net: kernel panic in dev_hard_start_xmit: remove faulty software TX time stamping
[linux-2.6/verdex.git] / net / core / dev.c
blob88dc082b47d1c80058eb725ce2e23479496f2cde
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
130 #include "net-sysfs.h"
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138 enum {
139 GRO_MERGED,
140 GRO_MERGED_FREE,
141 GRO_HELD,
142 GRO_NORMAL,
143 GRO_DROP,
147 * The list of packet types we will receive (as opposed to discard)
148 * and the routines to invoke.
150 * Why 16. Because with 16 the only overlap we get on a hash of the
151 * low nibble of the protocol value is RARP/SNAP/X.25.
153 * NOTE: That is no longer true with the addition of VLAN tags. Not
154 * sure which should go first, but I bet it won't make much
155 * difference if we are running VLANs. The good news is that
156 * this protocol won't be in the list unless compiled in, so
157 * the average user (w/out VLANs) will not be adversely affected.
158 * --BLG
160 * 0800 IP
161 * 8100 802.1Q VLAN
162 * 0001 802.3
163 * 0002 AX.25
164 * 0004 802.2
165 * 8035 RARP
166 * 0005 SNAP
167 * 0805 X.25
168 * 0806 ARP
169 * 8137 IPX
170 * 0009 Localtalk
171 * 86DD IPv6
174 #define PTYPE_HASH_SIZE (16)
175 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177 static DEFINE_SPINLOCK(ptype_lock);
178 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
179 static struct list_head ptype_all __read_mostly; /* Taps */
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
185 * Pure readers hold dev_base_lock for reading.
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
200 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
221 struct net *net = dev_net(dev);
223 ASSERT_RTNL();
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
236 ASSERT_RTNL();
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
247 * Our notifier list
250 static RAW_NOTIFIER_HEAD(netdev_chain);
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
259 #ifdef CONFIG_LOCKDEP
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
279 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
296 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
303 int i;
305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
306 if (netdev_lock_type[i] == dev_type)
307 return i;
308 /* the last key is used by default */
309 return ARRAY_SIZE(netdev_lock_type) - 1;
312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
313 unsigned short dev_type)
315 int i;
317 i = netdev_lock_pos(dev_type);
318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
319 netdev_lock_name[i]);
322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
324 int i;
326 i = netdev_lock_pos(dev->type);
327 lockdep_set_class_and_name(&dev->addr_list_lock,
328 &netdev_addr_lock_key[i],
329 netdev_lock_name[i]);
331 #else
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 #endif
341 /*******************************************************************************
343 Protocol management and registration routines
345 *******************************************************************************/
348 * Add a protocol ID to the list. Now that the input handler is
349 * smarter we can dispense with all the messy stuff that used to be
350 * here.
352 * BEWARE!!! Protocol handlers, mangling input packets,
353 * MUST BE last in hash buckets and checking protocol handlers
354 * MUST start from promiscuous ptype_all chain in net_bh.
355 * It is true now, do not change it.
356 * Explanation follows: if protocol handler, mangling packet, will
357 * be the first on list, it is not able to sense, that packet
358 * is cloned and should be copied-on-write, so that it will
359 * change it and subsequent readers will get broken packet.
360 * --ANK (980803)
364 * dev_add_pack - add packet handler
365 * @pt: packet type declaration
367 * Add a protocol handler to the networking stack. The passed &packet_type
368 * is linked into kernel lists and may not be freed until it has been
369 * removed from the kernel lists.
371 * This call does not sleep therefore it can not
372 * guarantee all CPU's that are in middle of receiving packets
373 * will see the new packet type (until the next received packet).
376 void dev_add_pack(struct packet_type *pt)
378 int hash;
380 spin_lock_bh(&ptype_lock);
381 if (pt->type == htons(ETH_P_ALL))
382 list_add_rcu(&pt->list, &ptype_all);
383 else {
384 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
385 list_add_rcu(&pt->list, &ptype_base[hash]);
387 spin_unlock_bh(&ptype_lock);
391 * __dev_remove_pack - remove packet handler
392 * @pt: packet type declaration
394 * Remove a protocol handler that was previously added to the kernel
395 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
396 * from the kernel lists and can be freed or reused once this function
397 * returns.
399 * The packet type might still be in use by receivers
400 * and must not be freed until after all the CPU's have gone
401 * through a quiescent state.
403 void __dev_remove_pack(struct packet_type *pt)
405 struct list_head *head;
406 struct packet_type *pt1;
408 spin_lock_bh(&ptype_lock);
410 if (pt->type == htons(ETH_P_ALL))
411 head = &ptype_all;
412 else
413 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
415 list_for_each_entry(pt1, head, list) {
416 if (pt == pt1) {
417 list_del_rcu(&pt->list);
418 goto out;
422 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
423 out:
424 spin_unlock_bh(&ptype_lock);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
442 synchronize_net();
445 /******************************************************************************
447 Device Boot-time Settings Routines
449 *******************************************************************************/
451 /* Boot time configuration table */
452 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455 * netdev_boot_setup_add - add new setup entry
456 * @name: name of the device
457 * @map: configured settings for the device
459 * Adds new setup entry to the dev_boot_setup list. The function
460 * returns 0 on error and 1 on success. This is a generic routine to
461 * all netdevices.
463 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 struct netdev_boot_setup *s;
466 int i;
468 s = dev_boot_setup;
469 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
470 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
471 memset(s[i].name, 0, sizeof(s[i].name));
472 strlcpy(s[i].name, name, IFNAMSIZ);
473 memcpy(&s[i].map, map, sizeof(s[i].map));
474 break;
478 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
482 * netdev_boot_setup_check - check boot time settings
483 * @dev: the netdevice
485 * Check boot time settings for the device.
486 * The found settings are set for the device to be used
487 * later in the device probing.
488 * Returns 0 if no settings found, 1 if they are.
490 int netdev_boot_setup_check(struct net_device *dev)
492 struct netdev_boot_setup *s = dev_boot_setup;
493 int i;
495 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
496 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
497 !strcmp(dev->name, s[i].name)) {
498 dev->irq = s[i].map.irq;
499 dev->base_addr = s[i].map.base_addr;
500 dev->mem_start = s[i].map.mem_start;
501 dev->mem_end = s[i].map.mem_end;
502 return 1;
505 return 0;
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
519 unsigned long netdev_boot_base(const char *prefix, int unit)
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
525 sprintf(name, "%s%d", prefix, unit);
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
541 * Saves at boot time configured settings for any netdevice.
543 int __init netdev_boot_setup(char *str)
545 int ints[5];
546 struct ifmap map;
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
567 __setup("netdev=", netdev_boot_setup);
569 /*******************************************************************************
571 Device Interface Subroutines
573 *******************************************************************************/
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
587 struct net_device *__dev_get_by_name(struct net *net, const char *name)
589 struct hlist_node *p;
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
597 return NULL;
601 * dev_get_by_name - find a device by its name
602 * @net: the applicable net namespace
603 * @name: name to find
605 * Find an interface by name. This can be called from any
606 * context and does its own locking. The returned handle has
607 * the usage count incremented and the caller must use dev_put() to
608 * release it when it is no longer needed. %NULL is returned if no
609 * matching device is found.
612 struct net_device *dev_get_by_name(struct net *net, const char *name)
614 struct net_device *dev;
616 read_lock(&dev_base_lock);
617 dev = __dev_get_by_name(net, name);
618 if (dev)
619 dev_hold(dev);
620 read_unlock(&dev_base_lock);
621 return dev;
625 * __dev_get_by_index - find a device by its ifindex
626 * @net: the applicable net namespace
627 * @ifindex: index of device
629 * Search for an interface by index. Returns %NULL if the device
630 * is not found or a pointer to the device. The device has not
631 * had its reference counter increased so the caller must be careful
632 * about locking. The caller must hold either the RTNL semaphore
633 * or @dev_base_lock.
636 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
638 struct hlist_node *p;
640 hlist_for_each(p, dev_index_hash(net, ifindex)) {
641 struct net_device *dev
642 = hlist_entry(p, struct net_device, index_hlist);
643 if (dev->ifindex == ifindex)
644 return dev;
646 return NULL;
651 * dev_get_by_index - find a device by its ifindex
652 * @net: the applicable net namespace
653 * @ifindex: index of device
655 * Search for an interface by index. Returns NULL if the device
656 * is not found or a pointer to the device. The device returned has
657 * had a reference added and the pointer is safe until the user calls
658 * dev_put to indicate they have finished with it.
661 struct net_device *dev_get_by_index(struct net *net, int ifindex)
663 struct net_device *dev;
665 read_lock(&dev_base_lock);
666 dev = __dev_get_by_index(net, ifindex);
667 if (dev)
668 dev_hold(dev);
669 read_unlock(&dev_base_lock);
670 return dev;
674 * dev_getbyhwaddr - find a device by its hardware address
675 * @net: the applicable net namespace
676 * @type: media type of device
677 * @ha: hardware address
679 * Search for an interface by MAC address. Returns NULL if the device
680 * is not found or a pointer to the device. The caller must hold the
681 * rtnl semaphore. The returned device has not had its ref count increased
682 * and the caller must therefore be careful about locking
684 * BUGS:
685 * If the API was consistent this would be __dev_get_by_hwaddr
688 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
690 struct net_device *dev;
692 ASSERT_RTNL();
694 for_each_netdev(net, dev)
695 if (dev->type == type &&
696 !memcmp(dev->dev_addr, ha, dev->addr_len))
697 return dev;
699 return NULL;
702 EXPORT_SYMBOL(dev_getbyhwaddr);
704 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
706 struct net_device *dev;
708 ASSERT_RTNL();
709 for_each_netdev(net, dev)
710 if (dev->type == type)
711 return dev;
713 return NULL;
716 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
718 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
720 struct net_device *dev;
722 rtnl_lock();
723 dev = __dev_getfirstbyhwtype(net, type);
724 if (dev)
725 dev_hold(dev);
726 rtnl_unlock();
727 return dev;
730 EXPORT_SYMBOL(dev_getfirstbyhwtype);
733 * dev_get_by_flags - find any device with given flags
734 * @net: the applicable net namespace
735 * @if_flags: IFF_* values
736 * @mask: bitmask of bits in if_flags to check
738 * Search for any interface with the given flags. Returns NULL if a device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
744 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
746 struct net_device *dev, *ret;
748 ret = NULL;
749 read_lock(&dev_base_lock);
750 for_each_netdev(net, dev) {
751 if (((dev->flags ^ if_flags) & mask) == 0) {
752 dev_hold(dev);
753 ret = dev;
754 break;
757 read_unlock(&dev_base_lock);
758 return ret;
762 * dev_valid_name - check if name is okay for network device
763 * @name: name string
765 * Network device names need to be valid file names to
766 * to allow sysfs to work. We also disallow any kind of
767 * whitespace.
769 int dev_valid_name(const char *name)
771 if (*name == '\0')
772 return 0;
773 if (strlen(name) >= IFNAMSIZ)
774 return 0;
775 if (!strcmp(name, ".") || !strcmp(name, ".."))
776 return 0;
778 while (*name) {
779 if (*name == '/' || isspace(*name))
780 return 0;
781 name++;
783 return 1;
787 * __dev_alloc_name - allocate a name for a device
788 * @net: network namespace to allocate the device name in
789 * @name: name format string
790 * @buf: scratch buffer and result name string
792 * Passed a format string - eg "lt%d" it will try and find a suitable
793 * id. It scans list of devices to build up a free map, then chooses
794 * the first empty slot. The caller must hold the dev_base or rtnl lock
795 * while allocating the name and adding the device in order to avoid
796 * duplicates.
797 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
798 * Returns the number of the unit assigned or a negative errno code.
801 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
803 int i = 0;
804 const char *p;
805 const int max_netdevices = 8*PAGE_SIZE;
806 unsigned long *inuse;
807 struct net_device *d;
809 p = strnchr(name, IFNAMSIZ-1, '%');
810 if (p) {
812 * Verify the string as this thing may have come from
813 * the user. There must be either one "%d" and no other "%"
814 * characters.
816 if (p[1] != 'd' || strchr(p + 2, '%'))
817 return -EINVAL;
819 /* Use one page as a bit array of possible slots */
820 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
821 if (!inuse)
822 return -ENOMEM;
824 for_each_netdev(net, d) {
825 if (!sscanf(d->name, name, &i))
826 continue;
827 if (i < 0 || i >= max_netdevices)
828 continue;
830 /* avoid cases where sscanf is not exact inverse of printf */
831 snprintf(buf, IFNAMSIZ, name, i);
832 if (!strncmp(buf, d->name, IFNAMSIZ))
833 set_bit(i, inuse);
836 i = find_first_zero_bit(inuse, max_netdevices);
837 free_page((unsigned long) inuse);
840 snprintf(buf, IFNAMSIZ, name, i);
841 if (!__dev_get_by_name(net, buf))
842 return i;
844 /* It is possible to run out of possible slots
845 * when the name is long and there isn't enough space left
846 * for the digits, or if all bits are used.
848 return -ENFILE;
852 * dev_alloc_name - allocate a name for a device
853 * @dev: device
854 * @name: name format string
856 * Passed a format string - eg "lt%d" it will try and find a suitable
857 * id. It scans list of devices to build up a free map, then chooses
858 * the first empty slot. The caller must hold the dev_base or rtnl lock
859 * while allocating the name and adding the device in order to avoid
860 * duplicates.
861 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
862 * Returns the number of the unit assigned or a negative errno code.
865 int dev_alloc_name(struct net_device *dev, const char *name)
867 char buf[IFNAMSIZ];
868 struct net *net;
869 int ret;
871 BUG_ON(!dev_net(dev));
872 net = dev_net(dev);
873 ret = __dev_alloc_name(net, name, buf);
874 if (ret >= 0)
875 strlcpy(dev->name, buf, IFNAMSIZ);
876 return ret;
881 * dev_change_name - change name of a device
882 * @dev: device
883 * @newname: name (or format string) must be at least IFNAMSIZ
885 * Change name of a device, can pass format strings "eth%d".
886 * for wildcarding.
888 int dev_change_name(struct net_device *dev, const char *newname)
890 char oldname[IFNAMSIZ];
891 int err = 0;
892 int ret;
893 struct net *net;
895 ASSERT_RTNL();
896 BUG_ON(!dev_net(dev));
898 net = dev_net(dev);
899 if (dev->flags & IFF_UP)
900 return -EBUSY;
902 if (!dev_valid_name(newname))
903 return -EINVAL;
905 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
906 return 0;
908 memcpy(oldname, dev->name, IFNAMSIZ);
910 if (strchr(newname, '%')) {
911 err = dev_alloc_name(dev, newname);
912 if (err < 0)
913 return err;
915 else if (__dev_get_by_name(net, newname))
916 return -EEXIST;
917 else
918 strlcpy(dev->name, newname, IFNAMSIZ);
920 rollback:
921 /* For now only devices in the initial network namespace
922 * are in sysfs.
924 if (net == &init_net) {
925 ret = device_rename(&dev->dev, dev->name);
926 if (ret) {
927 memcpy(dev->name, oldname, IFNAMSIZ);
928 return ret;
932 write_lock_bh(&dev_base_lock);
933 hlist_del(&dev->name_hlist);
934 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
935 write_unlock_bh(&dev_base_lock);
937 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
938 ret = notifier_to_errno(ret);
940 if (ret) {
941 if (err) {
942 printk(KERN_ERR
943 "%s: name change rollback failed: %d.\n",
944 dev->name, ret);
945 } else {
946 err = ret;
947 memcpy(dev->name, oldname, IFNAMSIZ);
948 goto rollback;
952 return err;
956 * dev_set_alias - change ifalias of a device
957 * @dev: device
958 * @alias: name up to IFALIASZ
959 * @len: limit of bytes to copy from info
961 * Set ifalias for a device,
963 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
965 ASSERT_RTNL();
967 if (len >= IFALIASZ)
968 return -EINVAL;
970 if (!len) {
971 if (dev->ifalias) {
972 kfree(dev->ifalias);
973 dev->ifalias = NULL;
975 return 0;
978 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
979 if (!dev->ifalias)
980 return -ENOMEM;
982 strlcpy(dev->ifalias, alias, len+1);
983 return len;
988 * netdev_features_change - device changes features
989 * @dev: device to cause notification
991 * Called to indicate a device has changed features.
