[PATCH] PCI: add MODALIAS to hotplug event for pci devices
[linux-2.6/verdex.git] / drivers / scsi / aic7xxx / aic79xx_osm.c
blob550c9921691ad8df96602bf833d2c28ba7eba411
1 /*
2 * Adaptec AIC79xx device driver for Linux.
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#171 $
6 * --------------------------------------------------------------------------
7 * Copyright (c) 1994-2000 Justin T. Gibbs.
8 * Copyright (c) 1997-1999 Doug Ledford
9 * Copyright (c) 2000-2003 Adaptec Inc.
10 * All rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
45 #include "aic79xx_osm.h"
46 #include "aic79xx_inline.h"
47 #include <scsi/scsicam.h>
50 * Include aiclib.c as part of our
51 * "module dependencies are hard" work around.
53 #include "aiclib.c"
55 #include <linux/init.h> /* __setup */
57 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
58 #include "sd.h" /* For geometry detection */
59 #endif
61 #include <linux/mm.h> /* For fetching system memory size */
62 #include <linux/delay.h> /* For ssleep/msleep */
65 * Lock protecting manipulation of the ahd softc list.
67 spinlock_t ahd_list_spinlock;
69 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
70 /* For dynamic sglist size calculation. */
71 u_int ahd_linux_nseg;
72 #endif
75 * Bucket size for counting good commands in between bad ones.
77 #define AHD_LINUX_ERR_THRESH 1000
80 * Set this to the delay in seconds after SCSI bus reset.
81 * Note, we honor this only for the initial bus reset.
82 * The scsi error recovery code performs its own bus settle
83 * delay handling for error recovery actions.
85 #ifdef CONFIG_AIC79XX_RESET_DELAY_MS
86 #define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS
87 #else
88 #define AIC79XX_RESET_DELAY 5000
89 #endif
92 * To change the default number of tagged transactions allowed per-device,
93 * add a line to the lilo.conf file like:
94 * append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
95 * which will result in the first four devices on the first two
96 * controllers being set to a tagged queue depth of 32.
98 * The tag_commands is an array of 16 to allow for wide and twin adapters.
99 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
100 * for channel 1.
102 typedef struct {
103 uint16_t tag_commands[16]; /* Allow for wide/twin adapters. */
104 } adapter_tag_info_t;
107 * Modify this as you see fit for your system.
109 * 0 tagged queuing disabled
110 * 1 <= n <= 253 n == max tags ever dispatched.
112 * The driver will throttle the number of commands dispatched to a
113 * device if it returns queue full. For devices with a fixed maximum
114 * queue depth, the driver will eventually determine this depth and
115 * lock it in (a console message is printed to indicate that a lock
116 * has occurred). On some devices, queue full is returned for a temporary
117 * resource shortage. These devices will return queue full at varying
118 * depths. The driver will throttle back when the queue fulls occur and
119 * attempt to slowly increase the depth over time as the device recovers
120 * from the resource shortage.
122 * In this example, the first line will disable tagged queueing for all
123 * the devices on the first probed aic79xx adapter.
125 * The second line enables tagged queueing with 4 commands/LUN for IDs
126 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
127 * driver to attempt to use up to 64 tags for ID 1.
129 * The third line is the same as the first line.
131 * The fourth line disables tagged queueing for devices 0 and 3. It
132 * enables tagged queueing for the other IDs, with 16 commands/LUN
133 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
134 * IDs 2, 5-7, and 9-15.
138 * NOTE: The below structure is for reference only, the actual structure
139 * to modify in order to change things is just below this comment block.
140 adapter_tag_info_t aic79xx_tag_info[] =
142 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
143 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
144 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
145 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
149 #ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE
150 #define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE
151 #else
152 #define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE
153 #endif
155 #define AIC79XX_CONFIGED_TAG_COMMANDS { \
156 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
157 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
158 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
159 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
160 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
161 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
162 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
163 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE \
167 * By default, use the number of commands specified by
168 * the users kernel configuration.
