[PATCH] libata: flush COMRESET set and clear
[linux-2.6/verdex.git] / arch / arm / mm / mm-armv.c
blob585dfb8e20b96a7526b519d85afe8dc67226c562
1 /*
2 * linux/arch/arm/mm/mm-armv.c
4 * Copyright (C) 1998-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Page table sludge for ARM v3 and v4 processor architectures.
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
20 #include <asm/pgalloc.h>
21 #include <asm/page.h>
22 #include <asm/io.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
26 #include <asm/mach/map.h>
28 #define CPOLICY_UNCACHED 0
29 #define CPOLICY_BUFFERED 1
30 #define CPOLICY_WRITETHROUGH 2
31 #define CPOLICY_WRITEBACK 3
32 #define CPOLICY_WRITEALLOC 4
34 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35 static unsigned int ecc_mask __initdata = 0;
36 pgprot_t pgprot_kernel;
38 EXPORT_SYMBOL(pgprot_kernel);
40 struct cachepolicy {
41 const char policy[16];
42 unsigned int cr_mask;
43 unsigned int pmd;
44 unsigned int pte;
47 static struct cachepolicy cache_policies[] __initdata = {
49 .policy = "uncached",
50 .cr_mask = CR_W|CR_C,
51 .pmd = PMD_SECT_UNCACHED,
52 .pte = 0,
53 }, {
54 .policy = "buffered",
55 .cr_mask = CR_C,
56 .pmd = PMD_SECT_BUFFERED,
57 .pte = PTE_BUFFERABLE,
58 }, {
59 .policy = "writethrough",
60 .cr_mask = 0,
61 .pmd = PMD_SECT_WT,
62 .pte = PTE_CACHEABLE,
63 }, {
64 .policy = "writeback",
65 .cr_mask = 0,
66 .pmd = PMD_SECT_WB,
67 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
68 }, {
69 .policy = "writealloc",
70 .cr_mask = 0,
71 .pmd = PMD_SECT_WBWA,
72 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
77 * These are useful for identifing cache coherency
78 * problems by allowing the cache or the cache and
79 * writebuffer to be turned off. (Note: the write
80 * buffer should not be on and the cache off).
82 static void __init early_cachepolicy(char **p)
84 int i;
86 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
87 int len = strlen(cache_policies[i].policy);
89 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
90 cachepolicy = i;
91 cr_alignment &= ~cache_policies[i].cr_mask;
92 cr_no_alignment &= ~cache_policies[i].cr_mask;
93 *p += len;
94 break;
97 if (i == ARRAY_SIZE(cache_policies))
98 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
99 flush_cache_all();
100 set_cr(cr_alignment);
103 static void __init early_nocache(char **__unused)
105 char *p = "buffered";
106 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
107 early_cachepolicy(&p);
110 static void __init early_nowrite(char **__unused)
112 char *p = "uncached";
113 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
114 early_cachepolicy(&p);
117 static void __init early_ecc(char **p)
119 if (memcmp(*p, "on", 2) == 0) {
120 ecc_mask = PMD_PROTECTION;
121 *p += 2;
122 } else if (memcmp(*p, "off", 3) == 0) {
123 ecc_mask = 0;
124 *p += 3;
128 __early_param("nocache", early_nocache);
129 __early_param("nowb", early_nowrite);
130 __early_param("cachepolicy=", early_cachepolicy);
131 __early_param("ecc=", early_ecc);
133 static int __init noalign_setup(char *__unused)
135 cr_alignment &= ~CR_A;
136 cr_no_alignment &= ~CR_A;
137 set_cr(cr_alignment);
138 return 1;
141 __setup("noalign", noalign_setup);
143 #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
146 * need to get a 16k page for level 1
148 pgd_t *get_pgd_slow(struct mm_struct *mm)
150 pgd_t *new_pgd, *init_pgd;
151 pmd_t *new_pmd, *init_pmd;
152 pte_t *new_pte, *init_pte;
154 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
155 if (!new_pgd)
156 goto no_pgd;
158 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
160 init_pgd = pgd_offset_k(0);
162 if (!vectors_high()) {
164 * This lock is here just to satisfy pmd_alloc and pte_lock
166 spin_lock(&mm->page_table_lock);
169 * On ARM, first page must always be allocated since it
170 * contains the machine vectors.
