr
= page_address(page
);
1428 i
= (1 << cachep
->gfporder
);
1429 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1430 atomic_add(i
, &slab_reclaim_pages
);
1431 add_page_state(nr_slab
, i
);
1433 __SetPageSlab(page
);
1440 * Interface to system's page release.
1442 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1444 unsigned long i
= (1 << cachep
->gfporder
);
1445 struct page
*page
= virt_to_page(addr
);
1446 const unsigned long nr_freed
= i
;
1449 BUG_ON(!PageSlab(page
));
1450 __ClearPageSlab(page
);
1453 sub_page_state(nr_slab
, nr_freed
);
1454 if (current
->reclaim_state
)
1455 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1456 free_pages((unsigned long)addr
, cachep
->gfporder
);
1457 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1458 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1461 static void kmem_rcu_free(struct rcu_head
*head
)
1463 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1464 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1466 kmem_freepages(cachep
, slab_rcu
->addr
);
1467 if (OFF_SLAB(cachep
))
1468 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1473 #ifdef CONFIG_DEBUG_PAGEALLOC
1474 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1475 unsigned long caller
)
1477 int size
= obj_size(cachep
);
1479 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1481 if (size
< 5 * sizeof(unsigned long))
1484 *addr
++ = 0x12345678;
1486 *addr
++ = smp_processor_id();
1487 size
-= 3 * sizeof(unsigned long);
1489 unsigned long *sptr
= &caller
;
1490 unsigned long svalue
;
1492 while (!kstack_end(sptr
)) {
1494 if (kernel_text_address(svalue
)) {
1496 size
-= sizeof(unsigned long);
1497 if (size
<= sizeof(unsigned long))
1503 *addr
++ = 0x87654321;
1507 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1509 int size
= obj_size(cachep
);
1510 addr
= &((char *)addr
)[obj_offset(cachep
)];
1512 memset(addr
, val
, size
);
1513 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1516 static void dump_line(char *data
, int offset
, int limit
)
1519 printk(KERN_ERR
"%03x:", offset
);
1520 for (i
= 0; i
< limit
; i
++)
1521 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1528 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1533 if (cachep
->flags
& SLAB_RED_ZONE
) {
1534 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1535 *dbg_redzone1(cachep
, objp
),
1536 *dbg_redzone2(cachep
, objp
));
1539 if (cachep
->flags
& SLAB_STORE_USER
) {
1540 printk(KERN_ERR
"Last user: [<%p>]",
1541 *dbg_userword(cachep
, objp
));
1542 print_symbol("(%s)",
1543 (unsigned long)*dbg_userword(cachep
, objp
));
1546 realobj
= (char *)objp
+ obj_offset(cachep
);
1547 size
= obj_size(cachep
);
1548 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1551 if (i
+ limit
> size
)
1553 dump_line(realobj
, i
, limit
);
1557 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1563 realobj
= (char *)objp
+ obj_offset(cachep
);
1564 size
= obj_size(cachep
);
1566 for (i
= 0; i
< size
; i
++) {
1567 char exp
= POISON_FREE
;
1570 if (realobj
[i
] != exp
) {
1576 "Slab corruption: start=%p, len=%d\n",
1578 print_objinfo(cachep
, objp
, 0);
1580 /* Hexdump the affected line */
1583 if (i
+ limit
> size
)
1585 dump_line(realobj
, i
, limit
);
1588 /* Limit to 5 lines */
1594 /* Print some data about the neighboring objects, if they
1597 struct slab
*slabp
= virt_to_slab(objp
);
1600 objnr
= obj_to_index(cachep
, slabp
, objp
);
1602 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1603 realobj
= (char *)objp
+ obj_offset(cachep
);
1604 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1606 print_objinfo(cachep
, objp
, 2);
1608 if (objnr
+ 1 < cachep
->num
) {
1609 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1610 realobj
= (char *)objp
+ obj_offset(cachep
);
1611 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1613 print_objinfo(cachep
, objp
, 2);
1621 * slab_destroy_objs - destroy a slab and its objects
1622 * @cachep: cache pointer being destroyed
1623 * @slabp: slab pointer being destroyed
1625 * Call the registered destructor for each object in a slab that is being
1628 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1631 for (i
= 0; i
< cachep
->num
; i
++) {
1632 void *objp
= index_to_obj(cachep
, slabp
, i
);
1634 if (cachep
->flags
& SLAB_POISON
) {
1635 #ifdef CONFIG_DEBUG_PAGEALLOC
1636 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1638 kernel_map_pages(virt_to_page(objp
),
1639 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1641 check_poison_obj(cachep
, objp
);
1643 check_poison_obj(cachep
, objp
);
1646 if (cachep
->flags
& SLAB_RED_ZONE
) {
1647 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1648 slab_error(cachep
, "start of a freed object "
1650 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1651 slab_error(cachep
, "end of a freed object "
1654 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1655 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1659 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1663 for (i
= 0; i
< cachep
->num
; i
++) {
1664 void *objp
= index_to_obj(cachep
, slabp
, i
);
1665 (cachep
->dtor
) (objp
, cachep
, 0);
1672 * slab_destroy - destroy and release all objects in a slab
1673 * @cachep: cache pointer being destroyed
1674 * @slabp: slab pointer being destroyed
1676 * Destroy all the objs in a slab, and release the mem back to the system.
1677 * Before calling the slab must have been unlinked from the cache. The
1678 * cache-lock is not held/needed.
1680 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1682 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1684 slab_destroy_objs(cachep
, slabp
);
1685 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1686 struct slab_rcu
*slab_rcu
;
1688 slab_rcu
= (struct slab_rcu
*)slabp
;
1689 slab_rcu
->cachep
= cachep
;
1690 slab_rcu
->addr
= addr
;
1691 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1693 kmem_freepages(cachep
, addr
);
1694 if (OFF_SLAB(cachep
))
1695 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1700 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1701 * size of kmem_list3.
1703 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1707 for_each_online_node(node
) {
1708 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1709 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1711 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1716 * calculate_slab_order - calculate size (page order) of slabs
1717 * @cachep: pointer to the cache that is being created
1718 * @size: size of objects to be created in this cache.
1719 * @align: required alignment for the objects.
1720 * @flags: slab allocation flags
1722 * Also calculates the number of objects per slab.
1724 * This could be made much more intelligent. For now, try to avoid using
1725 * high order pages for slabs. When the gfp() functions are more friendly
1726 * towards high-order requests, this should be changed.
1728 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1729 size_t size
, size_t align
, unsigned long flags
)
1731 size_t left_over
= 0;
1734 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1738 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1742 /* More than offslab_limit objects will cause problems */
1743 if ((flags
& CFLGS_OFF_SLAB
) && num
> offslab_limit
)
1746 /* Found something acceptable - save it away */
1748 cachep
->gfporder
= gfporder
;
1749 left_over
= remainder
;
1752 * A VFS-reclaimable slab tends to have most allocations
1753 * as GFP_NOFS and we really don't want to have to be allocating
1754 * higher-order pages when we are unable to shrink dcache.
1756 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1760 * Large number of objects is good, but very large slabs are
1761 * currently bad for the gfp()s.
1763 if (gfporder
>= slab_break_gfp_order
)
1767 * Acceptable internal fragmentation?