170 static adapter_tag_info_t aic79xx_tag_info[] =
172 {AIC79XX_CONFIGED_TAG_COMMANDS},
173 {AIC79XX_CONFIGED_TAG_COMMANDS},
174 {AIC79XX_CONFIGED_TAG_COMMANDS},
175 {AIC79XX_CONFIGED_TAG_COMMANDS},
176 {AIC79XX_CONFIGED_TAG_COMMANDS},
177 {AIC79XX_CONFIGED_TAG_COMMANDS},
178 {AIC79XX_CONFIGED_TAG_COMMANDS},
179 {AIC79XX_CONFIGED_TAG_COMMANDS},
180 {AIC79XX_CONFIGED_TAG_COMMANDS},
181 {AIC79XX_CONFIGED_TAG_COMMANDS},
182 {AIC79XX_CONFIGED_TAG_COMMANDS},
183 {AIC79XX_CONFIGED_TAG_COMMANDS},
184 {AIC79XX_CONFIGED_TAG_COMMANDS},
185 {AIC79XX_CONFIGED_TAG_COMMANDS},
186 {AIC79XX_CONFIGED_TAG_COMMANDS},
187 {AIC79XX_CONFIGED_TAG_COMMANDS}
191 * By default, read streaming is disabled. In theory,
192 * read streaming should enhance performance, but early
193 * U320 drive firmware actually performs slower with
194 * read streaming enabled.
196 #ifdef CONFIG_AIC79XX_ENABLE_RD_STRM
197 #define AIC79XX_CONFIGED_RD_STRM 0xFFFF
198 #else
199 #define AIC79XX_CONFIGED_RD_STRM 0
200 #endif
202 static uint16_t aic79xx_rd_strm_info[] =
204 AIC79XX_CONFIGED_RD_STRM,
205 AIC79XX_CONFIGED_RD_STRM,
206 AIC79XX_CONFIGED_RD_STRM,
207 AIC79XX_CONFIGED_RD_STRM,
208 AIC79XX_CONFIGED_RD_STRM,
209 AIC79XX_CONFIGED_RD_STRM,
210 AIC79XX_CONFIGED_RD_STRM,
211 AIC79XX_CONFIGED_RD_STRM,
212 AIC79XX_CONFIGED_RD_STRM,
213 AIC79XX_CONFIGED_RD_STRM,
214 AIC79XX_CONFIGED_RD_STRM,
215 AIC79XX_CONFIGED_RD_STRM,
216 AIC79XX_CONFIGED_RD_STRM,
217 AIC79XX_CONFIGED_RD_STRM,
218 AIC79XX_CONFIGED_RD_STRM,
219 AIC79XX_CONFIGED_RD_STRM
223 * DV option:
225 * positive value = DV Enabled
226 * zero = DV Disabled
227 * negative value = DV Default for adapter type/seeprom
229 #ifdef CONFIG_AIC79XX_DV_SETTING
230 #define AIC79XX_CONFIGED_DV CONFIG_AIC79XX_DV_SETTING
231 #else
232 #define AIC79XX_CONFIGED_DV -1
233 #endif
235 static int8_t aic79xx_dv_settings[] =
237 AIC79XX_CONFIGED_DV,
238 AIC79XX_CONFIGED_DV,
239 AIC79XX_CONFIGED_DV,
240 AIC79XX_CONFIGED_DV,
241 AIC79XX_CONFIGED_DV,
242 AIC79XX_CONFIGED_DV,
243 AIC79XX_CONFIGED_DV,
244 AIC79XX_CONFIGED_DV,
245 AIC79XX_CONFIGED_DV,
246 AIC79XX_CONFIGED_DV,
247 AIC79XX_CONFIGED_DV,
248 AIC79XX_CONFIGED_DV,
249 AIC79XX_CONFIGED_DV,
250 AIC79XX_CONFIGED_DV,
251 AIC79XX_CONFIGED_DV,
252 AIC79XX_CONFIGED_DV
256 * The I/O cell on the chip is very configurable in respect to its analog
257 * characteristics. Set the defaults here; they can be overriden with
258 * the proper insmod parameters.