993 void netdev_features_change(struct net_device *dev)
995 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
997 EXPORT_SYMBOL(netdev_features_change);
1000 * netdev_state_change - device changes state
1001 * @dev: device to cause notification
1003 * Called to indicate a device has changed state. This function calls
1004 * the notifier chains for netdev_chain and sends a NEWLINK message
1005 * to the routing socket.
1007 void netdev_state_change(struct net_device *dev)
1009 if (dev->flags & IFF_UP) {
1010 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1011 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1015 void netdev_bonding_change(struct net_device *dev)
1017 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1019 EXPORT_SYMBOL(netdev_bonding_change);
1022 * dev_load - load a network module
1023 * @net: the applicable net namespace
1024 * @name: name of interface
1026 * If a network interface is not present and the process has suitable
1027 * privileges this function loads the module. If module loading is not
1028 * available in this kernel then it becomes a nop.
1031 void dev_load(struct net *net, const char *name)
1033 struct net_device *dev;
1035 read_lock(&dev_base_lock);
1036 dev = __dev_get_by_name(net, name);
1037 read_unlock(&dev_base_lock);
1039 if (!dev && capable(CAP_SYS_MODULE))
1040 request_module("%s", name);
1044 * dev_open - prepare an interface for use.
1045 * @dev: device to open
1047 * Takes a device from down to up state. The device's private open
1048 * function is invoked and then the multicast lists are loaded. Finally
1049 * the device is moved into the up state and a %NETDEV_UP message is
1050 * sent to the netdev notifier chain.
1052 * Calling this function on an active interface is a nop. On a failure
1053 * a negative errno code is returned.
1055 int dev_open(struct net_device *dev)
1057 const struct net_device_ops *ops = dev->netdev_ops;
1058 int ret = 0;
1060 ASSERT_RTNL();
1063 * Is it already up?
1066 if (dev->flags & IFF_UP)
1067 return 0;
1070 * Is it even present?
1072 if (!netif_device_present(dev))
1073 return -ENODEV;
1076 * Call device private open method
1078 set_bit(__LINK_STATE_START, &dev->state);
1080 if (ops->ndo_validate_addr)
1081 ret = ops->ndo_validate_addr(dev);
1083 if (!ret && ops->ndo_open)
1084 ret = ops->ndo_open(dev);
1087 * If it went open OK then:
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1094 * Set the flags.
1096 dev->flags |= IFF_UP;
1099 * Enable NET_DMA
1101 net_dmaengine_get();
1104 * Initialize multicasting status
1106 dev_set_rx_mode(dev);
1109 * Wakeup transmit queue engine
1111 dev_activate(dev);
1114 * ... and announce new interface.
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1119 return ret;
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1131 int dev_close(struct net_device *dev)
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1136 might_sleep();
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1147 clear_bit(__LINK_STATE_START, &dev->state);
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1157 dev_deactivate(dev);
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1170 * Device is now down.
1173 dev->flags &= ~IFF_UP;
1176 * Tell people we are down
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1181 * Shutdown NET_DMA
1183 net_dmaengine_put();
1185 return 0;
1190 * dev_disable_lro - disable Large Receive Offload on a device
1191 * @dev: device
1193 * Disable Large Receive Offload (LRO) on a net device. Must be
1194 * called under RTNL. This is needed if received packets may be
1195 * forwarded to another interface.
1197 void dev_disable_lro(struct net_device *dev)
1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1200 dev->ethtool_ops->set_flags) {
1201 u32 flags = dev->ethtool_ops->get_flags(dev);
1202 if (flags & ETH_FLAG_LRO) {
1203 flags &= ~ETH_FLAG_LRO;
1204 dev->ethtool_ops->set_flags(dev, flags);
1207 WARN_ON(dev->features & NETIF_F_LRO);
1209 EXPORT_SYMBOL(dev_disable_lro);
1212 static int dev_boot_phase = 1;
1215 * Device change register/unregister. These are not inline or static
1216 * as we export them to the world.
1220 * register_netdevice_notifier - register a network notifier block
1221 * @nb: notifier
1223 * Register a notifier to be called when network device events occur.
1224 * The notifier passed is linked into the kernel structures and must
1225 * not be reused until it has been unregistered. A negative errno code
1226 * is returned on a failure.
1228 * When registered all registration and up events are replayed
1229 * to the new notifier to allow device to have a race free
1230 * view of the network device list.
1233 int register_netdevice_notifier(struct notifier_block *nb)
1235 struct net_device *dev;
1236 struct net_device *last;
1237 struct net *net;
1238 int err;
1240 rtnl_lock();
1241 err = raw_notifier_chain_register(&netdev_chain, nb);
1242 if (err)
1243 goto unlock;
1244 if (dev_boot_phase)
1245 goto unlock;
1246 for_each_net(net) {
1247 for_each_netdev(net, dev) {
1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1249 err = notifier_to_errno(err);
1250 if (err)
1251 goto rollback;
1253 if (!(dev->flags & IFF_UP))
1254 continue;
1256 nb->notifier_call(nb, NETDEV_UP, dev);
1260 unlock:
1261 rtnl_unlock();
1262 return err;
1264 rollback:
1265 last = dev;
1266 for_each_net(net) {
1267 for_each_netdev(net, dev) {
1268 if (dev == last)
1269 break;
1271 if (dev->flags & IFF_UP) {
1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1273 nb->notifier_call(nb, NETDEV_DOWN, dev);
1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1279 raw_notifier_chain_unregister(&netdev_chain, nb);
1280 goto unlock;
1284 * unregister_netdevice_notifier - unregister a network notifier block
1285 * @nb: notifier
1287 * Unregister a notifier previously registered by
1288 * register_netdevice_notifier(). The notifier is unlinked into the
1289 * kernel structures and may then be reused. A negative errno code
1290 * is returned on a failure.
1293 int unregister_netdevice_notifier(struct notifier_block *nb)
1295 int err;
1297 rtnl_lock();
1298 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1299 rtnl_unlock();
1300 return err;
1304 * call_netdevice_notifiers - call all network notifier blocks
1305 * @val: value passed unmodified to notifier function
1306 * @dev: net_device pointer passed unmodified to notifier function
1308 * Call all network notifier blocks. Parameters and return value
1309 * are as for raw_notifier_call_chain().
1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1314 return raw_notifier_call_chain(&netdev_chain, val, dev);
1317 /* When > 0 there are consumers of rx skb time stamps */
1318 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1320 void net_enable_timestamp(void)
1322 atomic_inc(&netstamp_needed);
1325 void net_disable_timestamp(void)
1327 atomic_dec(&netstamp_needed);
1330 static inline void net_timestamp(struct sk_buff *skb)
1332 if (atomic_read(&netstamp_needed))
1333 __net_timestamp(skb);
1334 else
1335 skb->tstamp.tv64 = 0;
1339 * Support routine. Sends outgoing frames to any network
1340 * taps currently in use.
1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1345 struct packet_type *ptype;
1347 net_timestamp(skb);
1349 rcu_read_lock();
1350 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1351 /* Never send packets back to the socket
1352 * they originated from - MvS (miquels@drinkel.ow.org)
1354 if ((ptype->dev == dev || !ptype->dev) &&
1355 (ptype->af_packet_priv == NULL ||
1356 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1357 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1358 if (!skb2)
1359 break;
1361 /* skb->nh should be correctly
1362 set by sender, so that the second statement is
1363 just protection against buggy protocols.
1365 skb_reset_mac_header(skb2);
1367 if (skb_network_header(skb2) < skb2->data ||
1368 skb2->network_header > skb2->tail) {
1369 if (net_ratelimit())
1370 printk(KERN_CRIT "protocol %04x is "
1371 "buggy, dev %s\n",
1372 skb2->protocol, dev->name);
1373 skb_reset_network_header(skb2);
1376 skb2->transport_header = skb2->network_header;
1377 skb2->pkt_type = PACKET_OUTGOING;
1378 ptype->func(skb2, skb->dev, ptype, skb->dev);
1381 rcu_read_unlock();
1385 static inline void __netif_reschedule(struct Qdisc *q)
1387 struct softnet_data *sd;
1388 unsigned long flags;
1390 local_irq_save(flags);
1391 sd = &__get_cpu_var(softnet_data);
1392 q->next_sched = sd->output_queue;
1393 sd->output_queue = q;
1394 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1395 local_irq_restore(flags);
1398 void __netif_schedule(struct Qdisc *q)
1400 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1401 __netif_reschedule(q);
1403 EXPORT_SYMBOL(__netif_schedule);
1405 void dev_kfree_skb_irq(struct sk_buff *skb)
1407 if (atomic_dec_and_test(&skb->users)) {
1408 struct softnet_data *sd;
1409 unsigned long flags;
1411 local_irq_save(flags);
1412 sd = &__get_cpu_var(softnet_data);
1413 skb->next = sd->completion_queue;
1414 sd->completion_queue = skb;
1415 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1416 local_irq_restore(flags);
1419 EXPORT_SYMBOL(dev_kfree_skb_irq);
1421 void dev_kfree_skb_any(struct sk_buff *skb)
1423 if (in_irq() || irqs_disabled())
1424 dev_kfree_skb_irq(skb);
1425 else
1426 dev_kfree_skb(skb);
1428 EXPORT_SYMBOL(dev_kfree_skb_any);
1432 * netif_device_detach - mark device as removed
1433 * @dev: network device
1435 * Mark device as removed from system and therefore no longer available.
1437 void netif_device_detach(struct net_device *dev)
1439 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1440 netif_running(dev)) {
1441 netif_stop_queue(dev);
1444 EXPORT_SYMBOL(netif_device_detach);
1447 * netif_device_attach - mark device as attached
1448 * @dev: network device
1450 * Mark device as attached from system and restart if needed.
1452 void netif_device_attach(struct net_device *dev)
1454 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1455 netif_running(dev)) {
1456 netif_wake_queue(dev);
1457 __netdev_watchdog_up(dev);
1460 EXPORT_SYMBOL(netif_device_attach);
1462 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1464 return ((features & NETIF_F_GEN_CSUM) ||
1465 ((features & NETIF_F_IP_CSUM) &&
1466 protocol == htons(ETH_P_IP)) ||
1467 ((features & NETIF_F_IPV6_CSUM) &&
1468 protocol == htons(ETH_P_IPV6)));
1471 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1473 if (can_checksum_protocol(dev->features, skb->protocol))
1474 return true;
1476 if (skb->protocol == htons(ETH_P_8021Q)) {
1477 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1478 if (can_checksum_protocol(dev->features & dev->vlan_features,
1479 veh->h_vlan_encapsulated_proto))
1480 return true;
1483 return false;
1487 * Invalidate hardware checksum when packet is to be mangled, and
1488 * complete checksum manually on outgoing path.
1490 int skb_checksum_help(struct sk_buff *skb)
1492 __wsum csum;
1493 int ret = 0, offset;
1495 if (skb->ip_summed == CHECKSUM_COMPLETE)
1496 goto out_set_summed;
1498 if (unlikely(skb_shinfo(skb)->gso_size)) {
1499 /* Let GSO fix up the checksum. */
1500 goto out_set_summed;
1503 offset = skb->csum_start - skb_headroom(skb);
1504 BUG_ON(offset >= skb_headlen(skb));
1505 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1507 offset += skb->csum_offset;
1508 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1510 if (skb_cloned(skb) &&
1511 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1512 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1513 if (ret)
1514 goto out;
1517 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1518 out_set_summed:
1519 skb->ip_summed = CHECKSUM_NONE;
1520 out:
1521 return ret;
1525 * skb_gso_segment - Perform segmentation on skb.
1526 * @skb: buffer to segment
1527 * @features: features for the output path (see dev->features)
1529 * This function segments the given skb and returns a list of segments.
1531 * It may return NULL if the skb requires no segmentation. This is
1532 * only possible when GSO is used for verifying header integrity.
1534 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1536 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1537 struct packet_type *ptype;
1538 __be16 type = skb->protocol;
1539 int err;
1541 skb_reset_mac_header(skb);
1542 skb->mac_len = skb->network_header - skb->mac_header;
1543 __skb_pull(skb, skb->mac_len);
1545 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1546 struct net_device *dev = skb->dev;
1547 struct ethtool_drvinfo info = {};
1549 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1550 dev->ethtool_ops->get_drvinfo(dev, &info);
1552 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1553 "ip_summed=%d",
1554 info.driver, dev ? dev->features : 0L,
1555 skb->sk ? skb->sk->sk_route_caps : 0L,
1556 skb->len, skb->data_len, skb->ip_summed);
1558 if (skb_header_cloned(skb) &&
1559 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1560 return ERR_PTR(err);
1563 rcu_read_lock();
1564 list_for_each_entry_rcu(ptype,
1565 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1566 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1567 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1568 err = ptype->gso_send_check(skb);
1569 segs = ERR_PTR(err);
1570 if (err || skb_gso_ok(skb, features))
1571 break;
1572 __skb_push(skb, (skb->data -
1573 skb_network_header(skb)));
1575 segs = ptype->gso_segment(skb, features);
1576 break;
1579 rcu_read_unlock();
1581 __skb_push(skb, skb->data - skb_mac_header(skb));
1583 return segs;
1586 EXPORT_SYMBOL(skb_gso_segment);
1588 /* Take action when hardware reception checksum errors are detected. */
1589 #ifdef CONFIG_BUG
1590 void netdev_rx_csum_fault(struct net_device *dev)
1592 if (net_ratelimit()) {
1593 printk(KERN_ERR "%s: hw csum failure.\n",
1594 dev ? dev->name : "<unknown>");
1595 dump_stack();
1598 EXPORT_SYMBOL(netdev_rx_csum_fault);
1599 #endif
1601 /* Actually, we should eliminate this check as soon as we know, that:
1602 * 1. IOMMU is present and allows to map all the memory.
1603 * 2. No high memory really exists on this machine.
1606 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1608 #ifdef CONFIG_HIGHMEM
1609 int i;
1611 if (dev->features & NETIF_F_HIGHDMA)
1612 return 0;
1614 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1615 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1616 return 1;
1618 #endif
1619 return 0;
1622 struct dev_gso_cb {
1623 void (*destructor)(struct sk_buff *skb);
1626 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1628 static void dev_gso_skb_destructor(struct sk_buff *skb)
1630 struct dev_gso_cb *cb;
1632 do {
1633 struct sk_buff *nskb = skb->next;
1635 skb->next = nskb->next;
1636 nskb->next = NULL;
1637 kfree_skb(nskb);
1638 } while (skb->next);
1640 cb = DEV_GSO_CB(skb);
1641 if (cb->destructor)
1642 cb->destructor(skb);
1646 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1647 * @skb: buffer to segment
1649 * This function segments the given skb and stores the list of segments
1650 * in skb->next.
1652 static int dev_gso_segment(struct sk_buff *skb)
1654 struct net_device *dev = skb->dev;
1655 struct sk_buff *segs;
1656 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1657 NETIF_F_SG : 0);
1659 segs = skb_gso_segment(skb, features);
1661 /* Verifying header integrity only. */
1662 if (!segs)
1663 return 0;
1665 if (IS_ERR(segs))
1666 return PTR_ERR(segs);
1668 skb->next = segs;
1669 DEV_GSO_CB(skb)->destructor = skb->destructor;
1670 skb->destructor = dev_gso_skb_destructor;
1672 return 0;
1675 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1676 struct netdev_queue *txq)
1678 const struct net_device_ops *ops = dev->netdev_ops;
1679 int rc;
1681 prefetch(&dev->netdev_ops->ndo_start_xmit);
1682 if (likely(!skb->next)) {
1683 if (!list_empty(&ptype_all))
1684 dev_queue_xmit_nit(skb, dev);
1686 if (netif_needs_gso(dev, skb)) {
1687 if (unlikely(dev_gso_segment(skb)))
1688 goto out_kfree_skb;
1689 if (skb->next)
1690 goto gso;
1693 rc = ops->ndo_start_xmit(skb, dev);
1695 * TODO: if skb_orphan() was called by
1696 * dev->hard_start_xmit() (for example, the unmodified
1697 * igb driver does that; bnx2 doesn't), then
1698 * skb_tx_software_timestamp() will be unable to send
1699 * back the time stamp.
