[PATCH] PCI: add MODALIAS to hotplug event for pci devices
[linux-2.6/verdex.git] / arch / ppc64 / kernel / rtc.c
blob3e70b91375fcb808464c190b5e39e1dc72ed9d15
1 /*
2 * Real Time Clock interface for PPC64.
4 * Based on rtc.c by Paul Gortmaker
6 * This driver allows use of the real time clock
7 * from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * Interface does not support RTC interrupts nor an alarm.
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 * 1.0 Mike Corrigan: IBM iSeries rtc support
19 * 1.1 Dave Engebretsen: IBM pSeries rtc support
22 #define RTC_VERSION "1.1"
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/miscdevice.h>
29 #include <linux/ioport.h>
30 #include <linux/fcntl.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/init.h>
33 #include <linux/poll.h>
34 #include <linux/proc_fs.h>
35 #include <linux/spinlock.h>
36 #include <linux/bcd.h>
37 #include <linux/interrupt.h>
39 #include <asm/io.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/time.h>
43 #include <asm/rtas.h>
45 #include <asm/iSeries/LparData.h>
46 #include <asm/iSeries/mf.h>
47 #include <asm/machdep.h>
48 #include <asm/iSeries/ItSpCommArea.h>
50 extern int piranha_simulator;
53 * We sponge a minor off of the misc major. No need slurping
54 * up another valuable major dev number for this. If you add
55 * an ioctl, make sure you don't conflict with SPARC's RTC
56 * ioctls.
59 static ssize_t rtc_read(struct file *file, char __user *buf,
60 size_t count, loff_t *ppos);
62 static int rtc_ioctl(struct inode *inode, struct file *file,
63 unsigned int cmd, unsigned long arg);
65 static int rtc_read_proc(char *page, char **start, off_t off,
66 int count, int *eof, void *data);
69 * If this driver ever becomes modularised, it will be really nice
70 * to make the epoch retain its value across module reload...
73 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
75 static const unsigned char days_in_mo[] =
76 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
79 * Now all the various file operations that we export.
82 static ssize_t rtc_read(struct file *file, char __user *buf,
83 size_t count, loff_t *ppos)
85 return -EIO;
88 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
89 unsigned long arg)
91 struct rtc_time wtime;
93 switch (cmd) {
94 case RTC_RD_TIME: /* Read the time/date from RTC */
96 memset(&wtime, 0, sizeof(struct rtc_time));
97 ppc_md.get_rtc_time(&wtime);
98 break;
100 case RTC_SET_TIME: /* Set the RTC */
102 struct rtc_time rtc_tm;
103 unsigned char mon, day, hrs, min, sec, leap_yr;
104 unsigned int yrs;
106 if (!capable(CAP_SYS_TIME))
107 return -EACCES;
109 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
110 sizeof(struct rtc_time)))
111 return -EFAULT;
113 yrs = rtc_tm.tm_year;
114 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
115 day = rtc_tm.tm_mday;
116 hrs = rtc_tm.tm_hour;
117 min = rtc_tm.tm_min;
118 sec = rtc_tm.tm_sec;
120 if (yrs < 70)
121 return -EINVAL;
123 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
125 if ((mon > 12) || (day == 0))
126 return -EINVAL;
128 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
129 return -EINVAL;
131 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
132 return -EINVAL;
134 if ( yrs > 169 )
135 return -EINVAL;
137 ppc_md.set_rtc_time(&rtc_tm);
139 return 0;
141 case RTC_EPOCH_READ: /* Read the epoch. */
143 return put_user (epoch, (unsigned long __user *)arg);
145 case RTC_EPOCH_SET: /* Set the epoch. */
148 * There were no RTC clocks before 1900.