1769 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1775 static void setup_cpu_cache(struct kmem_cache
*cachep
)
1777 if (g_cpucache_up
== FULL
) {
1778 enable_cpucache(cachep
);
1781 if (g_cpucache_up
== NONE
) {
1783 * Note: the first kmem_cache_create must create the cache
1784 * that's used by kmalloc(24), otherwise the creation of
1785 * further caches will BUG().
1787 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1790 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1791 * the first cache, then we need to set up all its list3s,
1792 * otherwise the creation of further caches will BUG().
1794 set_up_list3s(cachep
, SIZE_AC
);
1795 if (INDEX_AC
== INDEX_L3
)
1796 g_cpucache_up
= PARTIAL_L3
;
1798 g_cpucache_up
= PARTIAL_AC
;
1800 cachep
->array
[smp_processor_id()] =
1801 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1803 if (g_cpucache_up
== PARTIAL_AC
) {
1804 set_up_list3s(cachep
, SIZE_L3
);
1805 g_cpucache_up
= PARTIAL_L3
;
1808 for_each_online_node(node
) {
1809 cachep
->nodelists
[node
] =
1810 kmalloc_node(sizeof(struct kmem_list3
),
1812 BUG_ON(!cachep
->nodelists
[node
]);
1813 kmem_list3_init(cachep
->nodelists
[node
]);
1817 cachep
->nodelists
[numa_node_id()]->next_reap
=
1818 jiffies
+ REAPTIMEOUT_LIST3
+
1819 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1821 cpu_cache_get(cachep
)->avail
= 0;
1822 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1823 cpu_cache_get(cachep
)->batchcount
= 1;
1824 cpu_cache_get(cachep
)->touched
= 0;
1825 cachep
->batchcount
= 1;
1826 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1830 * kmem_cache_create - Create a cache.
1831 * @name: A string which is used in /proc/slabinfo to identify this cache.
1832 * @size: The size of objects to be created in this cache.
1833 * @align: The required alignment for the objects.
1834 * @flags: SLAB flags
1835 * @ctor: A constructor for the objects.
1836 * @dtor: A destructor for the objects.
1838 * Returns a ptr to the cache on success, NULL on failure.
1839 * Cannot be called within a int, but can be interrupted.
1840 * The @ctor is run when new pages are allocated by the cache
1841 * and the @dtor is run before the pages are handed back.
1843 * @name must be valid until the cache is destroyed. This implies that
1844 * the module calling this has to destroy the cache before getting unloaded.
1848 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1849 * to catch references to uninitialised memory.
1851 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1852 * for buffer overruns.
1854 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1855 * cacheline. This can be beneficial if you're counting cycles as closely
1859 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1860 unsigned long flags
,
1861 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
1862 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
1864 size_t left_over
, slab_size
, ralign
;
1865 struct kmem_cache
*cachep
= NULL
;
1866 struct list_head
*p
;
1869 * Sanity checks... these are all serious usage bugs.
1871 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
1872 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
1873 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
1879 * Prevent CPUs from coming and going.
1880 * lock_cpu_hotplug() nests outside cache_chain_mutex
1884 mutex_lock(&cache_chain_mutex
);
1886 list_for_each(p
, &cache_chain
) {
1887 struct kmem_cache
*pc
= list_entry(p
, struct kmem_cache
, next
);
1888 mm_segment_t old_fs
= get_fs();
1893 * This happens when the module gets unloaded and doesn't
1894 * destroy its slab cache and no-one else reuses the vmalloc
1895 * area of the module. Print a warning.
1898 res
= __get_user(tmp
, pc
->name
);
1901 printk("SLAB: cache with size %d has lost its name\n",
1906 if (!strcmp(pc
->name
, name
)) {
1907 printk("kmem_cache_create: duplicate cache %s\n", name
);
1914 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1915 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1916 /* No constructor, but inital state check requested */
1917 printk(KERN_ERR
"%s: No con, but init state check "
1918 "requested - %s\n", __FUNCTION__
, name
);
1919 flags
&= ~SLAB_DEBUG_INITIAL
;
1923 * Enable redzoning and last user accounting, except for caches with
1924 * large objects, if the increased size would increase the object size
1925 * above the next power of two: caches with object sizes just above a
1926 * power of two have a significant amount of internal fragmentation.
1928 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
1929 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
1930 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1931 flags
|= SLAB_POISON
;
1933 if (flags
& SLAB_DESTROY_BY_RCU
)
1934 BUG_ON(flags
& SLAB_POISON
);
1936 if (flags
& SLAB_DESTROY_BY_RCU
)
1940 * Always checks flags, a caller might be expecting debug support which
1943 if (flags
& ~CREATE_MASK
)
1947 * Check that size is in terms of words. This is needed to avoid
1948 * unaligned accesses for some archs when redzoning is used, and makes
1949 * sure any on-slab bufctl's are also correctly aligned.
1951 if (size
& (BYTES_PER_WORD
- 1)) {
1952 size
+= (BYTES_PER_WORD
- 1);
1953 size
&= ~(BYTES_PER_WORD
- 1);
1956 /* calculate the final buffer alignment: */
1958 /* 1) arch recommendation: can be overridden for debug */
1959 if (flags
& SLAB_HWCACHE_ALIGN
) {
1961 * Default alignment: as specified by the arch code. Except if
1962 * an object is really small, then squeeze multiple objects into
1965 ralign
= cache_line_size();
1966 while (size
<= ralign
/ 2)
1969 ralign
= BYTES_PER_WORD
;
1971 /* 2) arch mandated alignment: disables debug if necessary */
1972 if (ralign
< ARCH_SLAB_MINALIGN
) {
1973 ralign
= ARCH_SLAB_MINALIGN
;
1974 if (ralign
> BYTES_PER_WORD
)
1975 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
1977 /* 3) caller mandated alignment: disables debug if necessary */
1978 if (ralign
< align
) {
1980 if (ralign
> BYTES_PER_WORD
)
1981 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
1984 * 4) Store it. Note that the debug code below can reduce
1985 * the alignment to BYTES_PER_WORD.
1989 /* Get cache's description obj. */
1990 cachep
= kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1993 memset(cachep
, 0, sizeof(struct kmem_cache
));
1996 cachep
->obj_size
= size
;
1998 if (flags
& SLAB_RED_ZONE
) {
1999 /* redzoning only works with word aligned caches */
2000 align
= BYTES_PER_WORD
;
2002 /* add space for red zone words */
2003 cachep
->obj_offset
+= BYTES_PER_WORD
;
2004 size
+= 2 * BYTES_PER_WORD
;
2006 if (flags
& SLAB_STORE_USER
) {
2007 /* user store requires word alignment and
2008 * one word storage behind the end of the real
2011 align
= BYTES_PER_WORD
;
2012 size
+= BYTES_PER_WORD
;
2014 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2015 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2016 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2017 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2023 /* Determine if the slab management is 'on' or 'off' slab. */
2024 if (size
>= (PAGE_SIZE
>> 3))
2026 * Size is large, assume best to place the slab management obj
2027 * off-slab (should allow better packing of objs).
2029 flags
|= CFLGS_OFF_SLAB
;
2031 size
= ALIGN(size
, align
);
2033 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2036 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2037 kmem_cache_free(&cache_cache
, cachep
);
2041 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2042 + sizeof(struct slab
), align
);
2045 * If the slab has been placed off-slab, and we have enough space then
2046 * move it on-slab. This is at the expense of any extra colouring.