1701 * How can this be prevented? Always create another
1702 * reference to the socket before calling
1703 * dev->hard_start_xmit()? Prevent that skb_orphan()
1704 * does anything in dev->hard_start_xmit() by clearing
1705 * the skb destructor before the call and restoring it
1706 * afterwards, then doing the skb_orphan() ourselves?
1708 return rc;
1711 gso:
1712 do {
1713 struct sk_buff *nskb = skb->next;
1715 skb->next = nskb->next;
1716 nskb->next = NULL;
1717 rc = ops->ndo_start_xmit(nskb, dev);
1718 if (unlikely(rc)) {
1719 nskb->next = skb->next;
1720 skb->next = nskb;
1721 return rc;
1723 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1724 return NETDEV_TX_BUSY;
1725 } while (skb->next);
1727 skb->destructor = DEV_GSO_CB(skb)->destructor;
1729 out_kfree_skb:
1730 kfree_skb(skb);
1731 return 0;
1734 static u32 skb_tx_hashrnd;
1736 static u16 skb_tx_hash(struct net_device *dev, struct sk_buff *skb)
1738 u32 hash;
1740 if (skb_rx_queue_recorded(skb)) {
1741 hash = skb_get_rx_queue(skb);
1742 } else if (skb->sk && skb->sk->sk_hash) {
1743 hash = skb->sk->sk_hash;
1744 } else
1745 hash = skb->protocol;
1747 hash = jhash_1word(hash, skb_tx_hashrnd);
1749 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1752 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1753 struct sk_buff *skb)
1755 const struct net_device_ops *ops = dev->netdev_ops;
1756 u16 queue_index = 0;
1758 if (ops->ndo_select_queue)
1759 queue_index = ops->ndo_select_queue(dev, skb);
1760 else if (dev->real_num_tx_queues > 1)
1761 queue_index = skb_tx_hash(dev, skb);
1763 skb_set_queue_mapping(skb, queue_index);
1764 return netdev_get_tx_queue(dev, queue_index);
1768 * dev_queue_xmit - transmit a buffer
1769 * @skb: buffer to transmit
1771 * Queue a buffer for transmission to a network device. The caller must
1772 * have set the device and priority and built the buffer before calling
1773 * this function. The function can be called from an interrupt.
1775 * A negative errno code is returned on a failure. A success does not
1776 * guarantee the frame will be transmitted as it may be dropped due
1777 * to congestion or traffic shaping.
1779 * -----------------------------------------------------------------------------------
1780 * I notice this method can also return errors from the queue disciplines,
1781 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1782 * be positive.
1784 * Regardless of the return value, the skb is consumed, so it is currently
1785 * difficult to retry a send to this method. (You can bump the ref count
1786 * before sending to hold a reference for retry if you are careful.)
1788 * When calling this method, interrupts MUST be enabled. This is because
1789 * the BH enable code must have IRQs enabled so that it will not deadlock.
1790 * --BLG
1792 int dev_queue_xmit(struct sk_buff *skb)
1794 struct net_device *dev = skb->dev;
1795 struct netdev_queue *txq;
1796 struct Qdisc *q;
1797 int rc = -ENOMEM;
1799 /* GSO will handle the following emulations directly. */
1800 if (netif_needs_gso(dev, skb))
1801 goto gso;
1803 if (skb_shinfo(skb)->frag_list &&
1804 !(dev->features & NETIF_F_FRAGLIST) &&
1805 __skb_linearize(skb))
1806 goto out_kfree_skb;
1808 /* Fragmented skb is linearized if device does not support SG,
1809 * or if at least one of fragments is in highmem and device
1810 * does not support DMA from it.
1812 if (skb_shinfo(skb)->nr_frags &&
1813 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1814 __skb_linearize(skb))
1815 goto out_kfree_skb;
1817 /* If packet is not checksummed and device does not support
1818 * checksumming for this protocol, complete checksumming here.
1820 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1821 skb_set_transport_header(skb, skb->csum_start -
1822 skb_headroom(skb));
1823 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1824 goto out_kfree_skb;
1827 gso:
1828 /* Disable soft irqs for various locks below. Also
1829 * stops preemption for RCU.
1831 rcu_read_lock_bh();
1833 txq = dev_pick_tx(dev, skb);
1834 q = rcu_dereference(txq->qdisc);
1836 #ifdef CONFIG_NET_CLS_ACT
1837 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1838 #endif
1839 if (q->enqueue) {
1840 spinlock_t *root_lock = qdisc_lock(q);
1842 spin_lock(root_lock);
1844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1845 kfree_skb(skb);
1846 rc = NET_XMIT_DROP;
1847 } else {
1848 rc = qdisc_enqueue_root(skb, q);
1849 qdisc_run(q);
1851 spin_unlock(root_lock);
1853 goto out;
1856 /* The device has no queue. Common case for software devices:
1857 loopback, all the sorts of tunnels...
1859 Really, it is unlikely that netif_tx_lock protection is necessary
1860 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1861 counters.)
1862 However, it is possible, that they rely on protection
1863 made by us here.
1865 Check this and shot the lock. It is not prone from deadlocks.
1866 Either shot noqueue qdisc, it is even simpler 8)
1868 if (dev->flags & IFF_UP) {
1869 int cpu = smp_processor_id(); /* ok because BHs are off */
1871 if (txq->xmit_lock_owner != cpu) {
1873 HARD_TX_LOCK(dev, txq, cpu);
1875 if (!netif_tx_queue_stopped(txq)) {
1876 rc = 0;
1877 if (!dev_hard_start_xmit(skb, dev, txq)) {
1878 HARD_TX_UNLOCK(dev, txq);
1879 goto out;
1882 HARD_TX_UNLOCK(dev, txq);
1883 if (net_ratelimit())
1884 printk(KERN_CRIT "Virtual device %s asks to "
1885 "queue packet!\n", dev->name);
1886 } else {
1887 /* Recursion is detected! It is possible,
1888 * unfortunately */
1889 if (net_ratelimit())
1890 printk(KERN_CRIT "Dead loop on virtual device "
1891 "%s, fix it urgently!\n", dev->name);
1895 rc = -ENETDOWN;
1896 rcu_read_unlock_bh();
1898 out_kfree_skb:
1899 kfree_skb(skb);
1900 return rc;
1901 out:
1902 rcu_read_unlock_bh();
1903 return rc;
1907 /*=======================================================================
1908 Receiver routines
1909 =======================================================================*/
1911 int netdev_max_backlog __read_mostly = 1000;
1912 int netdev_budget __read_mostly = 300;
1913 int weight_p __read_mostly = 64; /* old backlog weight */
1915 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1919 * netif_rx - post buffer to the network code
1920 * @skb: buffer to post
1922 * This function receives a packet from a device driver and queues it for
1923 * the upper (protocol) levels to process. It always succeeds. The buffer
1924 * may be dropped during processing for congestion control or by the
1925 * protocol layers.
1927 * return values:
1928 * NET_RX_SUCCESS (no congestion)
1929 * NET_RX_DROP (packet was dropped)
1933 int netif_rx(struct sk_buff *skb)
1935 struct softnet_data *queue;
1936 unsigned long flags;
1938 /* if netpoll wants it, pretend we never saw it */
1939 if (netpoll_rx(skb))
1940 return NET_RX_DROP;
1942 if (!skb->tstamp.tv64)
1943 net_timestamp(skb);
1946 * The code is rearranged so that the path is the most
1947 * short when CPU is congested, but is still operating.
1949 local_irq_save(flags);
1950 queue = &__get_cpu_var(softnet_data);
1952 __get_cpu_var(netdev_rx_stat).total++;
1953 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1954 if (queue->input_pkt_queue.qlen) {
1955 enqueue:
1956 __skb_queue_tail(&queue->input_pkt_queue, skb);
1957 local_irq_restore(flags);
1958 return NET_RX_SUCCESS;
1961 napi_schedule(&queue->backlog);
1962 goto enqueue;
1965 __get_cpu_var(netdev_rx_stat).dropped++;
1966 local_irq_restore(flags);
1968 kfree_skb(skb);
1969 return NET_RX_DROP;
1972 int netif_rx_ni(struct sk_buff *skb)
1974 int err;
1976 preempt_disable();
1977 err = netif_rx(skb);
1978 if (local_softirq_pending())
1979 do_softirq();
1980 preempt_enable();
1982 return err;
1985 EXPORT_SYMBOL(netif_rx_ni);
1987 static void net_tx_action(struct softirq_action *h)
1989 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1991 if (sd->completion_queue) {
1992 struct sk_buff *clist;
1994 local_irq_disable();
1995 clist = sd->completion_queue;
1996 sd->completion_queue = NULL;
1997 local_irq_enable();
1999 while (clist) {
2000 struct sk_buff *skb = clist;
2001 clist = clist->next;
2003 WARN_ON(atomic_read(&skb->users));
2004 __kfree_skb(skb);
2008 if (sd->output_queue) {
2009 struct Qdisc *head;
2011 local_irq_disable();
2012 head = sd->output_queue;
2013 sd->output_queue = NULL;
2014 local_irq_enable();
2016 while (head) {
2017 struct Qdisc *q = head;
2018 spinlock_t *root_lock;
2020 head = head->next_sched;
2022 root_lock = qdisc_lock(q);
2023 if (spin_trylock(root_lock)) {
2024 smp_mb__before_clear_bit();
2025 clear_bit(__QDISC_STATE_SCHED,
2026 &q->state);
2027 qdisc_run(q);
2028 spin_unlock(root_lock);
2029 } else {
2030 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2031 &q->state)) {
2032 __netif_reschedule(q);
2033 } else {
2034 smp_mb__before_clear_bit();
2035 clear_bit(__QDISC_STATE_SCHED,
2036 &q->state);
2043 static inline int deliver_skb(struct sk_buff *skb,
2044 struct packet_type *pt_prev,
2045 struct net_device *orig_dev)
2047 atomic_inc(&skb->users);
2048 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2051 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2052 /* These hooks defined here for ATM */
2053 struct net_bridge;
2054 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2055 unsigned char *addr);
2056 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2059 * If bridge module is loaded call bridging hook.
2060 * returns NULL if packet was consumed.
2062 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2063 struct sk_buff *skb) __read_mostly;
2064 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2065 struct packet_type **pt_prev, int *ret,
2066 struct net_device *orig_dev)
2068 struct net_bridge_port *port;
2070 if (skb->pkt_type == PACKET_LOOPBACK ||
2071 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2072 return skb;
2074 if (*pt_prev) {
2075 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2076 *pt_prev = NULL;
2079 return br_handle_frame_hook(port, skb);
2081 #else
2082 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2083 #endif
2085 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2086 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2087 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2089 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2090 struct packet_type **pt_prev,
2091 int *ret,
2092 struct net_device *orig_dev)
2094 if (skb->dev->macvlan_port == NULL)
2095 return skb;
2097 if (*pt_prev) {
2098 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2099 *pt_prev = NULL;
2101 return macvlan_handle_frame_hook(skb);
2103 #else
2104 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2105 #endif
2107 #ifdef CONFIG_NET_CLS_ACT
2108 /* TODO: Maybe we should just force sch_ingress to be compiled in
2109 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2110 * a compare and 2 stores extra right now if we dont have it on
2111 * but have CONFIG_NET_CLS_ACT
2112 * NOTE: This doesnt stop any functionality; if you dont have
2113 * the ingress scheduler, you just cant add policies on ingress.
2116 static int ing_filter(struct sk_buff *skb)
2118 struct net_device *dev = skb->dev;
2119 u32 ttl = G_TC_RTTL(skb->tc_verd);
2120 struct netdev_queue *rxq;
2121 int result = TC_ACT_OK;
2122 struct Qdisc *q;
2124 if (MAX_RED_LOOP < ttl++) {
2125 printk(KERN_WARNING
2126 "Redir loop detected Dropping packet (%d->%d)\n",
2127 skb->iif, dev->ifindex);
2128 return TC_ACT_SHOT;
2131 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2132 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2134 rxq = &dev->rx_queue;
2136 q = rxq->qdisc;
2137 if (q != &noop_qdisc) {
2138 spin_lock(qdisc_lock(q));
2139 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2140 result = qdisc_enqueue_root(skb, q);
2141 spin_unlock(qdisc_lock(q));
2144 return result;
2147 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2148 struct packet_type **pt_prev,
2149 int *ret, struct net_device *orig_dev)
2151 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2152 goto out;
2154 if (*pt_prev) {
2155 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2156 *pt_prev = NULL;
2157 } else {
2158 /* Huh? Why does turning on AF_PACKET affect this? */
2159 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2162 switch (ing_filter(skb)) {
2163 case TC_ACT_SHOT:
2164 case TC_ACT_STOLEN:
2165 kfree_skb(skb);
2166 return NULL;
2169 out:
2170 skb->tc_verd = 0;
2171 return skb;
2173 #endif
2176 * netif_nit_deliver - deliver received packets to network taps
2177 * @skb: buffer
2179 * This function is used to deliver incoming packets to network
2180 * taps. It should be used when the normal netif_receive_skb path
2181 * is bypassed, for example because of VLAN acceleration.
2183 void netif_nit_deliver(struct sk_buff *skb)
2185 struct packet_type *ptype;
2187 if (list_empty(&ptype_all))
2188 return;
2190 skb_reset_network_header(skb);
2191 skb_reset_transport_header(skb);
2192 skb->mac_len = skb->network_header - skb->mac_header;
2194 rcu_read_lock();
2195 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2196 if (!ptype->dev || ptype->dev == skb->dev)
2197 deliver_skb(skb, ptype, skb->dev);
2199 rcu_read_unlock();
2203 * netif_receive_skb - process receive buffer from network
2204 * @skb: buffer to process
2206 * netif_receive_skb() is the main receive data processing function.
2207 * It always succeeds. The buffer may be dropped during processing
2208 * for congestion control or by the protocol layers.
2210 * This function may only be called from softirq context and interrupts
2211 * should be enabled.
