[PATCH] PCI: add MODALIAS to hotplug event for pci devices
[linux-2.6/verdex.git] / arch / sparc64 / kernel / chmc.c
blob97cf912f0853e7aa45676063648b557b878959eb
1 /* $Id: chmc.c,v 1.4 2002/01/08 16:00:14 davem Exp $
2 * memctrlr.c: Driver for UltraSPARC-III memory controller.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/list.h>
12 #include <linux/string.h>
13 #include <linux/sched.h>
14 #include <linux/smp.h>
15 #include <linux/errno.h>
16 #include <linux/init.h>
17 #include <asm/spitfire.h>
18 #include <asm/chmctrl.h>
19 #include <asm/oplib.h>
20 #include <asm/io.h>
22 #define CHMCTRL_NDGRPS 2
23 #define CHMCTRL_NDIMMS 4
25 #define DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS)
27 /* OBP memory-layout property format. */
28 struct obp_map {
29 unsigned char dimm_map[144];
30 unsigned char pin_map[576];
33 #define DIMM_LABEL_SZ 8
35 struct obp_mem_layout {
36 /* One max 8-byte string label per DIMM. Usually
37 * this matches the label on the motherboard where
38 * that DIMM resides.
40 char dimm_labels[DIMMS_PER_MC][DIMM_LABEL_SZ];
42 /* If symmetric use map[0], else it is
43 * asymmetric and map[1] should be used.
45 char symmetric;
47 struct obp_map map[2];
50 #define CHMCTRL_NBANKS 4
52 struct bank_info {
53 struct mctrl_info *mp;
54 int bank_id;
56 u64 raw_reg;
57 int valid;
58 int uk;
59 int um;
60 int lk;
61 int lm;
62 int interleave;
63 unsigned long base;
64 unsigned long size;
67 struct mctrl_info {
68 struct list_head list;
69 int portid;
70 int index;
72 struct obp_mem_layout layout_prop;
73 int layout_size;
75 void __iomem *regs;
77 u64 timing_control1;
78 u64 timing_control2;
79 u64 timing_control3;
80 u64 timing_control4;
81 u64 memaddr_control;
83 struct bank_info logical_banks[CHMCTRL_NBANKS];
86 static LIST_HEAD(mctrl_list);
88 /* Does BANK decode PHYS_ADDR? */
89 static int bank_match(struct bank_info *bp, unsigned long phys_addr)
91 unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT;
92 unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT;
94 /* Bank must be enabled to match. */
95 if (bp->valid == 0)
96 return 0;
98 /* Would BANK match upper bits? */
99 upper_bits ^= bp->um; /* What bits are different? */
100 upper_bits = ~upper_bits; /* Invert. */
101 upper_bits |= bp->uk; /* What bits don't matter for matching? */
102 upper_bits = ~upper_bits; /* Invert. */
104 if (upper_bits)
105 return 0;
107 /* Would BANK match lower bits? */
108 lower_bits ^= bp->lm; /* What bits are different? */
109 lower_bits = ~lower_bits; /* Invert. */
110 lower_bits |= bp->lk; /* What bits don't matter for matching? */
111 lower_bits = ~lower_bits; /* Invert. */
113 if (lower_bits)
114 return 0;
116 /* I always knew you'd be the one. */
117 return 1;
120 /* Given PHYS_ADDR, search memory controller banks for a match. */
121 static struct bank_info *find_bank(unsigned long phys_addr)
123 struct list_head *mctrl_head = &mctrl_list;
124 struct list_head *mctrl_entry = mctrl_head->next;
126 for (;;) {
127 struct mctrl_info *mp =
128 list_entry(mctrl_entry, struct mctrl_info, list);
129 int bank_no;
131 if (mctrl_entry == mctrl_head)
132 break;
133 mctrl_entry = mctrl_entry->next;
135 for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) {
136 struct bank_info *bp;
138 bp = &mp->logical_banks[bank_no];
139 if (bank_match(bp, phys_addr))
140 return bp;
144 return NULL;
147 /* This is the main purpose of this driver. */
148 #define SYNDROME_MIN -1
149 #define SYNDROME_MAX 144
150 int chmc_getunumber(int syndrome_code,
151 unsigned long phys_addr,
152 char *buf, int buflen)
154 struct bank_info *bp;
155 struct obp_mem_layout *prop;
156 int bank_in_controller, first_dimm;
158 bp = find_bank(phys_addr);
159 if (bp == NULL ||
160 syndrome_code < SYNDROME_MIN ||
161 syndrome_code > SYNDROME_MAX) {
162 buf[0] = '?';
163 buf[1] = '?';
164 buf[2] = '?';
165 buf[3] = '\0';
166 return 0;
169 prop = &bp->mp->layout_prop;
170 bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1);
171 first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1));
172 first_dimm *= CHMCTRL_NDIMMS;
174 if (syndrome_code != SYNDROME_MIN) {
175 struct obp_map *map;
176 int qword, where_in_line, where, map_index, map_offset;
177 unsigned int map_val;
179 /* Yaay, single bit error so we can figure out
180 * the exact dimm.