2048 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2049 flags
&= ~CFLGS_OFF_SLAB
;
2050 left_over
-= slab_size
;
2053 if (flags
& CFLGS_OFF_SLAB
) {
2054 /* really off slab. No need for manual alignment */
2056 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2059 cachep
->colour_off
= cache_line_size();
2060 /* Offset must be a multiple of the alignment. */
2061 if (cachep
->colour_off
< align
)
2062 cachep
->colour_off
= align
;
2063 cachep
->colour
= left_over
/ cachep
->colour_off
;
2064 cachep
->slab_size
= slab_size
;
2065 cachep
->flags
= flags
;
2066 cachep
->gfpflags
= 0;
2067 if (flags
& SLAB_CACHE_DMA
)
2068 cachep
->gfpflags
|= GFP_DMA
;
2069 cachep
->buffer_size
= size
;
2071 if (flags
& CFLGS_OFF_SLAB
)
2072 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2073 cachep
->ctor
= ctor
;
2074 cachep
->dtor
= dtor
;
2075 cachep
->name
= name
;
2078 setup_cpu_cache(cachep
);
2080 /* cache setup completed, link it into the list */
2081 list_add(&cachep
->next
, &cache_chain
);
2083 if (!cachep
&& (flags
& SLAB_PANIC
))
2084 panic("kmem_cache_create(): failed to create slab `%s'\n",
2086 mutex_unlock(&cache_chain_mutex
);
2087 unlock_cpu_hotplug();
2090 EXPORT_SYMBOL(kmem_cache_create
);
2093 static void check_irq_off(void)
2095 BUG_ON(!irqs_disabled());
2098 static void check_irq_on(void)
2100 BUG_ON(irqs_disabled());
2103 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2107 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2111 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2115 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2120 #define check_irq_off() do { } while(0)
2121 #define check_irq_on() do { } while(0)
2122 #define check_spinlock_acquired(x) do { } while(0)
2123 #define check_spinlock_acquired_node(x, y) do { } while(0)
2126 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2127 struct array_cache
*ac
,
2128 int force
, int node
);
2130 static void do_drain(void *arg
)
2132 struct kmem_cache
*cachep
= arg
;
2133 struct array_cache
*ac
;
2134 int node
= numa_node_id();
2137 ac
= cpu_cache_get(cachep
);
2138 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2139 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2140 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2144 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2146 struct kmem_list3
*l3
;
2149 on_each_cpu(do_drain
, cachep
, 1, 1);
2151 for_each_online_node(node
) {
2152 l3
= cachep
->nodelists
[node
];
2154 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2156 drain_alien_cache(cachep
, l3
->alien
);
2161 static int __node_shrink(struct kmem_cache
*cachep
, int node
)
2164 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
2168 struct list_head
*p
;
2170 p
= l3
->slabs_free
.prev
;
2171 if (p
== &l3
->slabs_free
)
2174 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
2179 list_del(&slabp
->list
);
2181 l3
->free_objects
-= cachep
->num
;
2182 spin_unlock_irq(&l3
->list_lock
);
2183 slab_destroy(cachep
, slabp
);
2184 spin_lock_irq(&l3
->list_lock
);
2186 ret
= !list_empty(&l3
->slabs_full
) || !list_empty(&l3
->slabs_partial
);
2190 static int __cache_shrink(struct kmem_cache
*cachep
)
2193 struct kmem_list3
*l3
;
2195 drain_cpu_caches(cachep
);
2198 for_each_online_node(i
) {
2199 l3
= cachep
->nodelists
[i
];
2201 spin_lock_irq(&l3
->list_lock
);
2202 ret
+= __node_shrink(cachep
, i
);
2203 spin_unlock_irq(&l3
->list_lock
);
2206 return (ret
? 1 : 0);
2210 * kmem_cache_shrink - Shrink a cache.
2211 * @cachep: The cache to shrink.
2213 * Releases as many slabs as possible for a cache.
2214 * To help debugging, a zero exit status indicates all slabs were released.
2216 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2218 if (!cachep
|| in_interrupt())
2221 return __cache_shrink(cachep
);
2223 EXPORT_SYMBOL(kmem_cache_shrink
);
2226 * kmem_cache_destroy - delete a cache
2227 * @cachep: the cache to destroy
2229 * Remove a struct kmem_cache object from the slab cache.
2230 * Returns 0 on success.
2232 * It is expected this function will be called by a module when it is
2233 * unloaded. This will remove the cache completely, and avoid a duplicate
2234 * cache being allocated each time a module is loaded and unloaded, if the
2235 * module doesn't have persistent in-kernel storage across loads and unloads.
2237 * The cache must be empty before calling this function.
2239 * The caller must guarantee that noone will allocate memory from the cache
2240 * during the kmem_cache_destroy().
2242 int kmem_cache_destroy(struct kmem_cache
*cachep
)
2245 struct kmem_list3
*l3
;
2247 if (!cachep
|| in_interrupt())
2250 /* Don't let CPUs to come and go */
2253 /* Find the cache in the chain of caches. */
2254 mutex_lock(&cache_chain_mutex
);
2256 * the chain is never empty, cache_cache is never destroyed
2258 list_del(&cachep
->next
);
2259 mutex_unlock(&cache_chain_mutex
);
2261 if (__cache_shrink(cachep
)) {
2262 slab_error(cachep
, "Can't free all objects");
2263 mutex_lock(&cache_chain_mutex
);
2264 list_add(&cachep
->next
, &cache_chain
);
2265 mutex_unlock(&cache_chain_mutex
);
2266 unlock_cpu_hotplug();
2270 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2273 for_each_online_cpu(i
)
2274 kfree(cachep
->array
[i
]);
2276 /* NUMA: free the list3 structures */
2277 for_each_online_node(i
) {
2278 l3
= cachep
->nodelists
[i
];
2281 free_alien_cache(l3
->alien
);
2285 kmem_cache_free(&cache_cache
, cachep
);
2286 unlock_cpu_hotplug();
2289 EXPORT_SYMBOL(kmem_cache_destroy
);
2291 /* Get the memory for a slab management obj. */
2292 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2293 int colour_off
, gfp_t local_flags
)
2297 if (OFF_SLAB(cachep
)) {
2298 /* Slab management obj is off-slab. */
2299 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
2303 slabp
= objp
+ colour_off
;
2304 colour_off
+= cachep
->slab_size
;
2307 slabp
->colouroff
= colour_off
;
2308 slabp
->s_mem
= objp
+ colour_off
;
2312 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2314 return (kmem_bufctl_t
*) (slabp
+ 1);
2317 static void cache_init_objs(struct kmem_cache
*cachep
,
2318 struct slab
*slabp
, unsigned long ctor_flags
)
2322 for (i
= 0; i
< cachep
->num
; i
++) {
2323 void *objp
= index_to_obj(cachep
, slabp
, i
);
2325 /* need to poison the objs? */
2326 if (cachep
->flags
& SLAB_POISON
)
2327 poison_obj(cachep
, objp
, POISON_FREE
);
2328 if (cachep
->flags
& SLAB_STORE_USER
)
2329 *dbg_userword(cachep
, objp
) = NULL
;
2331 if (cachep
->flags
& SLAB_RED_ZONE
) {
2332 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2333 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2336 * Constructors are not allowed to allocate memory from the same
2337 * cache which they are a constructor for. Otherwise, deadlock.