2213 * Return values (usually ignored):
2214 * NET_RX_SUCCESS: no congestion
2215 * NET_RX_DROP: packet was dropped
2217 int netif_receive_skb(struct sk_buff *skb)
2219 struct packet_type *ptype, *pt_prev;
2220 struct net_device *orig_dev;
2221 struct net_device *null_or_orig;
2222 int ret = NET_RX_DROP;
2223 __be16 type;
2225 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2226 return NET_RX_SUCCESS;
2228 /* if we've gotten here through NAPI, check netpoll */
2229 if (netpoll_receive_skb(skb))
2230 return NET_RX_DROP;
2232 if (!skb->tstamp.tv64)
2233 net_timestamp(skb);
2235 if (!skb->iif)
2236 skb->iif = skb->dev->ifindex;
2238 null_or_orig = NULL;
2239 orig_dev = skb->dev;
2240 if (orig_dev->master) {
2241 if (skb_bond_should_drop(skb))
2242 null_or_orig = orig_dev; /* deliver only exact match */
2243 else
2244 skb->dev = orig_dev->master;
2247 __get_cpu_var(netdev_rx_stat).total++;
2249 skb_reset_network_header(skb);
2250 skb_reset_transport_header(skb);
2251 skb->mac_len = skb->network_header - skb->mac_header;
2253 pt_prev = NULL;
2255 rcu_read_lock();
2257 /* Don't receive packets in an exiting network namespace */
2258 if (!net_alive(dev_net(skb->dev))) {
2259 kfree_skb(skb);
2260 goto out;
2263 #ifdef CONFIG_NET_CLS_ACT
2264 if (skb->tc_verd & TC_NCLS) {
2265 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2266 goto ncls;
2268 #endif
2270 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2271 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2272 ptype->dev == orig_dev) {
2273 if (pt_prev)
2274 ret = deliver_skb(skb, pt_prev, orig_dev);
2275 pt_prev = ptype;
2279 #ifdef CONFIG_NET_CLS_ACT
2280 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2281 if (!skb)
2282 goto out;
2283 ncls:
2284 #endif
2286 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2287 if (!skb)
2288 goto out;
2289 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2290 if (!skb)
2291 goto out;
2293 skb_orphan(skb);
2295 type = skb->protocol;
2296 list_for_each_entry_rcu(ptype,
2297 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2298 if (ptype->type == type &&
2299 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2300 ptype->dev == orig_dev)) {
2301 if (pt_prev)
2302 ret = deliver_skb(skb, pt_prev, orig_dev);
2303 pt_prev = ptype;
2307 if (pt_prev) {
2308 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2309 } else {
2310 kfree_skb(skb);
2311 /* Jamal, now you will not able to escape explaining
2312 * me how you were going to use this. :-)
2314 ret = NET_RX_DROP;
2317 out:
2318 rcu_read_unlock();
2319 return ret;
2322 /* Network device is going away, flush any packets still pending */
2323 static void flush_backlog(void *arg)
2325 struct net_device *dev = arg;
2326 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2327 struct sk_buff *skb, *tmp;
2329 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2330 if (skb->dev == dev) {
2331 __skb_unlink(skb, &queue->input_pkt_queue);
2332 kfree_skb(skb);
2336 static int napi_gro_complete(struct sk_buff *skb)
2338 struct packet_type *ptype;
2339 __be16 type = skb->protocol;
2340 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2341 int err = -ENOENT;
2343 if (NAPI_GRO_CB(skb)->count == 1)
2344 goto out;
2346 rcu_read_lock();
2347 list_for_each_entry_rcu(ptype, head, list) {
2348 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2349 continue;
2351 err = ptype->gro_complete(skb);
2352 break;
2354 rcu_read_unlock();
2356 if (err) {
2357 WARN_ON(&ptype->list == head);
2358 kfree_skb(skb);
2359 return NET_RX_SUCCESS;
2362 out:
2363 skb_shinfo(skb)->gso_size = 0;
2364 return netif_receive_skb(skb);
2367 void napi_gro_flush(struct napi_struct *napi)
2369 struct sk_buff *skb, *next;
2371 for (skb = napi->gro_list; skb; skb = next) {
2372 next = skb->next;
2373 skb->next = NULL;
2374 napi_gro_complete(skb);
2377 napi->gro_count = 0;
2378 napi->gro_list = NULL;
2380 EXPORT_SYMBOL(napi_gro_flush);
2382 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2384 unsigned int offset = skb_gro_offset(skb);
2386 hlen += offset;
2387 if (hlen <= skb_headlen(skb))
2388 return skb->data + offset;
2390 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2391 skb_shinfo(skb)->frags[0].size <=
2392 hlen - skb_headlen(skb) ||
2393 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2394 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2396 return page_address(skb_shinfo(skb)->frags[0].page) +
2397 skb_shinfo(skb)->frags[0].page_offset +
2398 offset - skb_headlen(skb);
2400 EXPORT_SYMBOL(skb_gro_header);
2402 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2404 struct sk_buff **pp = NULL;
2405 struct packet_type *ptype;
2406 __be16 type = skb->protocol;
2407 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2408 int same_flow;
2409 int mac_len;
2410 int ret;
2412 if (!(skb->dev->features & NETIF_F_GRO))
2413 goto normal;
2415 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2416 goto normal;
2418 rcu_read_lock();
2419 list_for_each_entry_rcu(ptype, head, list) {
2420 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2421 continue;
2423 skb_set_network_header(skb, skb_gro_offset(skb));
2424 mac_len = skb->network_header - skb->mac_header;
2425 skb->mac_len = mac_len;
2426 NAPI_GRO_CB(skb)->same_flow = 0;
2427 NAPI_GRO_CB(skb)->flush = 0;
2428 NAPI_GRO_CB(skb)->free = 0;
2430 pp = ptype->gro_receive(&napi->gro_list, skb);
2431 break;
2433 rcu_read_unlock();
2435 if (&ptype->list == head)
2436 goto normal;
2438 same_flow = NAPI_GRO_CB(skb)->same_flow;
2439 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2441 if (pp) {
2442 struct sk_buff *nskb = *pp;
2444 *pp = nskb->next;
2445 nskb->next = NULL;
2446 napi_gro_complete(nskb);
2447 napi->gro_count--;
2450 if (same_flow)
2451 goto ok;
2453 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2454 goto normal;
2456 napi->gro_count++;
2457 NAPI_GRO_CB(skb)->count = 1;
2458 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2459 skb->next = napi->gro_list;
2460 napi->gro_list = skb;
2461 ret = GRO_HELD;
2463 pull:
2464 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2465 if (napi->gro_list == skb)
2466 napi->gro_list = skb->next;
2467 ret = GRO_DROP;
2471 return ret;
2473 normal:
2474 ret = GRO_NORMAL;
2475 goto pull;
2477 EXPORT_SYMBOL(dev_gro_receive);
2479 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2481 struct sk_buff *p;
2483 for (p = napi->gro_list; p; p = p->next) {
2484 NAPI_GRO_CB(p)->same_flow = !compare_ether_header(
2485 skb_mac_header(p), skb_gro_mac_header(skb));
2486 NAPI_GRO_CB(p)->flush = 0;
2489 return dev_gro_receive(napi, skb);
2492 int napi_skb_finish(int ret, struct sk_buff *skb)
2494 int err = NET_RX_SUCCESS;
2496 switch (ret) {
2497 case GRO_NORMAL:
2498 return netif_receive_skb(skb);
2500 case GRO_DROP:
2501 err = NET_RX_DROP;
2502 /* fall through */
2504 case GRO_MERGED_FREE:
2505 kfree_skb(skb);
2506 break;
2509 return err;
2511 EXPORT_SYMBOL(napi_skb_finish);
2513 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2515 skb_gro_reset_offset(skb);
2517 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2519 EXPORT_SYMBOL(napi_gro_receive);
2521 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2523 __skb_pull(skb, skb_headlen(skb));
2524 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2526 napi->skb = skb;
2528 EXPORT_SYMBOL(napi_reuse_skb);
2530 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2531 struct napi_gro_fraginfo *info)
2533 struct net_device *dev = napi->dev;
2534 struct sk_buff *skb = napi->skb;
2535 struct ethhdr *eth;
2536 skb_frag_t *frag;
2537 int i;
2539 napi->skb = NULL;
2541 if (!skb) {
2542 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2543 if (!skb)
2544 goto out;
2546 skb_reserve(skb, NET_IP_ALIGN);
2549 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2550 frag = &info->frags[info->nr_frags - 1];
2552 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) {
2553 skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2554 frag->size);
2555 frag++;
2557 skb_shinfo(skb)->nr_frags = info->nr_frags;
2559 skb->data_len = info->len;
2560 skb->len += info->len;
2561 skb->truesize += info->len;
2563 skb_reset_mac_header(skb);
2564 skb_gro_reset_offset(skb);
2566 eth = skb_gro_header(skb, sizeof(*eth));
2567 if (!eth) {
2568 napi_reuse_skb(napi, skb);
2569 skb = NULL;
2570 goto out;
2573 skb_gro_pull(skb, sizeof(*eth));
2576 * This works because the only protocols we care about don't require
2577 * special handling. We'll fix it up properly at the end.
2579 skb->protocol = eth->h_proto;
2581 skb->ip_summed = info->ip_summed;
2582 skb->csum = info->csum;
2584 out:
2585 return skb;
2587 EXPORT_SYMBOL(napi_fraginfo_skb);
2589 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2591 int err = NET_RX_SUCCESS;
2593 switch (ret) {
2594 case GRO_NORMAL:
2595 case GRO_HELD:
2596 skb->protocol = eth_type_trans(skb, napi->dev);
2598 if (ret == GRO_NORMAL)
2599 return netif_receive_skb(skb);
2601 skb_gro_pull(skb, -ETH_HLEN);
2602 break;
2604 case GRO_DROP:
2605 err = NET_RX_DROP;
2606 /* fall through */
2608 case GRO_MERGED_FREE:
2609 napi_reuse_skb(napi, skb);
2610 break;
2613 return err;
2615 EXPORT_SYMBOL(napi_frags_finish);
2617 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2619 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2621 if (!skb)
2622 return NET_RX_DROP;
2624 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2626 EXPORT_SYMBOL(napi_gro_frags);
2628 static int process_backlog(struct napi_struct *napi, int quota)
2630 int work = 0;
2631 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2632 unsigned long start_time = jiffies;
2634 napi->weight = weight_p;
2635 do {
2636 struct sk_buff *skb;
2638 local_irq_disable();
2639 skb = __skb_dequeue(&queue->input_pkt_queue);
2640 if (!skb) {
2641 __napi_complete(napi);
2642 local_irq_enable();
2643 break;
2645 local_irq_enable();
2647 napi_gro_receive(napi, skb);
2648 } while (++work < quota && jiffies == start_time);
2650 napi_gro_flush(napi);
2652 return work;
2656 * __napi_schedule - schedule for receive
2657 * @n: entry to schedule
2659 * The entry's receive function will be scheduled to run
2661 void __napi_schedule(struct napi_struct *n)
2663 unsigned long flags;
2665 local_irq_save(flags);
2666 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2667 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2668 local_irq_restore(flags);
2670 EXPORT_SYMBOL(__napi_schedule);
2672 void __napi_complete(struct napi_struct *n)
2674 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2675 BUG_ON(n->gro_list);
2677 list_del(&n->poll_list);
2678 smp_mb__before_clear_bit();
2679 clear_bit(NAPI_STATE_SCHED, &n->state);
2681 EXPORT_SYMBOL(__napi_complete);
2683 void napi_complete(struct napi_struct *n)
2685 unsigned long flags;
2688 * don't let napi dequeue from the cpu poll list
2689 * just in case its running on a different cpu
2691 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2692 return;
2694 napi_gro_flush(n);
2695 local_irq_save(flags);
2696 __napi_complete(n);
2697 local_irq_restore(flags);
2699 EXPORT_SYMBOL(napi_complete);
2701 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2702 int (*poll)(struct napi_struct *, int), int weight)
2704 INIT_LIST_HEAD(&napi->poll_list);
2705 napi->gro_count = 0;
2706 napi->gro_list = NULL;
2707 napi->skb = NULL;
2708 napi->poll = poll;
2709 napi->weight = weight;
2710 list_add(&napi->dev_list, &dev->napi_list);
2711 napi->dev = dev;
2712 #ifdef CONFIG_NETPOLL
2713 spin_lock_init(&napi->poll_lock);
2714 napi->poll_owner = -1;
2715 #endif
2716 set_bit(NAPI_STATE_SCHED, &napi->state);
2718 EXPORT_SYMBOL(netif_napi_add);
2720 void netif_napi_del(struct napi_struct *napi)
2722 struct sk_buff *skb, *next;
2724 list_del_init(&napi->dev_list);
2725 kfree(napi->skb);
2727 for (skb = napi->gro_list; skb; skb = next) {
2728 next = skb->next;
2729 skb->next = NULL;
2730 kfree_skb(skb);
2733 napi->gro_list = NULL;
2734 napi->gro_count = 0;
2736 EXPORT_SYMBOL(netif_napi_del);
2739 static void net_rx_action(struct softirq_action *h)
2741 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2742 unsigned long time_limit = jiffies + 2;
2743 int budget = netdev_budget;
2744 void *have;
2746 local_irq_disable();
2748 while (!list_empty(list)) {
2749 struct napi_struct *n;
2750 int work, weight;
2752 /* If softirq window is exhuasted then punt.
2753 * Allow this to run for 2 jiffies since which will allow
2754 * an average latency of 1.5/HZ.
2756 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2757 goto softnet_break;
2759 local_irq_enable();
2761 /* Even though interrupts have been re-enabled, this
2762 * access is safe because interrupts can only add new
2763 * entries to the tail of this list, and only ->poll()
2764 * calls can remove this head entry from the list.
2766 n = list_entry(list->next, struct napi_struct, poll_list);
2768 have = netpoll_poll_lock(n);
2770 weight = n->weight;
2772 /* This NAPI_STATE_SCHED test is for avoiding a race
2773 * with netpoll's poll_napi(). Only the entity which
2774 * obtains the lock and sees NAPI_STATE_SCHED set will
2775 * actually make the ->poll() call. Therefore we avoid
2776 * accidently calling ->poll() when NAPI is not scheduled.
2778 work = 0;
2779 if (test_bit(NAPI_STATE_SCHED, &n->state))
2780 work = n->poll(n, weight);
2782 WARN_ON_ONCE(work > weight);
2784 budget -= work;
2786 local_irq_disable();
2788 /* Drivers must not modify the NAPI state if they
2789 * consume the entire weight. In such cases this code
2790 * still "owns" the NAPI instance and therefore can
2791 * move the instance around on the list at-will.
2793 if (unlikely(work == weight)) {
2794 if (unlikely(napi_disable_pending(n)))
2795 __napi_complete(n);
2796 else
2797 list_move_tail(&n->poll_list, list);
2800 netpoll_poll_unlock(have);
2802 out:
2803 local_irq_enable();
2805 #ifdef CONFIG_NET_DMA
2807 * There may not be any more sk_buffs coming right now, so push
2808 * any pending DMA copies to hardware
2810 dma_issue_pending_all();
2811 #endif
2813 return;
2815 softnet_break:
2816 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2817 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2818 goto out;
2821 static gifconf_func_t * gifconf_list [NPROTO];
2824 * register_gifconf - register a SIOCGIF handler
2825 * @family: Address family
2826 * @gifconf: Function handler
2828 * Register protocol dependent address dumping routines. The handler
2829 * that is passed must not be freed or reused until it has been replaced
2830 * by another handler.
2832 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2834 if (family >= NPROTO)
2835 return -EINVAL;
2836 gifconf_list[family] = gifconf;
2837 return 0;
2842 * Map an interface index to its name (SIOCGIFNAME)
2846 * We need this ioctl for efficient implementation of the
2847 * if_indextoname() function required by the IPv6 API. Without
2848 * it, we would have to search all the interfaces to find a
2849 * match. --pb
2852 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2854 struct net_device *dev;
2855 struct ifreq ifr;
2858 * Fetch the caller's info block.
2861 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2862 return -EFAULT;
2864 read_lock(&dev_base_lock);
2865 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2866 if (!dev) {
2867 read_unlock(&dev_base_lock);
2868 return -ENODEV;
2871 strcpy(ifr.ifr_name, dev->name);
2872 read_unlock(&dev_base_lock);
2874 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2875 return -EFAULT;
2876 return 0;
2880 * Perform a SIOCGIFCONF call. This structure will change
2881 * size eventually, and there is nothing I can do about it.
2882 * Thus we will need a 'compatibility mode'.
2885 static int dev_ifconf(struct net *net, char __user *arg)
2887 struct ifconf ifc;
2888 struct net_device *dev;
2889 char __user *pos;
2890 int len;
2891 int total;
2892 int i;
2895 * Fetch the caller's info block.
2898 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2899 return -EFAULT;
2901 pos = ifc.ifc_buf;
2902 len = ifc.ifc_len;
2905 * Loop over the interfaces, and write an info block for each.
2908 total = 0;
2909 for_each_netdev(net, dev) {
2910 for (i = 0; i < NPROTO; i++) {
2911 if (gifconf_list[i]) {
2912 int done;
2913 if (!pos)
2914 done = gifconf_list[i](dev, NULL, 0);
2915 else
2916 done = gifconf_list[i](dev, pos + total,
2917 len - total);
2918 if (done < 0)
2919 return -EFAULT;
2920 total += done;
2926 * All done. Write the updated control block back to the caller.
2928 ifc.ifc_len = total;
2931 * Both BSD and Solaris return 0 here, so we do too.
2933 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2936 #ifdef CONFIG_PROC_FS
2938 * This is invoked by the /proc filesystem handler to display a device
2939 * in detail.
2941 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2942 __acquires(dev_base_lock)
2944 struct net *net = seq_file_net(seq);
2945 loff_t off;
2946 struct net_device *dev;
2948 read_lock(&dev_base_lock);
2949 if (!*pos)
2950 return SEQ_START_TOKEN;
2952 off = 1;
2953 for_each_netdev(net, dev)
2954 if (off++ == *pos)
2955 return dev;
2957 return NULL;
2960 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2962 struct net *net = seq_file_net(seq);
2963 ++*pos;
2964 return v == SEQ_START_TOKEN ?