172 new_pmd = pmd_alloc(mm, new_pgd, 0);
173 if (!new_pmd)
174 goto no_pmd;
176 new_pte = pte_alloc_map(mm, new_pmd, 0);
177 if (!new_pte)
178 goto no_pte;
180 init_pmd = pmd_offset(init_pgd, 0);
181 init_pte = pte_offset_map_nested(init_pmd, 0);
182 set_pte(new_pte, *init_pte);
183 pte_unmap_nested(init_pte);
184 pte_unmap(new_pte);
186 spin_unlock(&mm->page_table_lock);
190 * Copy over the kernel and IO PGD entries
192 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
193 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
195 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
197 return new_pgd;
199 no_pte:
200 spin_unlock(&mm->page_table_lock);
201 pmd_free(new_pmd);
202 free_pages((unsigned long)new_pgd, 2);
203 return NULL;
205 no_pmd:
206 spin_unlock(&mm->page_table_lock);
207 free_pages((unsigned long)new_pgd, 2);
208 return NULL;
210 no_pgd:
211 return NULL;
214 void free_pgd_slow(pgd_t *pgd)
216 pmd_t *pmd;
217 struct page *pte;
219 if (!pgd)
220 return;
222 /* pgd is always present and good */
223 pmd = (pmd_t *)pgd;
224 if (pmd_none(*pmd))
225 goto free;
226 if (pmd_bad(*pmd)) {
227 pmd_ERROR(*pmd);
228 pmd_clear(pmd);
229 goto free;
232 pte = pmd_page(*pmd);
233 pmd_clear(pmd);
234 dec_page_state(nr_page_table_pages);
235 pte_free(pte);
236 pmd_free(pmd);
237 free:
238 free_pages((unsigned long) pgd, 2);
242 * Create a SECTION PGD between VIRT and PHYS in domain
243 * DOMAIN with protection PROT. This operates on half-
244 * pgdir entry increments.
246 static inline void
247 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
249 pmd_t *pmdp;
251 pmdp = pmd_offset(pgd_offset_k(virt), virt);
252 if (virt & (1 << 20))
253 pmdp++;
255 *pmdp = __pmd(phys | prot);
256 flush_pmd_entry(pmdp);
260 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
262 static inline void
263 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
265 int i;
267 for (i = 0; i < 16; i += 1) {
268 alloc_init_section(virt, phys & SUPERSECTION_MASK,
269 prot | PMD_SECT_SUPER);
271 virt += (PGDIR_SIZE / 2);
272 phys += (PGDIR_SIZE / 2);
277 * Add a PAGE mapping between VIRT and PHYS in domain
278 * DOMAIN with protection PROT. Note that due to the
279 * way we map the PTEs, we must allocate two PTE_SIZE'd
280 * blocks - one for the Linux pte table, and one for
281 * the hardware pte table.
283 static inline void
284 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
286 pmd_t *pmdp;
287 pte_t *ptep;
289 pmdp = pmd_offset(pgd_offset_k(virt), virt);
291 if (pmd_none(*pmdp)) {
292 unsigned long pmdval;
293 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
294 sizeof(pte_t));
296 pmdval = __pa(ptep) | prot_l1;
297 pmdp[0] = __pmd(pmdval);
298 pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
299 flush_pmd_entry(pmdp);
301 ptep = pte_offset_kernel(pmdp, virt);
303 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
307 * Clear any PGD mapping. On a two-level page table system,
308 * the clearance is done by the middle-level functions (pmd)
309 * rather than the top-level (pgd) functions.