260 struct ahd_linux_iocell_opts
262 uint8_t precomp;
263 uint8_t slewrate;
264 uint8_t amplitude;
266 #define AIC79XX_DEFAULT_PRECOMP 0xFF
267 #define AIC79XX_DEFAULT_SLEWRATE 0xFF
268 #define AIC79XX_DEFAULT_AMPLITUDE 0xFF
269 #define AIC79XX_DEFAULT_IOOPTS \
271 AIC79XX_DEFAULT_PRECOMP, \
272 AIC79XX_DEFAULT_SLEWRATE, \
273 AIC79XX_DEFAULT_AMPLITUDE \
275 #define AIC79XX_PRECOMP_INDEX 0
276 #define AIC79XX_SLEWRATE_INDEX 1
277 #define AIC79XX_AMPLITUDE_INDEX 2
278 static struct ahd_linux_iocell_opts aic79xx_iocell_info[] =
280 AIC79XX_DEFAULT_IOOPTS,
281 AIC79XX_DEFAULT_IOOPTS,
282 AIC79XX_DEFAULT_IOOPTS,
283 AIC79XX_DEFAULT_IOOPTS,
284 AIC79XX_DEFAULT_IOOPTS,
285 AIC79XX_DEFAULT_IOOPTS,
286 AIC79XX_DEFAULT_IOOPTS,
287 AIC79XX_DEFAULT_IOOPTS,
288 AIC79XX_DEFAULT_IOOPTS,
289 AIC79XX_DEFAULT_IOOPTS,
290 AIC79XX_DEFAULT_IOOPTS,
291 AIC79XX_DEFAULT_IOOPTS,
292 AIC79XX_DEFAULT_IOOPTS,
293 AIC79XX_DEFAULT_IOOPTS,
294 AIC79XX_DEFAULT_IOOPTS,
295 AIC79XX_DEFAULT_IOOPTS
299 * There should be a specific return value for this in scsi.h, but
300 * it seems that most drivers ignore it.
302 #define DID_UNDERFLOW DID_ERROR
304 void
305 ahd_print_path(struct ahd_softc *ahd, struct scb *scb)
307 printk("(scsi%d:%c:%d:%d): ",
308 ahd->platform_data->host->host_no,
309 scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X',
310 scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1,
311 scb != NULL ? SCB_GET_LUN(scb) : -1);
315 * XXX - these options apply unilaterally to _all_ adapters
316 * cards in the system. This should be fixed. Exceptions to this
317 * rule are noted in the comments.
321 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
322 * has no effect on any later resets that might occur due to things like
323 * SCSI bus timeouts.
325 static uint32_t aic79xx_no_reset;
328 * Certain PCI motherboards will scan PCI devices from highest to lowest,
329 * others scan from lowest to highest, and they tend to do all kinds of
330 * strange things when they come into contact with PCI bridge chips. The
331 * net result of all this is that the PCI card that is actually used to boot
332 * the machine is very hard to detect. Most motherboards go from lowest
333 * PCI slot number to highest, and the first SCSI controller found is the
334 * one you boot from. The only exceptions to this are when a controller
335 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
336 * from lowest PCI slot number to highest PCI slot number. We also force
337 * all controllers with their BIOS disabled to the end of the list. This
338 * works on *almost* all computers. Where it doesn't work, we have this
339 * option. Setting this option to non-0 will reverse the order of the sort
340 * to highest first, then lowest, but will still leave cards with their BIOS
341 * disabled at the very end. That should fix everyone up unless there are
342 * really strange cirumstances.
344 static uint32_t aic79xx_reverse_scan;
347 * Should we force EXTENDED translation on a controller.
348 * 0 == Use whatever is in the SEEPROM or default to off
349 * 1 == Use whatever is in the SEEPROM or default to on
351 static uint32_t aic79xx_extended;
354 * PCI bus parity checking of the Adaptec controllers. This is somewhat
355 * dubious at best. To my knowledge, this option has never actually
356 * solved a PCI parity problem, but on certain machines with broken PCI
357 * chipset configurations, it can generate tons of false error messages.
358 * It's included in the driver for completeness.
359 * 0 = Shut off PCI parity check
360 * non-0 = Enable PCI parity check
362 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
363 * variable to -1 you would actually want to simply pass the variable
364 * name without a number. That will invert the 0 which will result in
365 * -1.
367 static uint32_t aic79xx_pci_parity = ~0;
370 * There are lots of broken chipsets in the world. Some of them will
371 * violate the PCI spec when we issue byte sized memory writes to our
372 * controller. I/O mapped register access, if allowed by the given
373 * platform, will work in almost all cases.