2965 first_net_device(net) : next_net_device((struct net_device *)v);
2968 void dev_seq_stop(struct seq_file *seq, void *v)
2969 __releases(dev_base_lock)
2971 read_unlock(&dev_base_lock);
2974 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2976 const struct net_device_stats *stats = dev_get_stats(dev);
2978 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2979 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2980 dev->name, stats->rx_bytes, stats->rx_packets,
2981 stats->rx_errors,
2982 stats->rx_dropped + stats->rx_missed_errors,
2983 stats->rx_fifo_errors,
2984 stats->rx_length_errors + stats->rx_over_errors +
2985 stats->rx_crc_errors + stats->rx_frame_errors,
2986 stats->rx_compressed, stats->multicast,
2987 stats->tx_bytes, stats->tx_packets,
2988 stats->tx_errors, stats->tx_dropped,
2989 stats->tx_fifo_errors, stats->collisions,
2990 stats->tx_carrier_errors +
2991 stats->tx_aborted_errors +
2992 stats->tx_window_errors +
2993 stats->tx_heartbeat_errors,
2994 stats->tx_compressed);
2998 * Called from the PROCfs module. This now uses the new arbitrary sized
2999 * /proc/net interface to create /proc/net/dev
3001 static int dev_seq_show(struct seq_file *seq, void *v)
3003 if (v == SEQ_START_TOKEN)
3004 seq_puts(seq, "Inter-| Receive "
3005 " | Transmit\n"
3006 " face |bytes packets errs drop fifo frame "
3007 "compressed multicast|bytes packets errs "
3008 "drop fifo colls carrier compressed\n");
3009 else
3010 dev_seq_printf_stats(seq, v);
3011 return 0;
3014 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3016 struct netif_rx_stats *rc = NULL;
3018 while (*pos < nr_cpu_ids)
3019 if (cpu_online(*pos)) {
3020 rc = &per_cpu(netdev_rx_stat, *pos);
3021 break;
3022 } else
3023 ++*pos;
3024 return rc;
3027 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3029 return softnet_get_online(pos);
3032 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3034 ++*pos;
3035 return softnet_get_online(pos);
3038 static void softnet_seq_stop(struct seq_file *seq, void *v)
3042 static int softnet_seq_show(struct seq_file *seq, void *v)
3044 struct netif_rx_stats *s = v;
3046 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3047 s->total, s->dropped, s->time_squeeze, 0,
3048 0, 0, 0, 0, /* was fastroute */
3049 s->cpu_collision );
3050 return 0;
3053 static const struct seq_operations dev_seq_ops = {
3054 .start = dev_seq_start,
3055 .next = dev_seq_next,
3056 .stop = dev_seq_stop,
3057 .show = dev_seq_show,
3060 static int dev_seq_open(struct inode *inode, struct file *file)
3062 return seq_open_net(inode, file, &dev_seq_ops,
3063 sizeof(struct seq_net_private));
3066 static const struct file_operations dev_seq_fops = {
3067 .owner = THIS_MODULE,
3068 .open = dev_seq_open,
3069 .read = seq_read,
3070 .llseek = seq_lseek,
3071 .release = seq_release_net,
3074 static const struct seq_operations softnet_seq_ops = {
3075 .start = softnet_seq_start,
3076 .next = softnet_seq_next,
3077 .stop = softnet_seq_stop,
3078 .show = softnet_seq_show,
3081 static int softnet_seq_open(struct inode *inode, struct file *file)
3083 return seq_open(file, &softnet_seq_ops);
3086 static const struct file_operations softnet_seq_fops = {
3087 .owner = THIS_MODULE,
3088 .open = softnet_seq_open,
3089 .read = seq_read,
3090 .llseek = seq_lseek,
3091 .release = seq_release,
3094 static void *ptype_get_idx(loff_t pos)
3096 struct packet_type *pt = NULL;
3097 loff_t i = 0;
3098 int t;
3100 list_for_each_entry_rcu(pt, &ptype_all, list) {
3101 if (i == pos)
3102 return pt;
3103 ++i;
3106 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3107 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3108 if (i == pos)
3109 return pt;
3110 ++i;
3113 return NULL;
3116 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3117 __acquires(RCU)
3119 rcu_read_lock();
3120 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3123 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3125 struct packet_type *pt;
3126 struct list_head *nxt;
3127 int hash;
3129 ++*pos;
3130 if (v == SEQ_START_TOKEN)
3131 return ptype_get_idx(0);
3133 pt = v;
3134 nxt = pt->list.next;
3135 if (pt->type == htons(ETH_P_ALL)) {
3136 if (nxt != &ptype_all)
3137 goto found;
3138 hash = 0;
3139 nxt = ptype_base[0].next;
3140 } else
3141 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3143 while (nxt == &ptype_base[hash]) {
3144 if (++hash >= PTYPE_HASH_SIZE)
3145 return NULL;
3146 nxt = ptype_base[hash].next;
3148 found:
3149 return list_entry(nxt, struct packet_type, list);
3152 static void ptype_seq_stop(struct seq_file *seq, void *v)
3153 __releases(RCU)
3155 rcu_read_unlock();
3158 static int ptype_seq_show(struct seq_file *seq, void *v)
3160 struct packet_type *pt = v;
3162 if (v == SEQ_START_TOKEN)
3163 seq_puts(seq, "Type Device Function\n");
3164 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3165 if (pt->type == htons(ETH_P_ALL))
3166 seq_puts(seq, "ALL ");
3167 else
3168 seq_printf(seq, "%04x", ntohs(pt->type));
3170 seq_printf(seq, " %-8s %pF\n",
3171 pt->dev ? pt->dev->name : "", pt->func);
3174 return 0;
3177 static const struct seq_operations ptype_seq_ops = {
3178 .start = ptype_seq_start,
3179 .next = ptype_seq_next,
3180 .stop = ptype_seq_stop,
3181 .show = ptype_seq_show,
3184 static int ptype_seq_open(struct inode *inode, struct file *file)
3186 return seq_open_net(inode, file, &ptype_seq_ops,
3187 sizeof(struct seq_net_private));
3190 static const struct file_operations ptype_seq_fops = {
3191 .owner = THIS_MODULE,
3192 .open = ptype_seq_open,
3193 .read = seq_read,
3194 .llseek = seq_lseek,
3195 .release = seq_release_net,
3199 static int __net_init dev_proc_net_init(struct net *net)
3201 int rc = -ENOMEM;
3203 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3204 goto out;
3205 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3206 goto out_dev;
3207 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3208 goto out_softnet;
3210 if (wext_proc_init(net))
3211 goto out_ptype;
3212 rc = 0;
3213 out:
3214 return rc;
3215 out_ptype:
3216 proc_net_remove(net, "ptype");
3217 out_softnet:
3218 proc_net_remove(net, "softnet_stat");
3219 out_dev:
3220 proc_net_remove(net, "dev");
3221 goto out;
3224 static void __net_exit dev_proc_net_exit(struct net *net)
3226 wext_proc_exit(net);
3228 proc_net_remove(net, "ptype");
3229 proc_net_remove(net, "softnet_stat");
3230 proc_net_remove(net, "dev");
3233 static struct pernet_operations __net_initdata dev_proc_ops = {
3234 .init = dev_proc_net_init,
3235 .exit = dev_proc_net_exit,
3238 static int __init dev_proc_init(void)
3240 return register_pernet_subsys(&dev_proc_ops);
3242 #else
3243 #define dev_proc_init() 0
3244 #endif /* CONFIG_PROC_FS */
3248 * netdev_set_master - set up master/slave pair
3249 * @slave: slave device
3250 * @master: new master device
3252 * Changes the master device of the slave. Pass %NULL to break the
3253 * bonding. The caller must hold the RTNL semaphore. On a failure
3254 * a negative errno code is returned. On success the reference counts
3255 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3256 * function returns zero.
3258 int netdev_set_master(struct net_device *slave, struct net_device *master)
3260 struct net_device *old = slave->master;
3262 ASSERT_RTNL();
3264 if (master) {
3265 if (old)
3266 return -EBUSY;
3267 dev_hold(master);
3270 slave->master = master;
3272 synchronize_net();
3274 if (old)
3275 dev_put(old);
3277 if (master)
3278 slave->flags |= IFF_SLAVE;
3279 else
3280 slave->flags &= ~IFF_SLAVE;
3282 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3283 return 0;
3286 static void dev_change_rx_flags(struct net_device *dev, int flags)
3288 const struct net_device_ops *ops = dev->netdev_ops;
3290 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3291 ops->ndo_change_rx_flags(dev, flags);
3294 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3296 unsigned short old_flags = dev->flags;
3297 uid_t uid;
3298 gid_t gid;
3300 ASSERT_RTNL();
3302 dev->flags |= IFF_PROMISC;
3303 dev->promiscuity += inc;
3304 if (dev->promiscuity == 0) {
3306 * Avoid overflow.
3307 * If inc causes overflow, untouch promisc and return error.
3309 if (inc < 0)
3310 dev->flags &= ~IFF_PROMISC;
3311 else {
3312 dev->promiscuity -= inc;
3313 printk(KERN_WARNING "%s: promiscuity touches roof, "
3314 "set promiscuity failed, promiscuity feature "
3315 "of device might be broken.\n", dev->name);
3316 return -EOVERFLOW;
3319 if (dev->flags != old_flags) {
3320 printk(KERN_INFO "device %s %s promiscuous mode\n",
3321 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3322 "left");
3323 if (audit_enabled) {
3324 current_uid_gid(&uid, &gid);
3325 audit_log(current->audit_context, GFP_ATOMIC,
3326 AUDIT_ANOM_PROMISCUOUS,
3327 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3328 dev->name, (dev->flags & IFF_PROMISC),
3329 (old_flags & IFF_PROMISC),
3330 audit_get_loginuid(current),
3331 uid, gid,
3332 audit_get_sessionid(current));
3335 dev_change_rx_flags(dev, IFF_PROMISC);
3337 return 0;
3341 * dev_set_promiscuity - update promiscuity count on a device
3342 * @dev: device
3343 * @inc: modifier
3345 * Add or remove promiscuity from a device. While the count in the device
3346 * remains above zero the interface remains promiscuous. Once it hits zero
3347 * the device reverts back to normal filtering operation. A negative inc
3348 * value is used to drop promiscuity on the device.
3349 * Return 0 if successful or a negative errno code on error.
3351 int dev_set_promiscuity(struct net_device *dev, int inc)
3353 unsigned short old_flags = dev->flags;
3354 int err;
3356 err = __dev_set_promiscuity(dev, inc);
3357 if (err < 0)
3358 return err;
3359 if (dev->flags != old_flags)
3360 dev_set_rx_mode(dev);
3361 return err;
3365 * dev_set_allmulti - update allmulti count on a device
3366 * @dev: device
3367 * @inc: modifier
3369 * Add or remove reception of all multicast frames to a device. While the
3370 * count in the device remains above zero the interface remains listening
3371 * to all interfaces. Once it hits zero the device reverts back to normal
3372 * filtering operation. A negative @inc value is used to drop the counter
3373 * when releasing a resource needing all multicasts.
3374 * Return 0 if successful or a negative errno code on error.
3377 int dev_set_allmulti(struct net_device *dev, int inc)
3379 unsigned short old_flags = dev->flags;
3381 ASSERT_RTNL();
3383 dev->flags |= IFF_ALLMULTI;
3384 dev->allmulti += inc;
3385 if (dev->allmulti == 0) {
3387 * Avoid overflow.
3388 * If inc causes overflow, untouch allmulti and return error.
3390 if (inc < 0)
3391 dev->flags &= ~IFF_ALLMULTI;
3392 else {
3393 dev->allmulti -= inc;
3394 printk(KERN_WARNING "%s: allmulti touches roof, "
3395 "set allmulti failed, allmulti feature of "
3396 "device might be broken.\n", dev->name);
3397 return -EOVERFLOW;
3400 if (dev->flags ^ old_flags) {
3401 dev_change_rx_flags(dev, IFF_ALLMULTI);
3402 dev_set_rx_mode(dev);
3404 return 0;
3408 * Upload unicast and multicast address lists to device and
3409 * configure RX filtering. When the device doesn't support unicast
3410 * filtering it is put in promiscuous mode while unicast addresses
3411 * are present.
3413 void __dev_set_rx_mode(struct net_device *dev)
3415 const struct net_device_ops *ops = dev->netdev_ops;
3417 /* dev_open will call this function so the list will stay sane. */
3418 if (!(dev->flags&IFF_UP))
3419 return;
3421 if (!netif_device_present(dev))
3422 return;
3424 if (ops->ndo_set_rx_mode)
3425 ops->ndo_set_rx_mode(dev);
3426 else {
3427 /* Unicast addresses changes may only happen under the rtnl,
3428 * therefore calling __dev_set_promiscuity here is safe.
3430 if (dev->uc_count > 0 && !dev->uc_promisc) {
3431 __dev_set_promiscuity(dev, 1);
3432 dev->uc_promisc = 1;
3433 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3434 __dev_set_promiscuity(dev, -1);
3435 dev->uc_promisc = 0;
3438 if (ops->ndo_set_multicast_list)
3439 ops->ndo_set_multicast_list(dev);
3443 void dev_set_rx_mode(struct net_device *dev)
3445 netif_addr_lock_bh(dev);
3446 __dev_set_rx_mode(dev);
3447 netif_addr_unlock_bh(dev);
3450 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3451 void *addr, int alen, int glbl)
3453 struct dev_addr_list *da;
3455 for (; (da = *list) != NULL; list = &da->next) {
3456 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3457 alen == da->da_addrlen) {
3458 if (glbl) {
3459 int old_glbl = da->da_gusers;
3460 da->da_gusers = 0;
3461 if (old_glbl == 0)
3462 break;
3464 if (--da->da_users)
3465 return 0;
3467 *list = da->next;
3468 kfree(da);
3469 (*count)--;
3470 return 0;
3473 return -ENOENT;
3476 int __dev_addr_add(struct dev_addr_list **list, int *count,
3477 void *addr, int alen, int glbl)
3479 struct dev_addr_list *da;
3481 for (da = *list; da != NULL; da = da->next) {
3482 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3483 da->da_addrlen == alen) {
3484 if (glbl) {
3485 int old_glbl = da->da_gusers;
3486 da->da_gusers = 1;
3487 if (old_glbl)
3488 return 0;
3490 da->da_users++;
3491 return 0;
3495 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3496 if (da == NULL)
3497 return -ENOMEM;
3498 memcpy(da->da_addr, addr, alen);
3499 da->da_addrlen = alen;
3500 da->da_users = 1;
3501 da->da_gusers = glbl ? 1 : 0;
3502 da->next = *list;
3503 *list = da;
3504 (*count)++;
3505 return 0;
3509 * dev_unicast_delete - Release secondary unicast address.
3510 * @dev: device
3511 * @addr: address to delete
3512 * @alen: length of @addr
3514 * Release reference to a secondary unicast address and remove it
3515 * from the device if the reference count drops to zero.
3517 * The caller must hold the rtnl_mutex.
3519 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3521 int err;
3523 ASSERT_RTNL();
3525 netif_addr_lock_bh(dev);
3526 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3527 if (!err)
3528 __dev_set_rx_mode(dev);
3529 netif_addr_unlock_bh(dev);
3530 return err;
3532 EXPORT_SYMBOL(dev_unicast_delete);
3535 * dev_unicast_add - add a secondary unicast address
3536 * @dev: device
3537 * @addr: address to add
3538 * @alen: length of @addr
3540 * Add a secondary unicast address to the device or increase
3541 * the reference count if it already exists.
3543 * The caller must hold the rtnl_mutex.