311 static inline void clear_mapping(unsigned long virt)
313 pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
316 struct mem_types {
317 unsigned int prot_pte;
318 unsigned int prot_l1;
319 unsigned int prot_sect;
320 unsigned int domain;
323 static struct mem_types mem_types[] __initdata = {
324 [MT_DEVICE] = {
325 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
326 L_PTE_WRITE,
327 .prot_l1 = PMD_TYPE_TABLE,
328 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
329 PMD_SECT_AP_WRITE,
330 .domain = DOMAIN_IO,
332 [MT_CACHECLEAN] = {
333 .prot_sect = PMD_TYPE_SECT,
334 .domain = DOMAIN_KERNEL,
336 [MT_MINICLEAN] = {
337 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
338 .domain = DOMAIN_KERNEL,
340 [MT_LOW_VECTORS] = {
341 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
342 L_PTE_EXEC,
343 .prot_l1 = PMD_TYPE_TABLE,
344 .domain = DOMAIN_USER,
346 [MT_HIGH_VECTORS] = {
347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 L_PTE_USER | L_PTE_EXEC,
349 .prot_l1 = PMD_TYPE_TABLE,
350 .domain = DOMAIN_USER,
352 [MT_MEMORY] = {
353 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
354 .domain = DOMAIN_KERNEL,
356 [MT_ROM] = {
357 .prot_sect = PMD_TYPE_SECT,
358 .domain = DOMAIN_KERNEL,
360 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
361 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
362 L_PTE_WRITE,
363 .prot_l1 = PMD_TYPE_TABLE,
364 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
365 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
366 PMD_SECT_TEX(1),
367 .domain = DOMAIN_IO,
372 * Adjust the PMD section entries according to the CPU in use.
374 static void __init build_mem_type_table(void)
376 struct cachepolicy *cp;
377 unsigned int cr = get_cr();
378 int cpu_arch = cpu_architecture();
379 int i;
381 #if defined(CONFIG_CPU_DCACHE_DISABLE)
382 if (cachepolicy > CPOLICY_BUFFERED)
383 cachepolicy = CPOLICY_BUFFERED;
384 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
385 if (cachepolicy > CPOLICY_WRITETHROUGH)
386 cachepolicy = CPOLICY_WRITETHROUGH;
387 #endif
388 if (cpu_arch < CPU_ARCH_ARMv5) {
389 if (cachepolicy >= CPOLICY_WRITEALLOC)
390 cachepolicy = CPOLICY_WRITEBACK;
391 ecc_mask = 0;
394 if (cpu_arch <= CPU_ARCH_ARMv5) {
395 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
396 if (mem_types[i].prot_l1)
397 mem_types[i].prot_l1 |= PMD_BIT4;
398 if (mem_types[i].prot_sect)
399 mem_types[i].prot_sect |= PMD_BIT4;
404 * ARMv6 and above have extended page tables.
406 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
408 * bit 4 becomes XN which we must clear for the
409 * kernel memory mapping.
411 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
412 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
414 * Mark cache clean areas and XIP ROM read only
415 * from SVC mode and no access from userspace.
417 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
418 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
419 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
422 cp = &cache_policies[cachepolicy];
424 if (cpu_arch >= CPU_ARCH_ARMv5) {
425 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
426 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
427 } else {
428 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
429 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
430 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
433 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
434 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
435 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
436 mem_types[MT_ROM].prot_sect |= cp->pmd;
438 for (i = 0; i < 16; i++) {
439 unsigned long v = pgprot_val(protection_map[i]);
440 v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
441 protection_map[i] = __pgprot(v);
444 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
445 L_PTE_DIRTY | L_PTE_WRITE |
446 L_PTE_EXEC | cp->pte);
448 switch (cp->pmd) {
449 case PMD_SECT_WT:
450 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
451 break;
452 case PMD_SECT_WB:
453 case PMD_SECT_WBWA:
454 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
455 break;
457 printk("Memory policy: ECC %sabled, Data cache %s\n",
458 ecc_mask ? "en" : "dis", cp->policy);
461 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
464 * Create the page directory entries and any necessary
465 * page tables for the mapping specified by `md'. We
466 * are able to cope here with varying sizes and address
467 * offsets, and we take full advantage of sections and
468 * supersections.