2338 * They must also be threaded.
2340 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2341 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2344 if (cachep
->flags
& SLAB_RED_ZONE
) {
2345 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2346 slab_error(cachep
, "constructor overwrote the"
2347 " end of an object");
2348 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2349 slab_error(cachep
, "constructor overwrote the"
2350 " start of an object");
2352 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2353 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2354 kernel_map_pages(virt_to_page(objp
),
2355 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2358 cachep
->ctor(objp
, cachep
, ctor_flags
);
2360 slab_bufctl(slabp
)[i
] = i
+ 1;
2362 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2366 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2368 if (flags
& SLAB_DMA
)
2369 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2371 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2374 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2377 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2381 next
= slab_bufctl(slabp
)[slabp
->free
];
2383 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2384 WARN_ON(slabp
->nodeid
!= nodeid
);
2391 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2392 void *objp
, int nodeid
)
2394 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2397 /* Verify that the slab belongs to the intended node */
2398 WARN_ON(slabp
->nodeid
!= nodeid
);
2400 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2401 printk(KERN_ERR
"slab: double free detected in cache "
2402 "'%s', objp %p\n", cachep
->name
, objp
);
2406 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2407 slabp
->free
= objnr
;
2411 static void set_slab_attr(struct kmem_cache
*cachep
, struct slab
*slabp
,
2417 /* Nasty!!!!!! I hope this is OK. */
2418 page
= virt_to_page(objp
);
2421 if (likely(!PageCompound(page
)))
2422 i
<<= cachep
->gfporder
;
2424 page_set_cache(page
, cachep
);
2425 page_set_slab(page
, slabp
);
2431 * Grow (by 1) the number of slabs within a cache. This is called by
2432 * kmem_cache_alloc() when there are no active objs left in a cache.
2434 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2440 unsigned long ctor_flags
;
2441 struct kmem_list3
*l3
;
2444 * Be lazy and only check for valid flags here, keeping it out of the
2445 * critical path in kmem_cache_alloc().
2447 if (flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
))
2449 if (flags
& SLAB_NO_GROW
)
2452 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2453 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2454 if (!(local_flags
& __GFP_WAIT
))
2456 * Not allowed to sleep. Need to tell a constructor about
2457 * this - it might need to know...
2459 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2461 /* Take the l3 list lock to change the colour_next on this node */
2463 l3
= cachep
->nodelists
[nodeid
];
2464 spin_lock(&l3
->list_lock
);
2466 /* Get colour for the slab, and cal the next value. */
2467 offset
= l3
->colour_next
;
2469 if (l3
->colour_next
>= cachep
->colour
)
2470 l3
->colour_next
= 0;
2471 spin_unlock(&l3
->list_lock
);
2473 offset
*= cachep
->colour_off
;
2475 if (local_flags
& __GFP_WAIT
)
2479 * The test for missing atomic flag is performed here, rather than
2480 * the more obvious place, simply to reduce the critical path length
2481 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2482 * will eventually be caught here (where it matters).
2484 kmem_flagcheck(cachep
, flags
);
2487 * Get mem for the objs. Attempt to allocate a physical page from
2490 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2494 /* Get slab management. */
2495 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
);
2499 slabp
->nodeid
= nodeid
;
2500 set_slab_attr(cachep
, slabp
, objp
);
2502 cache_init_objs(cachep
, slabp
, ctor_flags
);
2504 if (local_flags
& __GFP_WAIT
)
2505 local_irq_disable();
2507 spin_lock(&l3
->list_lock
);
2509 /* Make slab active. */
2510 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2511 STATS_INC_GROWN(cachep
);
2512 l3
->free_objects
+= cachep
->num
;
2513 spin_unlock(&l3
->list_lock
);
2516 kmem_freepages(cachep
, objp
);
2518 if (local_flags
& __GFP_WAIT
)
2519 local_irq_disable();
2526 * Perform extra freeing checks:
2527 * - detect bad pointers.
2528 * - POISON/RED_ZONE checking
2529 * - destructor calls, for caches with POISON+dtor
2531 static void kfree_debugcheck(const void *objp
)
2535 if (!virt_addr_valid(objp
)) {
2536 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2537 (unsigned long)objp
);
2540 page
= virt_to_page(objp
);
2541 if (!PageSlab(page
)) {
2542 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2543 (unsigned long)objp
);
2548 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2555 objp
-= obj_offset(cachep
);
2556 kfree_debugcheck(objp
);
2557 page
= virt_to_page(objp
);
2559 if (page_get_cache(page
) != cachep
) {
2560 printk(KERN_ERR
"mismatch in kmem_cache_free: expected "
2561 "cache %p, got %p\n",
2562 page_get_cache(page
), cachep
);
2563 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
2564 printk(KERN_ERR
"%p is %s.\n", page_get_cache(page
),
2565 page_get_cache(page
)->name
);
2568 slabp
= page_get_slab(page
);
2570 if (cachep
->flags
& SLAB_RED_ZONE
) {
2571 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
||
2572 *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
2573 slab_error(cachep
, "double free, or memory outside"
2574 " object was overwritten");
2575 printk(KERN_ERR
"%p: redzone 1:0x%lx, "
2576 "redzone 2:0x%lx.\n",
2577 objp
, *dbg_redzone1(cachep
, objp
),
2578 *dbg_redzone2(cachep
, objp
));
2580 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2581 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2583 if (cachep
->flags
& SLAB_STORE_USER
)
2584 *dbg_userword(cachep
, objp
) = caller
;
2586 objnr
= obj_to_index(cachep
, slabp
, objp
);
2588 BUG_ON(objnr
>= cachep
->num
);
2589 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2591 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2593 * Need to call the slab's constructor so the caller can
2594 * perform a verify of its state (debugging). Called without
2595 * the cache-lock held.