150 if (arg < 1900)
151 return -EINVAL;
153 if (!capable(CAP_SYS_TIME))
154 return -EACCES;
156 epoch = arg;
157 return 0;
159 default:
160 return -EINVAL;
162 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
165 static int rtc_open(struct inode *inode, struct file *file)
167 nonseekable_open(inode, file);
168 return 0;
171 static int rtc_release(struct inode *inode, struct file *file)
173 return 0;
177 * The various file operations we support.
179 static struct file_operations rtc_fops = {
180 .owner = THIS_MODULE,
181 .llseek = no_llseek,
182 .read = rtc_read,
183 .ioctl = rtc_ioctl,
184 .open = rtc_open,
185 .release = rtc_release,
188 static struct miscdevice rtc_dev = {
189 .minor = RTC_MINOR,
190 .name = "rtc",
191 .fops = &rtc_fops
194 static int __init rtc_init(void)
196 int retval;
198 retval = misc_register(&rtc_dev);
199 if(retval < 0)
200 return retval;
202 #ifdef CONFIG_PROC_FS
203 if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL)
204 == NULL) {
205 misc_deregister(&rtc_dev);
206 return -ENOMEM;
208 #endif
210 printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n");
212 return 0;
215 static void __exit rtc_exit (void)
217 remove_proc_entry ("driver/rtc", NULL);
218 misc_deregister(&rtc_dev);
221 module_init(rtc_init);
222 module_exit(rtc_exit);
225 * Info exported via "/proc/driver/rtc".
228 static int rtc_proc_output (char *buf)
231 char *p;
232 struct rtc_time tm;
234 p = buf;
236 ppc_md.get_rtc_time(&tm);
239 * There is no way to tell if the luser has the RTC set for local
240 * time or for Universal Standard Time (GMT). Probably local though.
242 p += sprintf(p,
243 "rtc_time\t: %02d:%02d:%02d\n"
244 "rtc_date\t: %04d-%02d-%02d\n"
245 "rtc_epoch\t: %04lu\n",
246 tm.tm_hour, tm.tm_min, tm.tm_sec,
247 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
249 p += sprintf(p,
250 "DST_enable\t: no\n"
251 "BCD\t\t: yes\n"
252 "24hr\t\t: yes\n" );
254 return p - buf;
257 static int rtc_read_proc(char *page, char **start, off_t off,
258 int count, int *eof, void *data)
260 int len = rtc_proc_output (page);
261 if (len <= off+count) *eof = 1;
262 *start = page + off;
263 len -= off;
264 if (len>count) len = count;
265 if (len<0) len = 0;
266 return len;
269 #ifdef CONFIG_PPC_ISERIES
271 * Get the RTC from the virtual service processor
272 * This requires flowing LpEvents to the primary partition
274 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
276 if (piranha_simulator)
277 return;
279 mf_get_rtc(rtc_tm);
280 rtc_tm->tm_mon--;
284 * Set the RTC in the virtual service processor
285 * This requires flowing LpEvents to the primary partition
287 int iSeries_set_rtc_time(struct rtc_time *tm)
289 mf_set_rtc(tm);
290 return 0;
293 void iSeries_get_boot_time(struct rtc_time *tm)
295 unsigned long time;
296 static unsigned long lastsec = 1;
298 u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart));
299 u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1);
300 int year = 1970;
301 int year1 = ( dataWord1 >> 24 ) & 0x000000FF;
302 int year2 = ( dataWord1 >> 16 ) & 0x000000FF;
303 int sec = ( dataWord1 >> 8 ) & 0x000000FF;
304 int min = dataWord1 & 0x000000FF;
305 int hour = ( dataWord2 >> 24 ) & 0x000000FF;
306 int day = ( dataWord2 >> 8 ) & 0x000000FF;
307 int mon = dataWord2 & 0x000000FF;
309 if ( piranha_simulator )
310 return;
312 BCD_TO_BIN(sec);
313 BCD_TO_BIN(min);
314 BCD_TO_BIN(hour);
315 BCD_TO_BIN(day);
316 BCD_TO_BIN(mon);
317 BCD_TO_BIN(year1);
318 BCD_TO_BIN(year2);
319 year = year1 * 100 + year2;
321 time = mktime(year, mon, day, hour, min, sec);
322 time += ( jiffies / HZ );
324 /* Now THIS is a nasty hack!