182 if (prop->symmetric)
183 map = &prop->map[0];
184 else
185 map = &prop->map[1];
187 /* Covert syndrome code into the way the bits are
188 * positioned on the bus.
190 if (syndrome_code < 144 - 16)
191 syndrome_code += 16;
192 else if (syndrome_code < 144)
193 syndrome_code -= (144 - 7);
194 else if (syndrome_code < (144 + 3))
195 syndrome_code -= (144 + 3 - 4);
196 else
197 syndrome_code -= 144 + 3;
199 /* All this magic has to do with how a cache line
200 * comes over the wire on Safari. A 64-bit line
201 * comes over in 4 quadword cycles, each of which
202 * transmit ECC/MTAG info as well as the actual
203 * data. 144 bits per quadword, 576 total.
205 #define LINE_SIZE 64
206 #define LINE_ADDR_MSK (LINE_SIZE - 1)
207 #define QW_PER_LINE 4
208 #define QW_BYTES (LINE_SIZE / QW_PER_LINE)
209 #define QW_BITS 144
210 #define LAST_BIT (576 - 1)
212 qword = (phys_addr & LINE_ADDR_MSK) / QW_BYTES;
213 where_in_line = ((3 - qword) * QW_BITS) + syndrome_code;
214 where = (LAST_BIT - where_in_line);
215 map_index = where >> 2;
216 map_offset = where & 0x3;
217 map_val = map->dimm_map[map_index];
218 map_val = ((map_val >> ((3 - map_offset) << 1)) & (2 - 1));
220 sprintf(buf, "%s, pin %3d",
221 prop->dimm_labels[first_dimm + map_val],
222 map->pin_map[where_in_line]);
223 } else {
224 int dimm;
226 /* Multi-bit error, we just dump out all the
227 * dimm labels associated with this bank.
229 for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) {
230 sprintf(buf, "%s ",
231 prop->dimm_labels[first_dimm + dimm]);
232 buf += strlen(buf);
235 return 0;
238 /* Accessing the registers is slightly complicated. If you want
239 * to get at the memory controller which is on the same processor
240 * the code is executing, you must use special ASI load/store else
241 * you go through the global mapping.
243 static u64 read_mcreg(struct mctrl_info *mp, unsigned long offset)
245 unsigned long ret;
246 int this_cpu = get_cpu();
248 if (mp->portid == this_cpu) {
249 __asm__ __volatile__("ldxa [%1] %2, %0"
250 : "=r" (ret)
251 : "r" (offset), "i" (ASI_MCU_CTRL_REG));
252 } else {
253 __asm__ __volatile__("ldxa [%1] %2, %0"
254 : "=r" (ret)
255 : "r" (mp->regs + offset),
256 "i" (ASI_PHYS_BYPASS_EC_E));
258 put_cpu();
260 return ret;
263 #if 0 /* currently unused */
264 static void write_mcreg(struct mctrl_info *mp, unsigned long offset, u64 val)
266 if (mp->portid == smp_processor_id()) {
267 __asm__ __volatile__("stxa %0, [%1] %2"
268 : : "r" (val),
269 "r" (offset), "i" (ASI_MCU_CTRL_REG));
270 } else {
271 __asm__ __volatile__("ldxa %0, [%1] %2"
272 : : "r" (val),
273 "r" (mp->regs + offset),
274 "i" (ASI_PHYS_BYPASS_EC_E));
277 #endif
279 static void interpret_one_decode_reg(struct mctrl_info *mp, int which_bank, u64 val)
281 struct bank_info *p = &mp->logical_banks[which_bank];
283 p->mp = mp;
284 p->bank_id = (CHMCTRL_NBANKS * mp->portid) + which_bank;
285 p->raw_reg = val;
286 p->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT;
287 p->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT;
288 p->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT;
289 p->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT;
290 p->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT;
292 p->base = (p->um);
293 p->base &= ~(p->uk);
294 p->base <<= PA_UPPER_BITS_SHIFT;
296 switch(p->lk) {
297 case 0xf:
298 default:
299 p->interleave = 1;
300 break;
302 case 0xe:
303 p->interleave = 2;
304 break;
306 case 0xc:
307 p->interleave = 4;
308 break;
310 case 0x8:
311 p->interleave = 8;
312 break;
314 case 0x0:
315 p->interleave = 16;
316 break;
319 /* UK[10] is reserved, and UK[11] is not set for the SDRAM
320 * bank size definition.