2597 cachep
->ctor(objp
+ obj_offset(cachep
),
2598 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2600 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2601 /* we want to cache poison the object,
2602 * call the destruction callback
2604 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2606 if (cachep
->flags
& SLAB_POISON
) {
2607 #ifdef CONFIG_DEBUG_PAGEALLOC
2608 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2609 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2610 kernel_map_pages(virt_to_page(objp
),
2611 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2613 poison_obj(cachep
, objp
, POISON_FREE
);
2616 poison_obj(cachep
, objp
, POISON_FREE
);
2622 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2627 /* Check slab's freelist to see if this obj is there. */
2628 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2630 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2633 if (entries
!= cachep
->num
- slabp
->inuse
) {
2635 printk(KERN_ERR
"slab: Internal list corruption detected in "
2636 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2637 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2639 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2642 printk("\n%03x:", i
);
2643 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2650 #define kfree_debugcheck(x) do { } while(0)
2651 #define cache_free_debugcheck(x,objp,z) (objp)
2652 #define check_slabp(x,y) do { } while(0)
2655 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2658 struct kmem_list3
*l3
;
2659 struct array_cache
*ac
;
2662 ac
= cpu_cache_get(cachep
);
2664 batchcount
= ac
->batchcount
;
2665 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2667 * If there was little recent activity on this cache, then
2668 * perform only a partial refill. Otherwise we could generate
2671 batchcount
= BATCHREFILL_LIMIT
;
2673 l3
= cachep
->nodelists
[numa_node_id()];
2675 BUG_ON(ac
->avail
> 0 || !l3
);
2676 spin_lock(&l3
->list_lock
);
2679 struct array_cache
*shared_array
= l3
->shared
;
2680 if (shared_array
->avail
) {
2681 if (batchcount
> shared_array
->avail
)
2682 batchcount
= shared_array
->avail
;
2683 shared_array
->avail
-= batchcount
;
2684 ac
->avail
= batchcount
;
2686 &(shared_array
->entry
[shared_array
->avail
]),
2687 sizeof(void *) * batchcount
);
2688 shared_array
->touched
= 1;
2692 while (batchcount
> 0) {
2693 struct list_head
*entry
;
2695 /* Get slab alloc is to come from. */
2696 entry
= l3
->slabs_partial
.next
;
2697 if (entry
== &l3
->slabs_partial
) {
2698 l3
->free_touched
= 1;
2699 entry
= l3
->slabs_free
.next
;
2700 if (entry
== &l3
->slabs_free
)
2704 slabp
= list_entry(entry
, struct slab
, list
);
2705 check_slabp(cachep
, slabp
);
2706 check_spinlock_acquired(cachep
);
2707 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2708 STATS_INC_ALLOCED(cachep
);
2709 STATS_INC_ACTIVE(cachep
);
2710 STATS_SET_HIGH(cachep
);
2712 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2715 check_slabp(cachep
, slabp
);
2717 /* move slabp to correct slabp list: */
2718 list_del(&slabp
->list
);
2719 if (slabp
->free
== BUFCTL_END
)
2720 list_add(&slabp
->list
, &l3
->slabs_full
);
2722 list_add(&slabp
->list
, &l3
->slabs_partial
);
2726 l3
->free_objects
-= ac
->avail
;
2728 spin_unlock(&l3
->list_lock
);
2730 if (unlikely(!ac
->avail
)) {
2732 x
= cache_grow(cachep
, flags
, numa_node_id());
2734 /* cache_grow can reenable interrupts, then ac could change. */
2735 ac
= cpu_cache_get(cachep
);
2736 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2739 if (!ac
->avail
) /* objects refilled by interrupt? */
2743 return ac
->entry
[--ac
->avail
];
2746 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2749 might_sleep_if(flags
& __GFP_WAIT
);
2751 kmem_flagcheck(cachep
, flags
);
2756 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2757 gfp_t flags
, void *objp
, void *caller
)
2761 if (cachep
->flags
& SLAB_POISON
) {
2762 #ifdef CONFIG_DEBUG_PAGEALLOC
2763 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2764 kernel_map_pages(virt_to_page(objp
),
2765 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2767 check_poison_obj(cachep
, objp
);
2769 check_poison_obj(cachep
, objp
);
2771 poison_obj(cachep
, objp
, POISON_INUSE
);
2773 if (cachep
->flags
& SLAB_STORE_USER
)
2774 *dbg_userword(cachep
, objp
) = caller
;
2776 if (cachep
->flags
& SLAB_RED_ZONE
) {
2777 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2778 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2779 slab_error(cachep
, "double free, or memory outside"
2780 " object was overwritten");
2782 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2783 objp
, *dbg_redzone1(cachep
, objp
),
2784 *dbg_redzone2(cachep
, objp
));
2786 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2787 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2789 objp
+= obj_offset(cachep
);
2790 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2791 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2793 if (!(flags
& __GFP_WAIT
))
2794 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2796 cachep
->ctor(objp
, cachep
, ctor_flags
);
2801 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2804 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2807 struct array_cache
*ac
;
2810 if (unlikely(current
->mempolicy
&& !in_interrupt())) {
2811 int nid
= slab_node(current
->mempolicy
);
2813 if (nid
!= numa_node_id())
2814 return __cache_alloc_node(cachep
, flags
, nid
);
2819 ac
= cpu_cache_get(cachep
);
2820 if (likely(ac
->avail
)) {
2821 STATS_INC_ALLOCHIT(cachep
);
2823 objp
= ac
->entry
[--ac
->avail
];
2825 STATS_INC_ALLOCMISS(cachep
);
2826 objp
= cache_alloc_refill(cachep
, flags
);
2831 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
2832 gfp_t flags
, void *caller
)
2834 unsigned long save_flags
;
2837 cache_alloc_debugcheck_before(cachep
, flags
);
2839 local_irq_save(save_flags
);
2840 objp
= ____cache_alloc(cachep
, flags
);
2841 local_irq_restore(save_flags
);
2842 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2850 * A interface to enable slab creation on nodeid
2852 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
2855 struct list_head
*entry
;
2857 struct kmem_list3
*l3
;
2861 l3
= cachep
->nodelists
[nodeid
];
2866 spin_lock(&l3
->list_lock
);
2867 entry
= l3
->slabs_partial
.next
;
2868 if (entry
== &l3
->slabs_partial
) {
2869 l3
->free_touched
= 1;
2870 entry
= l3
->slabs_free
.next
;
2871 if (entry
== &l3
->slabs_free
)
2875 slabp
= list_entry(entry
, struct slab
, list
);
2876 check_spinlock_acquired_node(cachep
, nodeid
);
2877 check_slabp(cachep
, slabp
);
2879 STATS_INC_NODEALLOCS(cachep
);
2880 STATS_INC_ACTIVE(cachep
);
2881 STATS_SET_HIGH(cachep
);
2883 BUG_ON(slabp
->inuse
== cachep
->num
);
2885 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
2886 check_slabp(cachep
, slabp
);
2888 /* move slabp to correct slabp list: */
2889 list_del(&slabp
->list
);
2891 if (slabp
->free
== BUFCTL_END
)
2892 list_add(&slabp
->list
, &l3
->slabs_full
);
2894 list_add(&slabp
->list
, &l3
->slabs_partial
);
2896 spin_unlock(&l3
->list_lock
);
2900 spin_unlock(&l3
->list_lock
);
2901 x
= cache_grow(cachep
, flags
, nodeid
);
2913 * Caller needs to acquire correct kmem_list's list_lock
2915 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
2919 struct kmem_list3
*l3
;
2921 for (i
= 0; i
< nr_objects
; i
++) {
2922 void *objp
= objpp
[i
];
2925 slabp
= virt_to_slab(objp
);
2926 l3
= cachep
->nodelists
[node
];
2927 list_del(&slabp
->list
);
2928 check_spinlock_acquired_node(cachep
, node
);
2929 check_slabp(cachep
, slabp
);
2930 slab_put_obj(cachep
, slabp
, objp
, node
);
2931 STATS_DEC_ACTIVE(cachep
);
2933 check_slabp(cachep
, slabp
);
2935 /* fixup slab chains */
2936 if (slabp
->inuse
== 0) {
2937 if (l3
->free_objects
> l3
->free_limit
) {
2938 l3
->free_objects
-= cachep
->num
;
2939 slab_destroy(cachep
, slabp
);
2941 list_add(&slabp
->list
, &l3
->slabs_free
);
2944 /* Unconditionally move a slab to the end of the
2945 * partial list on free - maximum time for the
2946 * other objects to be freed, too.