3545 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3547 int err;
3549 ASSERT_RTNL();
3551 netif_addr_lock_bh(dev);
3552 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3553 if (!err)
3554 __dev_set_rx_mode(dev);
3555 netif_addr_unlock_bh(dev);
3556 return err;
3558 EXPORT_SYMBOL(dev_unicast_add);
3560 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3561 struct dev_addr_list **from, int *from_count)
3563 struct dev_addr_list *da, *next;
3564 int err = 0;
3566 da = *from;
3567 while (da != NULL) {
3568 next = da->next;
3569 if (!da->da_synced) {
3570 err = __dev_addr_add(to, to_count,
3571 da->da_addr, da->da_addrlen, 0);
3572 if (err < 0)
3573 break;
3574 da->da_synced = 1;
3575 da->da_users++;
3576 } else if (da->da_users == 1) {
3577 __dev_addr_delete(to, to_count,
3578 da->da_addr, da->da_addrlen, 0);
3579 __dev_addr_delete(from, from_count,
3580 da->da_addr, da->da_addrlen, 0);
3582 da = next;
3584 return err;
3587 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3588 struct dev_addr_list **from, int *from_count)
3590 struct dev_addr_list *da, *next;
3592 da = *from;
3593 while (da != NULL) {
3594 next = da->next;
3595 if (da->da_synced) {
3596 __dev_addr_delete(to, to_count,
3597 da->da_addr, da->da_addrlen, 0);
3598 da->da_synced = 0;
3599 __dev_addr_delete(from, from_count,
3600 da->da_addr, da->da_addrlen, 0);
3602 da = next;
3607 * dev_unicast_sync - Synchronize device's unicast list to another device
3608 * @to: destination device
3609 * @from: source device
3611 * Add newly added addresses to the destination device and release
3612 * addresses that have no users left. The source device must be
3613 * locked by netif_tx_lock_bh.
3615 * This function is intended to be called from the dev->set_rx_mode
3616 * function of layered software devices.
3618 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3620 int err = 0;
3622 netif_addr_lock_bh(to);
3623 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3624 &from->uc_list, &from->uc_count);
3625 if (!err)
3626 __dev_set_rx_mode(to);
3627 netif_addr_unlock_bh(to);
3628 return err;
3630 EXPORT_SYMBOL(dev_unicast_sync);
3633 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3634 * @to: destination device
3635 * @from: source device
3637 * Remove all addresses that were added to the destination device by
3638 * dev_unicast_sync(). This function is intended to be called from the
3639 * dev->stop function of layered software devices.
3641 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3643 netif_addr_lock_bh(from);
3644 netif_addr_lock(to);
3646 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3647 &from->uc_list, &from->uc_count);
3648 __dev_set_rx_mode(to);
3650 netif_addr_unlock(to);
3651 netif_addr_unlock_bh(from);
3653 EXPORT_SYMBOL(dev_unicast_unsync);
3655 static void __dev_addr_discard(struct dev_addr_list **list)
3657 struct dev_addr_list *tmp;
3659 while (*list != NULL) {
3660 tmp = *list;
3661 *list = tmp->next;
3662 if (tmp->da_users > tmp->da_gusers)
3663 printk("__dev_addr_discard: address leakage! "
3664 "da_users=%d\n", tmp->da_users);
3665 kfree(tmp);
3669 static void dev_addr_discard(struct net_device *dev)
3671 netif_addr_lock_bh(dev);
3673 __dev_addr_discard(&dev->uc_list);
3674 dev->uc_count = 0;
3676 __dev_addr_discard(&dev->mc_list);
3677 dev->mc_count = 0;
3679 netif_addr_unlock_bh(dev);
3683 * dev_get_flags - get flags reported to userspace
3684 * @dev: device
3686 * Get the combination of flag bits exported through APIs to userspace.
3688 unsigned dev_get_flags(const struct net_device *dev)
3690 unsigned flags;
3692 flags = (dev->flags & ~(IFF_PROMISC |
3693 IFF_ALLMULTI |
3694 IFF_RUNNING |
3695 IFF_LOWER_UP |
3696 IFF_DORMANT)) |
3697 (dev->gflags & (IFF_PROMISC |
3698 IFF_ALLMULTI));
3700 if (netif_running(dev)) {
3701 if (netif_oper_up(dev))
3702 flags |= IFF_RUNNING;
3703 if (netif_carrier_ok(dev))
3704 flags |= IFF_LOWER_UP;
3705 if (netif_dormant(dev))
3706 flags |= IFF_DORMANT;
3709 return flags;
3713 * dev_change_flags - change device settings
3714 * @dev: device
3715 * @flags: device state flags
3717 * Change settings on device based state flags. The flags are
3718 * in the userspace exported format.
3720 int dev_change_flags(struct net_device *dev, unsigned flags)
3722 int ret, changes;
3723 int old_flags = dev->flags;
3725 ASSERT_RTNL();
3728 * Set the flags on our device.
3731 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3732 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3733 IFF_AUTOMEDIA)) |
3734 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3735 IFF_ALLMULTI));
3738 * Load in the correct multicast list now the flags have changed.
3741 if ((old_flags ^ flags) & IFF_MULTICAST)
3742 dev_change_rx_flags(dev, IFF_MULTICAST);
3744 dev_set_rx_mode(dev);
3747 * Have we downed the interface. We handle IFF_UP ourselves
3748 * according to user attempts to set it, rather than blindly
3749 * setting it.
3752 ret = 0;
3753 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3754 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3756 if (!ret)
3757 dev_set_rx_mode(dev);
3760 if (dev->flags & IFF_UP &&
3761 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3762 IFF_VOLATILE)))
3763 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3765 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3766 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3767 dev->gflags ^= IFF_PROMISC;
3768 dev_set_promiscuity(dev, inc);
3771 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3772 is important. Some (broken) drivers set IFF_PROMISC, when
3773 IFF_ALLMULTI is requested not asking us and not reporting.
3775 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3776 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3777 dev->gflags ^= IFF_ALLMULTI;
3778 dev_set_allmulti(dev, inc);
3781 /* Exclude state transition flags, already notified */
3782 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3783 if (changes)
3784 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3786 return ret;
3790 * dev_set_mtu - Change maximum transfer unit
3791 * @dev: device
3792 * @new_mtu: new transfer unit
3794 * Change the maximum transfer size of the network device.
3796 int dev_set_mtu(struct net_device *dev, int new_mtu)
3798 const struct net_device_ops *ops = dev->netdev_ops;
3799 int err;
3801 if (new_mtu == dev->mtu)
3802 return 0;
3804 /* MTU must be positive. */
3805 if (new_mtu < 0)
3806 return -EINVAL;
3808 if (!netif_device_present(dev))
3809 return -ENODEV;
3811 err = 0;
3812 if (ops->ndo_change_mtu)
3813 err = ops->ndo_change_mtu(dev, new_mtu);
3814 else
3815 dev->mtu = new_mtu;
3817 if (!err && dev->flags & IFF_UP)
3818 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3819 return err;
3823 * dev_set_mac_address - Change Media Access Control Address
3824 * @dev: device
3825 * @sa: new address
3827 * Change the hardware (MAC) address of the device
3829 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3831 const struct net_device_ops *ops = dev->netdev_ops;
3832 int err;
3834 if (!ops->ndo_set_mac_address)
3835 return -EOPNOTSUPP;
3836 if (sa->sa_family != dev->type)
3837 return -EINVAL;
3838 if (!netif_device_present(dev))
3839 return -ENODEV;
3840 err = ops->ndo_set_mac_address(dev, sa);
3841 if (!err)
3842 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3843 return err;
3847 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3849 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3851 int err;
3852 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3854 if (!dev)
3855 return -ENODEV;
3857 switch (cmd) {
3858 case SIOCGIFFLAGS: /* Get interface flags */
3859 ifr->ifr_flags = dev_get_flags(dev);
3860 return 0;
3862 case SIOCGIFMETRIC: /* Get the metric on the interface
3863 (currently unused) */
3864 ifr->ifr_metric = 0;
3865 return 0;
3867 case SIOCGIFMTU: /* Get the MTU of a device */
3868 ifr->ifr_mtu = dev->mtu;
3869 return 0;
3871 case SIOCGIFHWADDR:
3872 if (!dev->addr_len)
3873 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3874 else
3875 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3876 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3877 ifr->ifr_hwaddr.sa_family = dev->type;
3878 return 0;
3880 case SIOCGIFSLAVE:
3881 err = -EINVAL;
3882 break;
3884 case SIOCGIFMAP:
3885 ifr->ifr_map.mem_start = dev->mem_start;
3886 ifr->ifr_map.mem_end = dev->mem_end;
3887 ifr->ifr_map.base_addr = dev->base_addr;
3888 ifr->ifr_map.irq = dev->irq;
3889 ifr->ifr_map.dma = dev->dma;
3890 ifr->ifr_map.port = dev->if_port;
3891 return 0;
3893 case SIOCGIFINDEX:
3894 ifr->ifr_ifindex = dev->ifindex;
3895 return 0;
3897 case SIOCGIFTXQLEN:
3898 ifr->ifr_qlen = dev->tx_queue_len;
3899 return 0;
3901 default:
3902 /* dev_ioctl() should ensure this case
3903 * is never reached
3905 WARN_ON(1);
3906 err = -EINVAL;
3907 break;
3910 return err;
3914 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3916 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3918 int err;
3919 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3920 const struct net_device_ops *ops;
3922 if (!dev)
3923 return -ENODEV;
3925 ops = dev->netdev_ops;
3927 switch (cmd) {
3928 case SIOCSIFFLAGS: /* Set interface flags */
3929 return dev_change_flags(dev, ifr->ifr_flags);
3931 case SIOCSIFMETRIC: /* Set the metric on the interface
3932 (currently unused) */
3933 return -EOPNOTSUPP;
3935 case SIOCSIFMTU: /* Set the MTU of a device */
3936 return dev_set_mtu(dev, ifr->ifr_mtu);
3938 case SIOCSIFHWADDR:
3939 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3941 case SIOCSIFHWBROADCAST:
3942 if (ifr->ifr_hwaddr.sa_family != dev->type)
3943 return -EINVAL;
3944 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3945 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3946 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3947 return 0;
3949 case SIOCSIFMAP:
3950 if (ops->ndo_set_config) {
3951 if (!netif_device_present(dev))
3952 return -ENODEV;
3953 return ops->ndo_set_config(dev, &ifr->ifr_map);
3955 return -EOPNOTSUPP;
3957 case SIOCADDMULTI:
3958 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3959 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3960 return -EINVAL;
3961 if (!netif_device_present(dev))
3962 return -ENODEV;
3963 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3964 dev->addr_len, 1);
3966 case SIOCDELMULTI:
3967 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3968 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3969 return -EINVAL;
3970 if (!netif_device_present(dev))
3971 return -ENODEV;
3972 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3973 dev->addr_len, 1);
3975 case SIOCSIFTXQLEN:
3976 if (ifr->ifr_qlen < 0)
3977 return -EINVAL;
3978 dev->tx_queue_len = ifr->ifr_qlen;
3979 return 0;
3981 case SIOCSIFNAME:
3982 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3983 return dev_change_name(dev, ifr->ifr_newname);
3986 * Unknown or private ioctl
3989 default:
3990 if ((cmd >= SIOCDEVPRIVATE &&
3991 cmd <= SIOCDEVPRIVATE + 15) ||
3992 cmd == SIOCBONDENSLAVE ||
3993 cmd == SIOCBONDRELEASE ||
3994 cmd == SIOCBONDSETHWADDR ||
3995 cmd == SIOCBONDSLAVEINFOQUERY ||
3996 cmd == SIOCBONDINFOQUERY ||
3997 cmd == SIOCBONDCHANGEACTIVE ||
3998 cmd == SIOCGMIIPHY ||
3999 cmd == SIOCGMIIREG ||
4000 cmd == SIOCSMIIREG ||
4001 cmd == SIOCBRADDIF ||
4002 cmd == SIOCBRDELIF ||
4003 cmd == SIOCSHWTSTAMP ||
4004 cmd == SIOCWANDEV) {
4005 err = -EOPNOTSUPP;
4006 if (ops->ndo_do_ioctl) {
4007 if (netif_device_present(dev))
4008 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4009 else
4010 err = -ENODEV;
4012 } else
4013 err = -EINVAL;
4016 return err;
4020 * This function handles all "interface"-type I/O control requests. The actual
4021 * 'doing' part of this is dev_ifsioc above.
4025 * dev_ioctl - network device ioctl
4026 * @net: the applicable net namespace
4027 * @cmd: command to issue
4028 * @arg: pointer to a struct ifreq in user space
4030 * Issue ioctl functions to devices. This is normally called by the
4031 * user space syscall interfaces but can sometimes be useful for
4032 * other purposes. The return value is the return from the syscall if
4033 * positive or a negative errno code on error.
4036 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4038 struct ifreq ifr;
4039 int ret;
4040 char *colon;
4042 /* One special case: SIOCGIFCONF takes ifconf argument
4043 and requires shared lock, because it sleeps writing
4044 to user space.
4047 if (cmd == SIOCGIFCONF) {
4048 rtnl_lock();
4049 ret = dev_ifconf(net, (char __user *) arg);
4050 rtnl_unlock();
4051 return ret;
4053 if (cmd == SIOCGIFNAME)
4054 return dev_ifname(net, (struct ifreq __user *)arg);
4056 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4057 return -EFAULT;
4059 ifr.ifr_name[IFNAMSIZ-1] = 0;
4061 colon = strchr(ifr.ifr_name, ':');
4062 if (colon)
4063 *colon = 0;
4066 * See which interface the caller is talking about.
4069 switch (cmd) {
4071 * These ioctl calls:
4072 * - can be done by all.
4073 * - atomic and do not require locking.
4074 * - return a value
4076 case SIOCGIFFLAGS:
4077 case SIOCGIFMETRIC:
4078 case SIOCGIFMTU:
4079 case SIOCGIFHWADDR:
4080 case SIOCGIFSLAVE:
4081 case SIOCGIFMAP:
4082 case SIOCGIFINDEX:
4083 case SIOCGIFTXQLEN:
4084 dev_load(net, ifr.ifr_name);
4085 read_lock(&dev_base_lock);
4086 ret = dev_ifsioc_locked(net, &ifr, cmd);
4087 read_unlock(&dev_base_lock);
4088 if (!ret) {
4089 if (colon)
4090 *colon = ':';
4091 if (copy_to_user(arg, &ifr,
4092 sizeof(struct ifreq)))
4093 ret = -EFAULT;
4095 return ret;
4097 case SIOCETHTOOL:
4098 dev_load(net, ifr.ifr_name);
4099 rtnl_lock();
4100 ret = dev_ethtool(net, &ifr);
4101 rtnl_unlock();
4102 if (!ret) {
4103 if (colon)
4104 *colon = ':';
4105 if (copy_to_user(arg, &ifr,
4106 sizeof(struct ifreq)))
4107 ret = -EFAULT;
4109 return ret;
4112 * These ioctl calls:
4113 * - require superuser power.
4114 * - require strict serialization.
4115 * - return a value
4117 case SIOCGMIIPHY:
4118 case SIOCGMIIREG:
4119 case SIOCSIFNAME:
4120 if (!capable(CAP_NET_ADMIN))
4121 return -EPERM;
4122 dev_load(net, ifr.ifr_name);
4123 rtnl_lock();
4124 ret = dev_ifsioc(net, &ifr, cmd);
4125 rtnl_unlock();
4126 if (!ret) {
4127 if (colon)
4128 *colon = ':';
4129 if (copy_to_user(arg, &ifr,
4130 sizeof(struct ifreq)))
4131 ret = -EFAULT;
4133 return ret;
4136 * These ioctl calls:
4137 * - require superuser power.
4138 * - require strict serialization.
4139 * - do not return a value
4141 case SIOCSIFFLAGS:
4142 case SIOCSIFMETRIC:
4143 case SIOCSIFMTU:
4144 case SIOCSIFMAP:
4145 case SIOCSIFHWADDR:
4146 case SIOCSIFSLAVE:
4147 case SIOCADDMULTI:
4148 case SIOCDELMULTI:
4149 case SIOCSIFHWBROADCAST:
4150 case SIOCSIFTXQLEN:
4151 case SIOCSMIIREG:
4152 case SIOCBONDENSLAVE:
4153 case SIOCBONDRELEASE:
4154 case SIOCBONDSETHWADDR:
4155 case SIOCBONDCHANGEACTIVE:
4156 case SIOCBRADDIF:
4157 case SIOCBRDELIF:
4158 case SIOCSHWTSTAMP:
4159 if (!capable(CAP_NET_ADMIN))
4160 return -EPERM;
4161 /* fall through */
4162 case SIOCBONDSLAVEINFOQUERY:
4163 case SIOCBONDINFOQUERY:
4164 dev_load(net, ifr.ifr_name);
4165 rtnl_lock();
4166 ret = dev_ifsioc(net, &ifr, cmd);
4167 rtnl_unlock();
4168 return ret;
4170 case SIOCGIFMEM:
4171 /* Get the per device memory space. We can add this but
4172 * currently do not support it */
4173 case SIOCSIFMEM:
4174 /* Set the per device memory buffer space.