322 p->size = (((unsigned long)p->uk &
323 ((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT;
324 p->size /= p->interleave;
327 static void fetch_decode_regs(struct mctrl_info *mp)
329 if (mp->layout_size == 0)
330 return;
332 interpret_one_decode_reg(mp, 0,
333 read_mcreg(mp, CHMCTRL_DECODE1));
334 interpret_one_decode_reg(mp, 1,
335 read_mcreg(mp, CHMCTRL_DECODE2));
336 interpret_one_decode_reg(mp, 2,
337 read_mcreg(mp, CHMCTRL_DECODE3));
338 interpret_one_decode_reg(mp, 3,
339 read_mcreg(mp, CHMCTRL_DECODE4));
342 static int init_one_mctrl(int node, int index)
344 struct mctrl_info *mp = kmalloc(sizeof(*mp), GFP_KERNEL);
345 int portid = prom_getintdefault(node, "portid", -1);
346 struct linux_prom64_registers p_reg_prop;
347 int t;
349 if (!mp)
350 return -1;
351 memset(mp, 0, sizeof(*mp));
352 if (portid == -1)
353 goto fail;
355 mp->portid = portid;
356 mp->layout_size = prom_getproplen(node, "memory-layout");
357 if (mp->layout_size < 0)
358 mp->layout_size = 0;
359 if (mp->layout_size > sizeof(mp->layout_prop))
360 goto fail;
362 if (mp->layout_size > 0)
363 prom_getproperty(node, "memory-layout",
364 (char *) &mp->layout_prop,
365 mp->layout_size);
367 t = prom_getproperty(node, "reg",
368 (char *) &p_reg_prop,
369 sizeof(p_reg_prop));
370 if (t < 0 || p_reg_prop.reg_size != 0x48)
371 goto fail;
373 mp->regs = ioremap(p_reg_prop.phys_addr, p_reg_prop.reg_size);
374 if (mp->regs == NULL)
375 goto fail;
377 if (mp->layout_size != 0UL) {
378 mp->timing_control1 = read_mcreg(mp, CHMCTRL_TCTRL1);
379 mp->timing_control2 = read_mcreg(mp, CHMCTRL_TCTRL2);
380 mp->timing_control3 = read_mcreg(mp, CHMCTRL_TCTRL3);
381 mp->timing_control4 = read_mcreg(mp, CHMCTRL_TCTRL4);
382 mp->memaddr_control = read_mcreg(mp, CHMCTRL_MACTRL);
385 fetch_decode_regs(mp);
387 mp->index = index;
389 list_add(&mp->list, &mctrl_list);
391 /* Report the device. */
392 printk(KERN_INFO "chmc%d: US3 memory controller at %p [%s]\n",
393 mp->index,
394 mp->regs, (mp->layout_size ? "ACTIVE" : "INACTIVE"));
396 return 0;
398 fail:
399 if (mp) {
400 if (mp->regs != NULL)
401 iounmap(mp->regs);
402 kfree(mp);
404 return -1;
407 static int __init probe_for_string(char *name, int index)
409 int node = prom_getchild(prom_root_node);
411 while ((node = prom_searchsiblings(node, name)) != 0) {
412 int ret = init_one_mctrl(node, index);
414 if (!ret)
415 index++;
417 node = prom_getsibling(node);
418 if (!node)
419 break;
422 return index;
425 static int __init chmc_init(void)
427 int index;
429 /* This driver is only for cheetah platforms. */
430 if (tlb_type != cheetah && tlb_type != cheetah_plus)
431 return -ENODEV;
433 index = probe_for_string("memory-controller", 0);
434 index = probe_for_string("mc-us3", index);
436 return 0;
439 static void __exit chmc_cleanup(void)
441 struct list_head *head = &mctrl_list;
442 struct list_head *tmp = head->next;
444 for (;;) {
445 struct mctrl_info *p =
446 list_entry(tmp, struct mctrl_info, list);
447 if (tmp == head)
448 break;
449 tmp = tmp->next;
451 list_del(&p->list);
452 iounmap(p->regs);
453 kfree(p);
457 module_init(chmc_init);
458 module_exit(chmc_cleanup);