470 static void __init create_mapping(struct map_desc *md)
472 unsigned long virt, length;
473 int prot_sect, prot_l1, domain;
474 pgprot_t prot_pte;
475 long off;
477 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
478 printk(KERN_WARNING "BUG: not creating mapping for "
479 "0x%08lx at 0x%08lx in user region\n",
480 md->physical, md->virtual);
481 return;
484 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
485 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
486 printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
487 "overlaps vmalloc space\n",
488 md->physical, md->virtual);
491 domain = mem_types[md->type].domain;
492 prot_pte = __pgprot(mem_types[md->type].prot_pte);
493 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
494 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
496 virt = md->virtual;
497 off = md->physical - virt;
498 length = md->length;
500 if (mem_types[md->type].prot_l1 == 0 &&
501 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
502 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
503 "be mapped using pages, ignoring.\n",
504 md->physical, md->virtual);
505 return;
508 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
509 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
511 virt += PAGE_SIZE;
512 length -= PAGE_SIZE;
515 /* N.B. ARMv6 supersections are only defined to work with domain 0.
516 * Since domain assignments can in fact be arbitrary, the
517 * 'domain == 0' check below is required to insure that ARMv6
518 * supersections are only allocated for domain 0 regardless
519 * of the actual domain assignments in use.
521 if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
522 /* Align to supersection boundary */
523 while ((virt & ~SUPERSECTION_MASK || (virt + off) &
524 ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
525 alloc_init_section(virt, virt + off, prot_sect);
527 virt += (PGDIR_SIZE / 2);
528 length -= (PGDIR_SIZE / 2);
531 while (length >= SUPERSECTION_SIZE) {
532 alloc_init_supersection(virt, virt + off, prot_sect);
534 virt += SUPERSECTION_SIZE;
535 length -= SUPERSECTION_SIZE;
540 * A section mapping covers half a "pgdir" entry.
542 while (length >= (PGDIR_SIZE / 2)) {
543 alloc_init_section(virt, virt + off, prot_sect);
545 virt += (PGDIR_SIZE / 2);
546 length -= (PGDIR_SIZE / 2);
549 while (length >= PAGE_SIZE) {
550 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
552 virt += PAGE_SIZE;
553 length -= PAGE_SIZE;
558 * In order to soft-boot, we need to insert a 1:1 mapping in place of
559 * the user-mode pages. This will then ensure that we have predictable
560 * results when turning the mmu off
562 void setup_mm_for_reboot(char mode)
564 unsigned long pmdval;
565 pgd_t *pgd;
566 pmd_t *pmd;
567 int i;
568 int cpu_arch = cpu_architecture();
570 if (current->mm && current->mm->pgd)
571 pgd = current->mm->pgd;
572 else
573 pgd = init_mm.pgd;
575 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
576 pmdval = (i << PGDIR_SHIFT) |
577 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
578 PMD_TYPE_SECT;
579 if (cpu_arch <= CPU_ARCH_ARMv5)
580 pmdval |= PMD_BIT4;
581 pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT);
582 pmd[0] = __pmd(pmdval);
583 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
584 flush_pmd_entry(pmd);
588 extern void _stext, _etext;
591 * Setup initial mappings. We use the page we allocated for zero page to hold
592 * the mappings, which will get overwritten by the vectors in traps_init().
593 * The mappings must be in virtual address order.