4175 * Not applicable in our case */
4176 case SIOCSIFLINK:
4177 return -EINVAL;
4180 * Unknown or private ioctl.
4182 default:
4183 if (cmd == SIOCWANDEV ||
4184 (cmd >= SIOCDEVPRIVATE &&
4185 cmd <= SIOCDEVPRIVATE + 15)) {
4186 dev_load(net, ifr.ifr_name);
4187 rtnl_lock();
4188 ret = dev_ifsioc(net, &ifr, cmd);
4189 rtnl_unlock();
4190 if (!ret && copy_to_user(arg, &ifr,
4191 sizeof(struct ifreq)))
4192 ret = -EFAULT;
4193 return ret;
4195 /* Take care of Wireless Extensions */
4196 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4197 return wext_handle_ioctl(net, &ifr, cmd, arg);
4198 return -EINVAL;
4204 * dev_new_index - allocate an ifindex
4205 * @net: the applicable net namespace
4207 * Returns a suitable unique value for a new device interface
4208 * number. The caller must hold the rtnl semaphore or the
4209 * dev_base_lock to be sure it remains unique.
4211 static int dev_new_index(struct net *net)
4213 static int ifindex;
4214 for (;;) {
4215 if (++ifindex <= 0)
4216 ifindex = 1;
4217 if (!__dev_get_by_index(net, ifindex))
4218 return ifindex;
4222 /* Delayed registration/unregisteration */
4223 static LIST_HEAD(net_todo_list);
4225 static void net_set_todo(struct net_device *dev)
4227 list_add_tail(&dev->todo_list, &net_todo_list);
4230 static void rollback_registered(struct net_device *dev)
4232 BUG_ON(dev_boot_phase);
4233 ASSERT_RTNL();
4235 /* Some devices call without registering for initialization unwind. */
4236 if (dev->reg_state == NETREG_UNINITIALIZED) {
4237 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4238 "was registered\n", dev->name, dev);
4240 WARN_ON(1);
4241 return;
4244 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4246 /* If device is running, close it first. */
4247 dev_close(dev);
4249 /* And unlink it from device chain. */
4250 unlist_netdevice(dev);
4252 dev->reg_state = NETREG_UNREGISTERING;
4254 synchronize_net();
4256 /* Shutdown queueing discipline. */
4257 dev_shutdown(dev);
4260 /* Notify protocols, that we are about to destroy
4261 this device. They should clean all the things.
4263 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4266 * Flush the unicast and multicast chains
4268 dev_addr_discard(dev);
4270 if (dev->netdev_ops->ndo_uninit)
4271 dev->netdev_ops->ndo_uninit(dev);
4273 /* Notifier chain MUST detach us from master device. */
4274 WARN_ON(dev->master);
4276 /* Remove entries from kobject tree */
4277 netdev_unregister_kobject(dev);
4279 synchronize_net();
4281 dev_put(dev);
4284 static void __netdev_init_queue_locks_one(struct net_device *dev,
4285 struct netdev_queue *dev_queue,
4286 void *_unused)
4288 spin_lock_init(&dev_queue->_xmit_lock);
4289 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4290 dev_queue->xmit_lock_owner = -1;
4293 static void netdev_init_queue_locks(struct net_device *dev)
4295 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4296 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4299 unsigned long netdev_fix_features(unsigned long features, const char *name)
4301 /* Fix illegal SG+CSUM combinations. */
4302 if ((features & NETIF_F_SG) &&
4303 !(features & NETIF_F_ALL_CSUM)) {
4304 if (name)
4305 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4306 "checksum feature.\n", name);
4307 features &= ~NETIF_F_SG;
4310 /* TSO requires that SG is present as well. */
4311 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4312 if (name)
4313 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4314 "SG feature.\n", name);
4315 features &= ~NETIF_F_TSO;
4318 if (features & NETIF_F_UFO) {
4319 if (!(features & NETIF_F_GEN_CSUM)) {
4320 if (name)
4321 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4322 "since no NETIF_F_HW_CSUM feature.\n",
4323 name);
4324 features &= ~NETIF_F_UFO;
4327 if (!(features & NETIF_F_SG)) {
4328 if (name)
4329 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4330 "since no NETIF_F_SG feature.\n", name);
4331 features &= ~NETIF_F_UFO;
4335 return features;
4337 EXPORT_SYMBOL(netdev_fix_features);
4340 * register_netdevice - register a network device
4341 * @dev: device to register
4343 * Take a completed network device structure and add it to the kernel
4344 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4345 * chain. 0 is returned on success. A negative errno code is returned
4346 * on a failure to set up the device, or if the name is a duplicate.
4348 * Callers must hold the rtnl semaphore. You may want
4349 * register_netdev() instead of this.
4351 * BUGS:
4352 * The locking appears insufficient to guarantee two parallel registers
4353 * will not get the same name.
4356 int register_netdevice(struct net_device *dev)
4358 struct hlist_head *head;
4359 struct hlist_node *p;
4360 int ret;
4361 struct net *net = dev_net(dev);
4363 BUG_ON(dev_boot_phase);
4364 ASSERT_RTNL();
4366 might_sleep();
4368 /* When net_device's are persistent, this will be fatal. */
4369 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4370 BUG_ON(!net);
4372 spin_lock_init(&dev->addr_list_lock);
4373 netdev_set_addr_lockdep_class(dev);
4374 netdev_init_queue_locks(dev);
4376 dev->iflink = -1;
4378 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4379 /* Netdevice_ops API compatiability support.
4380 * This is temporary until all network devices are converted.
4382 if (dev->netdev_ops) {
4383 const struct net_device_ops *ops = dev->netdev_ops;
4385 dev->init = ops->ndo_init;
4386 dev->uninit = ops->ndo_uninit;
4387 dev->open = ops->ndo_open;
4388 dev->change_rx_flags = ops->ndo_change_rx_flags;
4389 dev->set_rx_mode = ops->ndo_set_rx_mode;
4390 dev->set_multicast_list = ops->ndo_set_multicast_list;
4391 dev->set_mac_address = ops->ndo_set_mac_address;
4392 dev->validate_addr = ops->ndo_validate_addr;
4393 dev->do_ioctl = ops->ndo_do_ioctl;
4394 dev->set_config = ops->ndo_set_config;
4395 dev->change_mtu = ops->ndo_change_mtu;
4396 dev->tx_timeout = ops->ndo_tx_timeout;
4397 dev->get_stats = ops->ndo_get_stats;
4398 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4399 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4400 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4401 #ifdef CONFIG_NET_POLL_CONTROLLER
4402 dev->poll_controller = ops->ndo_poll_controller;
4403 #endif
4404 } else {
4405 char drivername[64];
4406 pr_info("%s (%s): not using net_device_ops yet\n",
4407 dev->name, netdev_drivername(dev, drivername, 64));
4409 /* This works only because net_device_ops and the
4410 compatiablity structure are the same. */
4411 dev->netdev_ops = (void *) &(dev->init);
4413 #endif
4415 /* Init, if this function is available */
4416 if (dev->netdev_ops->ndo_init) {
4417 ret = dev->netdev_ops->ndo_init(dev);
4418 if (ret) {
4419 if (ret > 0)
4420 ret = -EIO;
4421 goto out;
4425 if (!dev_valid_name(dev->name)) {
4426 ret = -EINVAL;
4427 goto err_uninit;
4430 dev->ifindex = dev_new_index(net);
4431 if (dev->iflink == -1)
4432 dev->iflink = dev->ifindex;
4434 /* Check for existence of name */
4435 head = dev_name_hash(net, dev->name);
4436 hlist_for_each(p, head) {
4437 struct net_device *d
4438 = hlist_entry(p, struct net_device, name_hlist);
4439 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4440 ret = -EEXIST;
4441 goto err_uninit;
4445 /* Fix illegal checksum combinations */
4446 if ((dev->features & NETIF_F_HW_CSUM) &&
4447 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4448 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4449 dev->name);
4450 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4453 if ((dev->features & NETIF_F_NO_CSUM) &&
4454 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4455 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4456 dev->name);
4457 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4460 dev->features = netdev_fix_features(dev->features, dev->name);
4462 /* Enable software GSO if SG is supported. */
4463 if (dev->features & NETIF_F_SG)
4464 dev->features |= NETIF_F_GSO;
4466 netdev_initialize_kobject(dev);
4467 ret = netdev_register_kobject(dev);
4468 if (ret)
4469 goto err_uninit;
4470 dev->reg_state = NETREG_REGISTERED;
4473 * Default initial state at registry is that the
4474 * device is present.
4477 set_bit(__LINK_STATE_PRESENT, &dev->state);
4479 dev_init_scheduler(dev);
4480 dev_hold(dev);
4481 list_netdevice(dev);
4483 /* Notify protocols, that a new device appeared. */
4484 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4485 ret = notifier_to_errno(ret);
4486 if (ret) {
4487 rollback_registered(dev);
4488 dev->reg_state = NETREG_UNREGISTERED;
4491 out:
4492 return ret;
4494 err_uninit:
4495 if (dev->netdev_ops->ndo_uninit)
4496 dev->netdev_ops->ndo_uninit(dev);
4497 goto out;
4501 * init_dummy_netdev - init a dummy network device for NAPI
4502 * @dev: device to init
4504 * This takes a network device structure and initialize the minimum
4505 * amount of fields so it can be used to schedule NAPI polls without
4506 * registering a full blown interface. This is to be used by drivers
4507 * that need to tie several hardware interfaces to a single NAPI
4508 * poll scheduler due to HW limitations.
4510 int init_dummy_netdev(struct net_device *dev)
4512 /* Clear everything. Note we don't initialize spinlocks
4513 * are they aren't supposed to be taken by any of the
4514 * NAPI code and this dummy netdev is supposed to be
4515 * only ever used for NAPI polls
4517 memset(dev, 0, sizeof(struct net_device));
4519 /* make sure we BUG if trying to hit standard
4520 * register/unregister code path
4522 dev->reg_state = NETREG_DUMMY;
4524 /* initialize the ref count */
4525 atomic_set(&dev->refcnt, 1);
4527 /* NAPI wants this */
4528 INIT_LIST_HEAD(&dev->napi_list);
4530 /* a dummy interface is started by default */
4531 set_bit(__LINK_STATE_PRESENT, &dev->state);
4532 set_bit(__LINK_STATE_START, &dev->state);
4534 return 0;
4536 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4540 * register_netdev - register a network device
4541 * @dev: device to register
4543 * Take a completed network device structure and add it to the kernel
4544 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4545 * chain. 0 is returned on success. A negative errno code is returned
4546 * on a failure to set up the device, or if the name is a duplicate.
4548 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4549 * and expands the device name if you passed a format string to
4550 * alloc_netdev.
4552 int register_netdev(struct net_device *dev)
4554 int err;
4556 rtnl_lock();
4559 * If the name is a format string the caller wants us to do a
4560 * name allocation.
4562 if (strchr(dev->name, '%')) {
4563 err = dev_alloc_name(dev, dev->name);
4564 if (err < 0)
4565 goto out;
4568 err = register_netdevice(dev);
4569 out:
4570 rtnl_unlock();
4571 return err;
4573 EXPORT_SYMBOL(register_netdev);
4576 * netdev_wait_allrefs - wait until all references are gone.
4578 * This is called when unregistering network devices.
4580 * Any protocol or device that holds a reference should register
4581 * for netdevice notification, and cleanup and put back the
4582 * reference if they receive an UNREGISTER event.
4583 * We can get stuck here if buggy protocols don't correctly
4584 * call dev_put.
4586 static void netdev_wait_allrefs(struct net_device *dev)
4588 unsigned long rebroadcast_time, warning_time;
4590 rebroadcast_time = warning_time = jiffies;
4591 while (atomic_read(&dev->refcnt) != 0) {
4592 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4593 rtnl_lock();
4595 /* Rebroadcast unregister notification */
4596 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4598 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4599 &dev->state)) {
4600 /* We must not have linkwatch events
4601 * pending on unregister. If this
4602 * happens, we simply run the queue
4603 * unscheduled, resulting in a noop
4604 * for this device.
4606 linkwatch_run_queue();
4609 __rtnl_unlock();
4611 rebroadcast_time = jiffies;
4614 msleep(250);
4616 if (time_after(jiffies, warning_time + 10 * HZ)) {
4617 printk(KERN_EMERG "unregister_netdevice: "
4618 "waiting for %s to become free. Usage "
4619 "count = %d\n",
4620 dev->name, atomic_read(&dev->refcnt));
4621 warning_time = jiffies;
4626 /* The sequence is:
4628 * rtnl_lock();
4629 * ...
4630 * register_netdevice(x1);
4631 * register_netdevice(x2);
4632 * ...
4633 * unregister_netdevice(y1);
4634 * unregister_netdevice(y2);
4635 * ...
4636 * rtnl_unlock();
4637 * free_netdev(y1);
4638 * free_netdev(y2);
4640 * We are invoked by rtnl_unlock().
4641 * This allows us to deal with problems:
4642 * 1) We can delete sysfs objects which invoke hotplug
4643 * without deadlocking with linkwatch via keventd.
4644 * 2) Since we run with the RTNL semaphore not held, we can sleep
4645 * safely in order to wait for the netdev refcnt to drop to zero.
4647 * We must not return until all unregister events added during
4648 * the interval the lock was held have been completed.
4650 void netdev_run_todo(void)
4652 struct list_head list;
4654 /* Snapshot list, allow later requests */
4655 list_replace_init(&net_todo_list, &list);
4657 __rtnl_unlock();
4659 while (!list_empty(&list)) {
4660 struct net_device *dev
4661 = list_entry(list.next, struct net_device, todo_list);
4662 list_del(&dev->todo_list);
4664 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4665 printk(KERN_ERR "network todo '%s' but state %d\n",
4666 dev->name, dev->reg_state);
4667 dump_stack();
4668 continue;
4671 dev->reg_state = NETREG_UNREGISTERED;
4673 on_each_cpu(flush_backlog, dev, 1);
4675 netdev_wait_allrefs(dev);
4677 /* paranoia */
4678 BUG_ON(atomic_read(&dev->refcnt));
4679 WARN_ON(dev->ip_ptr);
4680 WARN_ON(dev->ip6_ptr);
4681 WARN_ON(dev->dn_ptr);
4683 if (dev->destructor)
4684 dev->destructor(dev);
4686 /* Free network device */
4687 kobject_put(&dev->dev.kobj);
4692 * dev_get_stats - get network device statistics
4693 * @dev: device to get statistics from
4695 * Get network statistics from device. The device driver may provide
4696 * its own method by setting dev->netdev_ops->get_stats; otherwise
4697 * the internal statistics structure is used.
4699 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4701 const struct net_device_ops *ops = dev->netdev_ops;
4703 if (ops->ndo_get_stats)
4704 return ops->ndo_get_stats(dev);
4705 else
4706 return &dev->stats;
4708 EXPORT_SYMBOL(dev_get_stats);
4710 static void netdev_init_one_queue(struct net_device *dev,
4711 struct netdev_queue *queue,
4712 void *_unused)
4714 queue->dev = dev;
4717 static void netdev_init_queues(struct net_device *dev)
4719 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4720 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4721 spin_lock_init(&dev->tx_global_lock);
4725 * alloc_netdev_mq - allocate network device
4726 * @sizeof_priv: size of private data to allocate space for
4727 * @name: device name format string
4728 * @setup: callback to initialize device
4729 * @queue_count: the number of subqueues to allocate
4731 * Allocates a struct net_device with private data area for driver use
4732 * and performs basic initialization. Also allocates subquue structs
4733 * for each queue on the device at the end of the netdevice.