2948 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
2953 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
2956 struct kmem_list3
*l3
;
2957 int node
= numa_node_id();
2959 batchcount
= ac
->batchcount
;
2961 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2964 l3
= cachep
->nodelists
[node
];
2965 spin_lock(&l3
->list_lock
);
2967 struct array_cache
*shared_array
= l3
->shared
;
2968 int max
= shared_array
->limit
- shared_array
->avail
;
2970 if (batchcount
> max
)
2972 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
2973 ac
->entry
, sizeof(void *) * batchcount
);
2974 shared_array
->avail
+= batchcount
;
2979 free_block(cachep
, ac
->entry
, batchcount
, node
);
2984 struct list_head
*p
;
2986 p
= l3
->slabs_free
.next
;
2987 while (p
!= &(l3
->slabs_free
)) {
2990 slabp
= list_entry(p
, struct slab
, list
);
2991 BUG_ON(slabp
->inuse
);
2996 STATS_SET_FREEABLE(cachep
, i
);
2999 spin_unlock(&l3
->list_lock
);
3000 ac
->avail
-= batchcount
;
3001 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3005 * Release an obj back to its cache. If the obj has a constructed state, it must
3006 * be in this state _before_ it is released. Called with disabled ints.
3008 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3010 struct array_cache
*ac
= cpu_cache_get(cachep
);
3013 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3015 /* Make sure we are not freeing a object from another
3016 * node to the array cache on this cpu.
3021 slabp
= virt_to_slab(objp
);
3022 if (unlikely(slabp
->nodeid
!= numa_node_id())) {
3023 struct array_cache
*alien
= NULL
;
3024 int nodeid
= slabp
->nodeid
;
3025 struct kmem_list3
*l3
;
3027 l3
= cachep
->nodelists
[numa_node_id()];
3028 STATS_INC_NODEFREES(cachep
);
3029 if (l3
->alien
&& l3
->alien
[nodeid
]) {
3030 alien
= l3
->alien
[nodeid
];
3031 spin_lock(&alien
->lock
);
3032 if (unlikely(alien
->avail
== alien
->limit
))
3033 __drain_alien_cache(cachep
,
3035 alien
->entry
[alien
->avail
++] = objp
;
3036 spin_unlock(&alien
->lock
);
3038 spin_lock(&(cachep
->nodelists
[nodeid
])->
3040 free_block(cachep
, &objp
, 1, nodeid
);
3041 spin_unlock(&(cachep
->nodelists
[nodeid
])->
3048 if (likely(ac
->avail
< ac
->limit
)) {
3049 STATS_INC_FREEHIT(cachep
);
3050 ac
->entry
[ac
->avail
++] = objp
;
3053 STATS_INC_FREEMISS(cachep
);
3054 cache_flusharray(cachep
, ac
);
3055 ac
->entry
[ac
->avail
++] = objp
;
3060 * kmem_cache_alloc - Allocate an object
3061 * @cachep: The cache to allocate from.
3062 * @flags: See kmalloc().
3064 * Allocate an object from this cache. The flags are only relevant
3065 * if the cache has no available objects.
3067 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3069 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3071 EXPORT_SYMBOL(kmem_cache_alloc
);
3074 * kmem_ptr_validate - check if an untrusted pointer might
3076 * @cachep: the cache we're checking against
3077 * @ptr: pointer to validate
3079 * This verifies that the untrusted pointer looks sane:
3080 * it is _not_ a guarantee that the pointer is actually
3081 * part of the slab cache in question, but it at least
3082 * validates that the pointer can be dereferenced and
3083 * looks half-way sane.
3085 * Currently only used for dentry validation.
3087 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3089 unsigned long addr
= (unsigned long)ptr
;
3090 unsigned long min_addr
= PAGE_OFFSET
;
3091 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3092 unsigned long size
= cachep
->buffer_size
;
3095 if (unlikely(addr
< min_addr
))
3097 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3099 if (unlikely(addr
& align_mask
))
3101 if (unlikely(!kern_addr_valid(addr
)))
3103 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3105 page
= virt_to_page(ptr
);
3106 if (unlikely(!PageSlab(page
)))
3108 if (unlikely(page_get_cache(page
) != cachep
))
3117 * kmem_cache_alloc_node - Allocate an object on the specified node
3118 * @cachep: The cache to allocate from.
3119 * @flags: See kmalloc().
3120 * @nodeid: node number of the target node.
3122 * Identical to kmem_cache_alloc, except that this function is slow
3123 * and can sleep. And it will allocate memory on the given node, which
3124 * can improve the performance for cpu bound structures.
3125 * New and improved: it will now make sure that the object gets
3126 * put on the correct node list so that there is no false sharing.
3128 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3130 unsigned long save_flags
;
3133 cache_alloc_debugcheck_before(cachep
, flags
);
3134 local_irq_save(save_flags
);
3136 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3137 !cachep
->nodelists
[nodeid
])
3138 ptr
= ____cache_alloc(cachep
, flags
);
3140 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3141 local_irq_restore(save_flags
);
3143 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3144 __builtin_return_address(0));
3148 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3150 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
3152 struct kmem_cache
*cachep
;
3154 cachep
= kmem_find_general_cachep(size
, flags
);
3155 if (unlikely(cachep
== NULL
))
3157 return kmem_cache_alloc_node(cachep
, flags
, node
);
3159 EXPORT_SYMBOL(kmalloc_node
);
3163 * kmalloc - allocate memory
3164 * @size: how many bytes of memory are required.
3165 * @flags: the type of memory to allocate.
3166 * @caller: function caller for debug tracking of the caller
3168 * kmalloc is the normal method of allocating memory
3171 * The @flags argument may be one of:
3173 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3175 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3177 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3179 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3180 * must be suitable for DMA. This can mean different things on different
3181 * platforms. For example, on i386, it means that the memory must come
3182 * from the first 16MB.
3184 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3187 struct kmem_cache
*cachep
;
3189 /* If you want to save a few bytes .text space: replace
3191 * Then kmalloc uses the uninlined functions instead of the inline
3194 cachep
= __find_general_cachep(size
, flags
);
3195 if (unlikely(cachep
== NULL
))
3197 return __cache_alloc(cachep
, flags
, caller
);
3200 #ifndef CONFIG_DEBUG_SLAB
3202 void *__kmalloc(size_t size
, gfp_t flags
)
3204 return __do_kmalloc(size
, flags
, NULL
);
3206 EXPORT_SYMBOL(__kmalloc
);
3210 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3212 return __do_kmalloc(size
, flags
, caller
);
3214 EXPORT_SYMBOL(__kmalloc_track_caller
);
3220 * __alloc_percpu - allocate one copy of the object for every present
3221 * cpu in the system, zeroing them.
3222 * Objects should be dereferenced using the per_cpu_ptr macro only.
3224 * @size: how many bytes of memory are required.
3226 void *__alloc_percpu(size_t size
)
3229 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3235 * Cannot use for_each_online_cpu since a cpu may come online
3236 * and we have no way of figuring out how to fix the array
3237 * that we have allocated then....
3240 int node
= cpu_to_node(i
);
3242 if (node_online(node
))
3243 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3245 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3247 if (!pdata
->ptrs
[i
])
3249 memset(pdata
->ptrs
[i
], 0, size
);
3252 /* Catch derefs w/o wrappers */
3253 return (void *)(~(unsigned long)pdata
);
3257 if (!cpu_possible(i
))
3259 kfree(pdata
->ptrs
[i
]);
3264 EXPORT_SYMBOL(__alloc_percpu
);
3268 * kmem_cache_free - Deallocate an object
3269 * @cachep: The cache the allocation was from.