595 void __init memtable_init(struct meminfo *mi)
597 struct map_desc *init_maps, *p, *q;
598 unsigned long address = 0;
599 int i;
601 build_mem_type_table();
603 init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
605 #ifdef CONFIG_XIP_KERNEL
606 p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
607 p->virtual = (unsigned long)&_stext & PMD_MASK;
608 p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
609 p->type = MT_ROM;
610 p ++;
611 #endif
613 for (i = 0; i < mi->nr_banks; i++) {
614 if (mi->bank[i].size == 0)
615 continue;
617 p->physical = mi->bank[i].start;
618 p->virtual = __phys_to_virt(p->physical);
619 p->length = mi->bank[i].size;
620 p->type = MT_MEMORY;
621 p ++;
624 #ifdef FLUSH_BASE
625 p->physical = FLUSH_BASE_PHYS;
626 p->virtual = FLUSH_BASE;
627 p->length = PGDIR_SIZE;
628 p->type = MT_CACHECLEAN;
629 p ++;
630 #endif
632 #ifdef FLUSH_BASE_MINICACHE
633 p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE;
634 p->virtual = FLUSH_BASE_MINICACHE;
635 p->length = PGDIR_SIZE;
636 p->type = MT_MINICLEAN;
637 p ++;
638 #endif
641 * Go through the initial mappings, but clear out any
642 * pgdir entries that are not in the description.
644 q = init_maps;
645 do {
646 if (address < q->virtual || q == p) {
647 clear_mapping(address);
648 address += PGDIR_SIZE;
649 } else {
650 create_mapping(q);
652 address = q->virtual + q->length;
653 address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
655 q ++;
657 } while (address != 0);
660 * Create a mapping for the machine vectors at the high-vectors
661 * location (0xffff0000). If we aren't using high-vectors, also
662 * create a mapping at the low-vectors virtual address.
664 init_maps->physical = virt_to_phys(init_maps);
665 init_maps->virtual = 0xffff0000;
666 init_maps->length = PAGE_SIZE;
667 init_maps->type = MT_HIGH_VECTORS;
668 create_mapping(init_maps);
670 if (!vectors_high()) {
671 init_maps->virtual = 0;
672 init_maps->type = MT_LOW_VECTORS;
673 create_mapping(init_maps);
676 flush_cache_all();
677 flush_tlb_all();
681 * Create the architecture specific mappings
683 void __init iotable_init(struct map_desc *io_desc, int nr)
685 int i;
687 for (i = 0; i < nr; i++)
688 create_mapping(io_desc + i);
691 static inline void
692 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
694 struct page *start_pg, *end_pg;
695 unsigned long pg, pgend;
698 * Convert start_pfn/end_pfn to a struct page pointer.
700 start_pg = pfn_to_page(start_pfn);
701 end_pg = pfn_to_page(end_pfn);
704 * Convert to physical addresses, and
705 * round start upwards and end downwards.
707 pg = PAGE_ALIGN(__pa(start_pg));
708 pgend = __pa(end_pg) & PAGE_MASK;
711 * If there are free pages between these,
712 * free the section of the memmap array.
714 if (pg < pgend)
715 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
718 static inline void free_unused_memmap_node(int node, struct meminfo *mi)
720 unsigned long bank_start, prev_bank_end = 0;
721 unsigned int i;
724 * [FIXME] This relies on each bank being in address order. This
725 * may not be the case, especially if the user has provided the
726 * information on the command line.
728 for (i = 0; i < mi->nr_banks; i++) {
729 if (mi->bank[i].size == 0 || mi->bank[i].node != node)
730 continue;
732 bank_start = mi->bank[i].start >> PAGE_SHIFT;
733 if (bank_start < prev_bank_end) {
734 printk(KERN_ERR "MEM: unordered memory banks. "
735 "Not freeing memmap.\n");
736 break;
740 * If we had a previous bank, and there is a space
741 * between the current bank and the previous, free it.
743 if (prev_bank_end && prev_bank_end != bank_start)
744 free_memmap(node, prev_bank_end, bank_start);
746 prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
747 mi->bank[i].size) >> PAGE_SHIFT;
752 * The mem_map array can get very big. Free
753 * the unused area of the memory map.
755 void __init create_memmap_holes(struct meminfo *mi)
757 int node;
759 for_each_online_node(node)
760 free_unused_memmap_node(node, mi);