4735 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4736 void (*setup)(struct net_device *), unsigned int queue_count)
4738 struct netdev_queue *tx;
4739 struct net_device *dev;
4740 size_t alloc_size;
4741 void *p;
4743 BUG_ON(strlen(name) >= sizeof(dev->name));
4745 alloc_size = sizeof(struct net_device);
4746 if (sizeof_priv) {
4747 /* ensure 32-byte alignment of private area */
4748 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4749 alloc_size += sizeof_priv;
4751 /* ensure 32-byte alignment of whole construct */
4752 alloc_size += NETDEV_ALIGN_CONST;
4754 p = kzalloc(alloc_size, GFP_KERNEL);
4755 if (!p) {
4756 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4757 return NULL;
4760 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4761 if (!tx) {
4762 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4763 "tx qdiscs.\n");
4764 kfree(p);
4765 return NULL;
4768 dev = (struct net_device *)
4769 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4770 dev->padded = (char *)dev - (char *)p;
4771 dev_net_set(dev, &init_net);
4773 dev->_tx = tx;
4774 dev->num_tx_queues = queue_count;
4775 dev->real_num_tx_queues = queue_count;
4777 dev->gso_max_size = GSO_MAX_SIZE;
4779 netdev_init_queues(dev);
4781 INIT_LIST_HEAD(&dev->napi_list);
4782 setup(dev);
4783 strcpy(dev->name, name);
4784 return dev;
4786 EXPORT_SYMBOL(alloc_netdev_mq);
4789 * free_netdev - free network device
4790 * @dev: device
4792 * This function does the last stage of destroying an allocated device
4793 * interface. The reference to the device object is released.
4794 * If this is the last reference then it will be freed.
4796 void free_netdev(struct net_device *dev)
4798 struct napi_struct *p, *n;
4800 release_net(dev_net(dev));
4802 kfree(dev->_tx);
4804 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4805 netif_napi_del(p);
4807 /* Compatibility with error handling in drivers */
4808 if (dev->reg_state == NETREG_UNINITIALIZED) {
4809 kfree((char *)dev - dev->padded);
4810 return;
4813 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4814 dev->reg_state = NETREG_RELEASED;
4816 /* will free via device release */
4817 put_device(&dev->dev);
4821 * synchronize_net - Synchronize with packet receive processing
4823 * Wait for packets currently being received to be done.
4824 * Does not block later packets from starting.
4826 void synchronize_net(void)
4828 might_sleep();
4829 synchronize_rcu();
4833 * unregister_netdevice - remove device from the kernel
4834 * @dev: device
4836 * This function shuts down a device interface and removes it
4837 * from the kernel tables.
4839 * Callers must hold the rtnl semaphore. You may want
4840 * unregister_netdev() instead of this.
4843 void unregister_netdevice(struct net_device *dev)
4845 ASSERT_RTNL();
4847 rollback_registered(dev);
4848 /* Finish processing unregister after unlock */
4849 net_set_todo(dev);
4853 * unregister_netdev - remove device from the kernel
4854 * @dev: device
4856 * This function shuts down a device interface and removes it
4857 * from the kernel tables.
4859 * This is just a wrapper for unregister_netdevice that takes
4860 * the rtnl semaphore. In general you want to use this and not
4861 * unregister_netdevice.
4863 void unregister_netdev(struct net_device *dev)
4865 rtnl_lock();
4866 unregister_netdevice(dev);
4867 rtnl_unlock();
4870 EXPORT_SYMBOL(unregister_netdev);
4873 * dev_change_net_namespace - move device to different nethost namespace
4874 * @dev: device
4875 * @net: network namespace
4876 * @pat: If not NULL name pattern to try if the current device name
4877 * is already taken in the destination network namespace.
4879 * This function shuts down a device interface and moves it
4880 * to a new network namespace. On success 0 is returned, on
4881 * a failure a netagive errno code is returned.
4883 * Callers must hold the rtnl semaphore.
4886 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4888 char buf[IFNAMSIZ];
4889 const char *destname;
4890 int err;
4892 ASSERT_RTNL();
4894 /* Don't allow namespace local devices to be moved. */
4895 err = -EINVAL;
4896 if (dev->features & NETIF_F_NETNS_LOCAL)
4897 goto out;
4899 #ifdef CONFIG_SYSFS
4900 /* Don't allow real devices to be moved when sysfs
4901 * is enabled.
4903 err = -EINVAL;
4904 if (dev->dev.parent)
4905 goto out;
4906 #endif
4908 /* Ensure the device has been registrered */
4909 err = -EINVAL;
4910 if (dev->reg_state != NETREG_REGISTERED)
4911 goto out;
4913 /* Get out if there is nothing todo */
4914 err = 0;
4915 if (net_eq(dev_net(dev), net))
4916 goto out;
4918 /* Pick the destination device name, and ensure
4919 * we can use it in the destination network namespace.
4921 err = -EEXIST;
4922 destname = dev->name;
4923 if (__dev_get_by_name(net, destname)) {
4924 /* We get here if we can't use the current device name */
4925 if (!pat)
4926 goto out;
4927 if (!dev_valid_name(pat))
4928 goto out;
4929 if (strchr(pat, '%')) {
4930 if (__dev_alloc_name(net, pat, buf) < 0)
4931 goto out;
4932 destname = buf;
4933 } else
4934 destname = pat;
4935 if (__dev_get_by_name(net, destname))
4936 goto out;
4940 * And now a mini version of register_netdevice unregister_netdevice.
4943 /* If device is running close it first. */
4944 dev_close(dev);
4946 /* And unlink it from device chain */
4947 err = -ENODEV;
4948 unlist_netdevice(dev);
4950 synchronize_net();
4952 /* Shutdown queueing discipline. */
4953 dev_shutdown(dev);
4955 /* Notify protocols, that we are about to destroy
4956 this device. They should clean all the things.
4958 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4961 * Flush the unicast and multicast chains
4963 dev_addr_discard(dev);
4965 netdev_unregister_kobject(dev);
4967 /* Actually switch the network namespace */
4968 dev_net_set(dev, net);
4970 /* Assign the new device name */
4971 if (destname != dev->name)
4972 strcpy(dev->name, destname);
4974 /* If there is an ifindex conflict assign a new one */
4975 if (__dev_get_by_index(net, dev->ifindex)) {
4976 int iflink = (dev->iflink == dev->ifindex);
4977 dev->ifindex = dev_new_index(net);
4978 if (iflink)
4979 dev->iflink = dev->ifindex;
4982 /* Fixup kobjects */
4983 err = netdev_register_kobject(dev);
4984 WARN_ON(err);
4986 /* Add the device back in the hashes */
4987 list_netdevice(dev);
4989 /* Notify protocols, that a new device appeared. */
4990 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4992 synchronize_net();
4993 err = 0;
4994 out:
4995 return err;
4998 static int dev_cpu_callback(struct notifier_block *nfb,
4999 unsigned long action,
5000 void *ocpu)
5002 struct sk_buff **list_skb;
5003 struct Qdisc **list_net;
5004 struct sk_buff *skb;
5005 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5006 struct softnet_data *sd, *oldsd;
5008 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5009 return NOTIFY_OK;
5011 local_irq_disable();
5012 cpu = smp_processor_id();
5013 sd = &per_cpu(softnet_data, cpu);
5014 oldsd = &per_cpu(softnet_data, oldcpu);
5016 /* Find end of our completion_queue. */
5017 list_skb = &sd->completion_queue;
5018 while (*list_skb)
5019 list_skb = &(*list_skb)->next;
5020 /* Append completion queue from offline CPU. */
5021 *list_skb = oldsd->completion_queue;
5022 oldsd->completion_queue = NULL;
5024 /* Find end of our output_queue. */
5025 list_net = &sd->output_queue;
5026 while (*list_net)
5027 list_net = &(*list_net)->next_sched;
5028 /* Append output queue from offline CPU. */
5029 *list_net = oldsd->output_queue;
5030 oldsd->output_queue = NULL;
5032 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5033 local_irq_enable();
5035 /* Process offline CPU's input_pkt_queue */
5036 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5037 netif_rx(skb);
5039 return NOTIFY_OK;
5044 * netdev_increment_features - increment feature set by one
5045 * @all: current feature set
5046 * @one: new feature set
5047 * @mask: mask feature set
5049 * Computes a new feature set after adding a device with feature set
5050 * @one to the master device with current feature set @all. Will not
5051 * enable anything that is off in @mask. Returns the new feature set.
5053 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5054 unsigned long mask)
5056 /* If device needs checksumming, downgrade to it. */
5057 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5058 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5059 else if (mask & NETIF_F_ALL_CSUM) {
5060 /* If one device supports v4/v6 checksumming, set for all. */
5061 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5062 !(all & NETIF_F_GEN_CSUM)) {
5063 all &= ~NETIF_F_ALL_CSUM;
5064 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5067 /* If one device supports hw checksumming, set for all. */
5068 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5069 all &= ~NETIF_F_ALL_CSUM;
5070 all |= NETIF_F_HW_CSUM;
5074 one |= NETIF_F_ALL_CSUM;
5076 one |= all & NETIF_F_ONE_FOR_ALL;
5077 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5078 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5080 return all;
5082 EXPORT_SYMBOL(netdev_increment_features);
5084 static struct hlist_head *netdev_create_hash(void)
5086 int i;
5087 struct hlist_head *hash;
5089 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5090 if (hash != NULL)
5091 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5092 INIT_HLIST_HEAD(&hash[i]);
5094 return hash;
5097 /* Initialize per network namespace state */
5098 static int __net_init netdev_init(struct net *net)
5100 INIT_LIST_HEAD(&net->dev_base_head);
5102 net->dev_name_head = netdev_create_hash();
5103 if (net->dev_name_head == NULL)
5104 goto err_name;
5106 net->dev_index_head = netdev_create_hash();
5107 if (net->dev_index_head == NULL)
5108 goto err_idx;
5110 return 0;
5112 err_idx:
5113 kfree(net->dev_name_head);
5114 err_name:
5115 return -ENOMEM;
5119 * netdev_drivername - network driver for the device
5120 * @dev: network device
5121 * @buffer: buffer for resulting name
5122 * @len: size of buffer
5124 * Determine network driver for device.
5126 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5128 const struct device_driver *driver;
5129 const struct device *parent;
5131 if (len <= 0 || !buffer)
5132 return buffer;
5133 buffer[0] = 0;
5135 parent = dev->dev.parent;
5137 if (!parent)
5138 return buffer;
5140 driver = parent->driver;
5141 if (driver && driver->name)
5142 strlcpy(buffer, driver->name, len);
5143 return buffer;
5146 static void __net_exit netdev_exit(struct net *net)
5148 kfree(net->dev_name_head);
5149 kfree(net->dev_index_head);
5152 static struct pernet_operations __net_initdata netdev_net_ops = {
5153 .init = netdev_init,
5154 .exit = netdev_exit,
5157 static void __net_exit default_device_exit(struct net *net)
5159 struct net_device *dev;
5161 * Push all migratable of the network devices back to the
5162 * initial network namespace
5164 rtnl_lock();
5165 restart:
5166 for_each_netdev(net, dev) {
5167 int err;
5168 char fb_name[IFNAMSIZ];
5170 /* Ignore unmoveable devices (i.e. loopback) */
5171 if (dev->features & NETIF_F_NETNS_LOCAL)
5172 continue;
5174 /* Delete virtual devices */
5175 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5176 dev->rtnl_link_ops->dellink(dev);
5177 goto restart;
5180 /* Push remaing network devices to init_net */
5181 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5182 err = dev_change_net_namespace(dev, &init_net, fb_name);
5183 if (err) {
5184 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5185 __func__, dev->name, err);
5186 BUG();
5188 goto restart;
5190 rtnl_unlock();
5193 static struct pernet_operations __net_initdata default_device_ops = {
5194 .exit = default_device_exit,
5198 * Initialize the DEV module. At boot time this walks the device list and
5199 * unhooks any devices that fail to initialise (normally hardware not
5200 * present) and leaves us with a valid list of present and active devices.
5205 * This is called single threaded during boot, so no need
5206 * to take the rtnl semaphore.
5208 static int __init net_dev_init(void)
5210 int i, rc = -ENOMEM;
5212 BUG_ON(!dev_boot_phase);
5214 if (dev_proc_init())
5215 goto out;
5217 if (netdev_kobject_init())
5218 goto out;
5220 INIT_LIST_HEAD(&ptype_all);
5221 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5222 INIT_LIST_HEAD(&ptype_base[i]);
5224 if (register_pernet_subsys(&netdev_net_ops))
5225 goto out;
5228 * Initialise the packet receive queues.
5231 for_each_possible_cpu(i) {
5232 struct softnet_data *queue;
5234 queue = &per_cpu(softnet_data, i);
5235 skb_queue_head_init(&queue->input_pkt_queue);
5236 queue->completion_queue = NULL;
5237 INIT_LIST_HEAD(&queue->poll_list);
5239 queue->backlog.poll = process_backlog;
5240 queue->backlog.weight = weight_p;
5241 queue->backlog.gro_list = NULL;
5242 queue->backlog.gro_count = 0;
5245 dev_boot_phase = 0;
5247 /* The loopback device is special if any other network devices
5248 * is present in a network namespace the loopback device must
5249 * be present. Since we now dynamically allocate and free the
5250 * loopback device ensure this invariant is maintained by
5251 * keeping the loopback device as the first device on the
5252 * list of network devices. Ensuring the loopback devices
5253 * is the first device that appears and the last network device
5254 * that disappears.
5256 if (register_pernet_device(&loopback_net_ops))
5257 goto out;
5259 if (register_pernet_device(&default_device_ops))
5260 goto out;
5262 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5263 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5265 hotcpu_notifier(dev_cpu_callback, 0);
5266 dst_init();
5267 dev_mcast_init();
5268 rc = 0;
5269 out:
5270 return rc;
5273 subsys_initcall(net_dev_init);
5275 static int __init initialize_hashrnd(void)
5277 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5278 return 0;
5281 late_initcall_sync(initialize_hashrnd);
5283 EXPORT_SYMBOL(__dev_get_by_index);
5284 EXPORT_SYMBOL(__dev_get_by_name);
5285 EXPORT_SYMBOL(__dev_remove_pack);
5286 EXPORT_SYMBOL(dev_valid_name);
5287 EXPORT_SYMBOL(dev_add_pack);
5288 EXPORT_SYMBOL(dev_alloc_name);
5289 EXPORT_SYMBOL(dev_close);
5290 EXPORT_SYMBOL(dev_get_by_flags);
5291 EXPORT_SYMBOL(dev_get_by_index);
5292 EXPORT_SYMBOL(dev_get_by_name);
5293 EXPORT_SYMBOL(dev_open);
5294 EXPORT_SYMBOL(dev_queue_xmit);
5295 EXPORT_SYMBOL(dev_remove_pack);
5296 EXPORT_SYMBOL(dev_set_allmulti);
5297 EXPORT_SYMBOL(dev_set_promiscuity);
5298 EXPORT_SYMBOL(dev_change_flags);
5299 EXPORT_SYMBOL(dev_set_mtu);
5300 EXPORT_SYMBOL(dev_set_mac_address);
5301 EXPORT_SYMBOL(free_netdev);
5302 EXPORT_SYMBOL(netdev_boot_setup_check);
5303 EXPORT_SYMBOL(netdev_set_master);
5304 EXPORT_SYMBOL(netdev_state_change);
5305 EXPORT_SYMBOL(netif_receive_skb);
5306 EXPORT_SYMBOL(netif_rx);
5307 EXPORT_SYMBOL(register_gifconf);
5308 EXPORT_SYMBOL(register_netdevice);
5309 EXPORT_SYMBOL(register_netdevice_notifier);
5310 EXPORT_SYMBOL(skb_checksum_help);
5311 EXPORT_SYMBOL(synchronize_net);
5312 EXPORT_SYMBOL(unregister_netdevice);
5313 EXPORT_SYMBOL(unregister_netdevice_notifier);
5314 EXPORT_SYMBOL(net_enable_timestamp);
5315 EXPORT_SYMBOL(net_disable_timestamp);
5316 EXPORT_SYMBOL(dev_get_flags);
5318 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5319 EXPORT_SYMBOL(br_handle_frame_hook);
5320 EXPORT_SYMBOL(br_fdb_get_hook);
5321 EXPORT_SYMBOL(br_fdb_put_hook);
5322 #endif
5324 EXPORT_SYMBOL(dev_load);
5326 EXPORT_PER_CPU_SYMBOL(softnet_data);