3270 * @objp: The previously allocated object.
3272 * Free an object which was previously allocated from this
3275 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3277 unsigned long flags
;
3279 local_irq_save(flags
);
3280 __cache_free(cachep
, objp
);
3281 local_irq_restore(flags
);
3283 EXPORT_SYMBOL(kmem_cache_free
);
3286 * kfree - free previously allocated memory
3287 * @objp: pointer returned by kmalloc.
3289 * If @objp is NULL, no operation is performed.
3291 * Don't free memory not originally allocated by kmalloc()
3292 * or you will run into trouble.
3294 void kfree(const void *objp
)
3296 struct kmem_cache
*c
;
3297 unsigned long flags
;
3299 if (unlikely(!objp
))
3301 local_irq_save(flags
);
3302 kfree_debugcheck(objp
);
3303 c
= virt_to_cache(objp
);
3304 mutex_debug_check_no_locks_freed(objp
, obj_size(c
));
3305 __cache_free(c
, (void *)objp
);
3306 local_irq_restore(flags
);
3308 EXPORT_SYMBOL(kfree
);
3312 * free_percpu - free previously allocated percpu memory
3313 * @objp: pointer returned by alloc_percpu.
3315 * Don't free memory not originally allocated by alloc_percpu()
3316 * The complemented objp is to check for that.
3318 void free_percpu(const void *objp
)
3321 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3324 * We allocate for all cpus so we cannot use for online cpu here.
3330 EXPORT_SYMBOL(free_percpu
);
3333 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3335 return obj_size(cachep
);
3337 EXPORT_SYMBOL(kmem_cache_size
);
3339 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3341 return cachep
->name
;
3343 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3346 * This initializes kmem_list3 for all nodes.
3348 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3351 struct kmem_list3
*l3
;
3354 for_each_online_node(node
) {
3355 struct array_cache
*nc
= NULL
, *new;
3356 struct array_cache
**new_alien
= NULL
;
3358 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3362 new = alloc_arraycache(node
, cachep
->shared
*cachep
->batchcount
,
3366 l3
= cachep
->nodelists
[node
];
3368 spin_lock_irq(&l3
->list_lock
);
3370 nc
= cachep
->nodelists
[node
]->shared
;
3372 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
3375 if (!cachep
->nodelists
[node
]->alien
) {
3376 l3
->alien
= new_alien
;
3379 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3380 cachep
->batchcount
+ cachep
->num
;
3381 spin_unlock_irq(&l3
->list_lock
);
3383 free_alien_cache(new_alien
);
3386 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3390 kmem_list3_init(l3
);
3391 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3392 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3394 l3
->alien
= new_alien
;
3395 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3396 cachep
->batchcount
+ cachep
->num
;
3397 cachep
->nodelists
[node
] = l3
;
3405 struct ccupdate_struct
{
3406 struct kmem_cache
*cachep
;
3407 struct array_cache
*new[NR_CPUS
];
3410 static void do_ccupdate_local(void *info
)
3412 struct ccupdate_struct
*new = info
;
3413 struct array_cache
*old
;
3416 old
= cpu_cache_get(new->cachep
);
3418 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3419 new->new[smp_processor_id()] = old
;
3422 /* Always called with the cache_chain_mutex held */
3423 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3424 int batchcount
, int shared
)
3426 struct ccupdate_struct
new;
3429 memset(&new.new, 0, sizeof(new.new));
3430 for_each_online_cpu(i
) {
3431 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3434 for (i
--; i
>= 0; i
--)
3439 new.cachep
= cachep
;
3441 on_each_cpu(do_ccupdate_local
, (void *)&new, 1, 1);
3444 cachep
->batchcount
= batchcount
;
3445 cachep
->limit
= limit
;
3446 cachep
->shared
= shared
;
3448 for_each_online_cpu(i
) {
3449 struct array_cache
*ccold
= new.new[i
];
3452 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3453 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3454 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3458 err
= alloc_kmemlist(cachep
);
3460 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3461 cachep
->name
, -err
);
3467 /* Called with cache_chain_mutex held always */
3468 static void enable_cpucache(struct kmem_cache
*cachep
)
3474 * The head array serves three purposes:
3475 * - create a LIFO ordering, i.e. return objects that are cache-warm
3476 * - reduce the number of spinlock operations.
3477 * - reduce the number of linked list operations on the slab and
3478 * bufctl chains: array operations are cheaper.
3479 * The numbers are guessed, we should auto-tune as described by
3482 if (cachep
->buffer_size
> 131072)
3484 else if (cachep
->buffer_size
> PAGE_SIZE
)
3486 else if (cachep
->buffer_size
> 1024)
3488 else if (cachep
->buffer_size
> 256)
3494 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3495 * allocation behaviour: Most allocs on one cpu, most free operations
3496 * on another cpu. For these cases, an efficient object passing between
3497 * cpus is necessary. This is provided by a shared array. The array
3498 * replaces Bonwick's magazine layer.
3499 * On uniprocessor, it's functionally equivalent (but less efficient)
3500 * to a larger limit. Thus disabled by default.
3504 if (cachep
->buffer_size
<= PAGE_SIZE
)
3510 * With debugging enabled, large batchcount lead to excessively long
3511 * periods with disabled local interrupts. Limit the batchcount
3516 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3518 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3519 cachep
->name
, -err
);
3523 * Drain an array if it contains any elements taking the l3 lock only if
3524 * necessary. Note that the l3 listlock also protects the array_cache
3525 * if drain_array() is used on the shared array.
3527 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3528 struct array_cache
*ac
, int force
, int node
)
3532 if (!ac
|| !ac
->avail
)
3534 if (ac
->touched
&& !force
) {
3537 spin_lock_irq(&l3
->list_lock
);
3539 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3540 if (tofree
> ac
->avail
)
3541 tofree
= (ac
->avail
+ 1) / 2;
3542 free_block(cachep
, ac
->entry
, tofree
, node
);
3543 ac
->avail
-= tofree
;
3544 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3545 sizeof(void *) * ac
->avail
);
3547 spin_unlock_irq(&l3
->list_lock
);
3552 * cache_reap - Reclaim memory from caches.
3553 * @unused: unused parameter
3555 * Called from workqueue/eventd every few seconds.
3557 * - clear the per-cpu caches for this CPU.
3558 * - return freeable pages to the main free memory pool.
3560 * If we cannot acquire the cache chain mutex then just give up - we'll try
3561 * again on the next iteration.
3563 static void cache_reap(void *unused
)
3565 struct list_head
*walk
;
3566 struct kmem_list3
*l3
;
3567 int node
= numa_node_id();
3569 if (!mutex_trylock(&cache_chain_mutex
)) {
3570 /* Give up. Setup the next iteration. */
3571 schedule_delayed_work(&__get_cpu_var(reap_work
),
3576 list_for_each(walk
, &cache_chain
) {
3577 struct kmem_cache
*searchp
;
3578 struct list_head
*p
;
3582 searchp
= list_entry(walk
, struct kmem_cache
, next
);
3586 * We only take the l3 lock if absolutely necessary and we
3587 * have established with reasonable certainty that
3588 * we can do some work if the lock was obtained.