325 * It ensures that the first two calls get different answers.
326 * That way the loop in init_time (time.c) will not think
327 * the clock is stuck.
329 if ( lastsec ) {
330 time -= lastsec;
331 --lastsec;
334 to_tm(time, tm);
335 tm->tm_year -= 1900;
336 tm->tm_mon -= 1;
338 #endif
340 #ifdef CONFIG_PPC_RTAS
341 #define MAX_RTC_WAIT 5000 /* 5 sec */
342 #define RTAS_CLOCK_BUSY (-2)
343 void pSeries_get_boot_time(struct rtc_time *rtc_tm)
345 int ret[8];
346 int error, wait_time;
347 unsigned long max_wait_tb;
349 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
350 do {
351 error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
352 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
353 wait_time = rtas_extended_busy_delay_time(error);
354 /* This is boot time so we spin. */
355 udelay(wait_time*1000);
356 error = RTAS_CLOCK_BUSY;
358 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
360 if (error != 0 && printk_ratelimit()) {
361 printk(KERN_WARNING "error: reading the clock failed (%d)\n",
362 error);
363 return;
366 rtc_tm->tm_sec = ret[5];
367 rtc_tm->tm_min = ret[4];
368 rtc_tm->tm_hour = ret[3];
369 rtc_tm->tm_mday = ret[2];
370 rtc_tm->tm_mon = ret[1] - 1;
371 rtc_tm->tm_year = ret[0] - 1900;
374 /* NOTE: get_rtc_time will get an error if executed in interrupt context
375 * and if a delay is needed to read the clock. In this case we just
376 * silently return without updating rtc_tm.
378 void pSeries_get_rtc_time(struct rtc_time *rtc_tm)
380 int ret[8];
381 int error, wait_time;
382 unsigned long max_wait_tb;
384 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
385 do {
386 error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
387 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
388 if (in_interrupt() && printk_ratelimit()) {
389 printk(KERN_WARNING "error: reading clock would delay interrupt\n");
390 return; /* delay not allowed */
392 wait_time = rtas_extended_busy_delay_time(error);
393 set_current_state(TASK_INTERRUPTIBLE);
394 schedule_timeout(wait_time);
395 error = RTAS_CLOCK_BUSY;
397 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
399 if (error != 0 && printk_ratelimit()) {
400 printk(KERN_WARNING "error: reading the clock failed (%d)\n",
401 error);
402 return;
405 rtc_tm->tm_sec = ret[5];
406 rtc_tm->tm_min = ret[4];
407 rtc_tm->tm_hour = ret[3];
408 rtc_tm->tm_mday = ret[2];
409 rtc_tm->tm_mon = ret[1] - 1;
410 rtc_tm->tm_year = ret[0] - 1900;
413 int pSeries_set_rtc_time(struct rtc_time *tm)
415 int error, wait_time;
416 unsigned long max_wait_tb;
418 max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
419 do {
420 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
421 tm->tm_year + 1900, tm->tm_mon + 1,
422 tm->tm_mday, tm->tm_hour, tm->tm_min,
423 tm->tm_sec, 0);
424 if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
425 if (in_interrupt())
426 return 1; /* probably decrementer */
427 wait_time = rtas_extended_busy_delay_time(error);
428 set_current_state(TASK_INTERRUPTIBLE);
429 schedule_timeout(wait_time);
430 error = RTAS_CLOCK_BUSY;
432 } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
434 if (error != 0 && printk_ratelimit())
435 printk(KERN_WARNING "error: setting the clock failed (%d)\n",
436 error);
438 return 0;
440 #endif