3590 l3
= searchp
->nodelists
[node
];
3592 reap_alien(searchp
, l3
);
3594 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3597 * These are racy checks but it does not matter
3598 * if we skip one check or scan twice.
3600 if (time_after(l3
->next_reap
, jiffies
))
3603 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3605 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3607 if (l3
->free_touched
) {
3608 l3
->free_touched
= 0;
3612 tofree
= (l3
->free_limit
+ 5 * searchp
->num
- 1) /
3616 * Do not lock if there are no free blocks.
3618 if (list_empty(&l3
->slabs_free
))
3621 spin_lock_irq(&l3
->list_lock
);
3622 p
= l3
->slabs_free
.next
;
3623 if (p
== &(l3
->slabs_free
)) {
3624 spin_unlock_irq(&l3
->list_lock
);
3628 slabp
= list_entry(p
, struct slab
, list
);
3629 BUG_ON(slabp
->inuse
);
3630 list_del(&slabp
->list
);
3631 STATS_INC_REAPED(searchp
);
3634 * Safe to drop the lock. The slab is no longer linked
3635 * to the cache. searchp cannot disappear, we hold
3638 l3
->free_objects
-= searchp
->num
;
3639 spin_unlock_irq(&l3
->list_lock
);
3640 slab_destroy(searchp
, slabp
);
3641 } while (--tofree
> 0);
3646 mutex_unlock(&cache_chain_mutex
);
3648 /* Set up the next iteration */
3649 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3652 #ifdef CONFIG_PROC_FS
3654 static void print_slabinfo_header(struct seq_file
*m
)
3657 * Output format version, so at least we can change it
3658 * without _too_ many complaints.
3661 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3663 seq_puts(m
, "slabinfo - version: 2.1\n");
3665 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3666 "<objperslab> <pagesperslab>");
3667 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3668 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3670 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3671 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3672 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3677 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3680 struct list_head
*p
;
3682 mutex_lock(&cache_chain_mutex
);
3684 print_slabinfo_header(m
);
3685 p
= cache_chain
.next
;
3688 if (p
== &cache_chain
)
3691 return list_entry(p
, struct kmem_cache
, next
);
3694 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3696 struct kmem_cache
*cachep
= p
;
3698 return cachep
->next
.next
== &cache_chain
?
3699 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3702 static void s_stop(struct seq_file
*m
, void *p
)
3704 mutex_unlock(&cache_chain_mutex
);
3707 static int s_show(struct seq_file
*m
, void *p
)
3709 struct kmem_cache
*cachep
= p
;
3710 struct list_head
*q
;
3712 unsigned long active_objs
;
3713 unsigned long num_objs
;
3714 unsigned long active_slabs
= 0;
3715 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3719 struct kmem_list3
*l3
;
3723 for_each_online_node(node
) {
3724 l3
= cachep
->nodelists
[node
];
3729 spin_lock_irq(&l3
->list_lock
);
3731 list_for_each(q
, &l3
->slabs_full
) {
3732 slabp
= list_entry(q
, struct slab
, list
);
3733 if (slabp
->inuse
!= cachep
->num
&& !error
)
3734 error
= "slabs_full accounting error";
3735 active_objs
+= cachep
->num
;
3738 list_for_each(q
, &l3
->slabs_partial
) {
3739 slabp
= list_entry(q
, struct slab
, list
);
3740 if (slabp
->inuse
== cachep
->num
&& !error
)
3741 error
= "slabs_partial inuse accounting error";
3742 if (!slabp
->inuse
&& !error
)
3743 error
= "slabs_partial/inuse accounting error";
3744 active_objs
+= slabp
->inuse
;
3747 list_for_each(q
, &l3
->slabs_free
) {
3748 slabp
= list_entry(q
, struct slab
, list
);
3749 if (slabp
->inuse
&& !error
)
3750 error
= "slabs_free/inuse accounting error";
3753 free_objects
+= l3
->free_objects
;
3755 shared_avail
+= l3
->shared
->avail
;
3757 spin_unlock_irq(&l3
->list_lock
);
3759 num_slabs
+= active_slabs
;
3760 num_objs
= num_slabs
* cachep
->num
;
3761 if (num_objs
- active_objs
!= free_objects
&& !error
)
3762 error
= "free_objects accounting error";
3764 name
= cachep
->name
;
3766 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3768 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3769 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3770 cachep
->num
, (1 << cachep
->gfporder
));
3771 seq_printf(m
, " : tunables %4u %4u %4u",
3772 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3773 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3774 active_slabs
, num_slabs
, shared_avail
);
3777 unsigned long high
= cachep
->high_mark
;
3778 unsigned long allocs
= cachep
->num_allocations
;
3779 unsigned long grown
= cachep
->grown
;
3780 unsigned long reaped
= cachep
->reaped
;
3781 unsigned long errors
= cachep
->errors
;
3782 unsigned long max_freeable
= cachep
->max_freeable
;
3783 unsigned long node_allocs
= cachep
->node_allocs
;
3784 unsigned long node_frees
= cachep
->node_frees
;
3786 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3787 %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3788 reaped
, errors
, max_freeable
, node_allocs
,
3793 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3794 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3795 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3796 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3798 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3799 allochit
, allocmiss
, freehit
, freemiss
);
3807 * slabinfo_op - iterator that generates /proc/slabinfo
3816 * num-pages-per-slab
3817 * + further values on SMP and with statistics enabled
3820 struct seq_operations slabinfo_op
= {
3827 #define MAX_SLABINFO_WRITE 128
3829 * slabinfo_write - Tuning for the slab allocator
3831 * @buffer: user buffer
3832 * @count: data length
3835 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3836 size_t count
, loff_t
*ppos
)
3838 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3839 int limit
, batchcount
, shared
, res
;
3840 struct list_head
*p
;
3842 if (count
> MAX_SLABINFO_WRITE
)
3844 if (copy_from_user(&kbuf
, buffer
, count
))
3846 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3848 tmp
= strchr(kbuf
, ' ');
3853 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3856 /* Find the cache in the chain of caches. */
3857 mutex_lock(&cache_chain_mutex
);
3859 list_for_each(p
, &cache_chain
) {
3860 struct kmem_cache
*cachep
;
3862 cachep
= list_entry(p
, struct kmem_cache
, next
);
3863 if (!strcmp(cachep
->name
, kbuf
)) {
3864 if (limit
< 1 || batchcount
< 1 ||
3865 batchcount
> limit
|| shared
< 0) {
3868 res
= do_tune_cpucache(cachep
, limit
,
3869 batchcount
, shared
);
3874 mutex_unlock(&cache_chain_mutex
);
3882 * ksize - get the actual amount of memory allocated for a given object
3883 * @objp: Pointer to the object
3885 * kmalloc may internally round up allocations and return more memory
3886 * than requested. ksize() can be used to determine the actual amount of
3887 * memory allocated. The caller may use this additional memory, even though
3888 * a smaller amount of memory was initially specified with the kmalloc call.
3889 * The caller must guarantee that objp points to a valid object previously
3890 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3891 * must not be freed during the duration of the call.
3893 unsigned int ksize(const void *objp
)
3895 if (unlikely(objp
== NULL
))
3898 return obj_size(virt_to_cache(objp
));