375 uint32_t aic79xx_allow_memio = ~0;
378 * aic79xx_detect() has been run, so register all device arrivals
379 * immediately with the system rather than deferring to the sorted
380 * attachment performed by aic79xx_detect().
382 int aic79xx_detect_complete;
385 * So that we can set how long each device is given as a selection timeout.
386 * The table of values goes like this:
387 * 0 - 256ms
388 * 1 - 128ms
389 * 2 - 64ms
390 * 3 - 32ms
391 * We default to 256ms because some older devices need a longer time
392 * to respond to initial selection.
394 static uint32_t aic79xx_seltime;
397 * Certain devices do not perform any aging on commands. Should the
398 * device be saturated by commands in one portion of the disk, it is
399 * possible for transactions on far away sectors to never be serviced.
400 * To handle these devices, we can periodically send an ordered tag to
401 * force all outstanding transactions to be serviced prior to a new
402 * transaction.
404 uint32_t aic79xx_periodic_otag;
407 * Module information and settable options.
409 static char *aic79xx = NULL;
411 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
412 MODULE_DESCRIPTION("Adaptec Aic790X U320 SCSI Host Bus Adapter driver");
413 MODULE_LICENSE("Dual BSD/GPL");
414 MODULE_VERSION(AIC79XX_DRIVER_VERSION);
415 module_param(aic79xx, charp, 0);
416 MODULE_PARM_DESC(aic79xx,
417 "period delimited, options string.\n"
418 " verbose Enable verbose/diagnostic logging\n"
419 " allow_memio Allow device registers to be memory mapped\n"
420 " debug Bitmask of debug values to enable\n"
421 " no_reset Supress initial bus resets\n"
422 " extended Enable extended geometry on all controllers\n"
423 " periodic_otag Send an ordered tagged transaction\n"
424 " periodically to prevent tag starvation.\n"
425 " This may be required by some older disk\n"
426 " or drives/RAID arrays.\n"
427 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
428 " tag_info:<tag_str> Set per-target tag depth\n"
429 " global_tag_depth:<int> Global tag depth for all targets on all buses\n"
430 " rd_strm:<rd_strm_masks> Set per-target read streaming setting.\n"
431 " dv:<dv_settings> Set per-controller Domain Validation Setting.\n"
432 " slewrate:<slewrate_list>Set the signal slew rate (0-15).\n"
433 " precomp:<pcomp_list> Set the signal precompensation (0-7).\n"
434 " amplitude:<int> Set the signal amplitude (0-7).\n"
435 " seltime:<int> Selection Timeout:\n"
436 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
437 "\n"
438 " Sample /etc/modprobe.conf line:\n"
439 " Enable verbose logging\n"
440 " Set tag depth on Controller 2/Target 2 to 10 tags\n"
441 " Shorten the selection timeout to 128ms\n"
442 "\n"
443 " options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n"
444 "\n"
445 " Sample /etc/modprobe.conf line:\n"
446 " Change Read Streaming for Controller's 2 and 3\n"
447 "\n"
448 " options aic79xx 'aic79xx=rd_strm:{..0xFFF0.0xC0F0}'");
450 static void ahd_linux_handle_scsi_status(struct ahd_softc *,
451 struct ahd_linux_device *,
452 struct scb *);
453 static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd,
454 Scsi_Cmnd *cmd);
455 static void ahd_linux_filter_inquiry(struct ahd_softc *ahd,
456 struct ahd_devinfo *devinfo);
457 static void ahd_linux_dev_timed_unfreeze(u_long arg);
458 static void ahd_linux_sem_timeout(u_long arg);
459 static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd);
460 static void ahd_linux_size_nseg(void);
461 static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd);
462 static void ahd_linux_start_dv(struct ahd_softc *ahd);
463 static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd);
464 static int ahd_linux_dv_thread(void *data);
465 static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd);
466 static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target);
467 static void ahd_linux_dv_transition(struct ahd_softc *ahd,
468 struct scsi_cmnd *cmd,
469 struct ahd_devinfo *devinfo,
470 struct ahd_linux_target *targ);
471 static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd,
472 struct scsi_cmnd *cmd,
473 struct ahd_devinfo *devinfo);
474 static void ahd_linux_dv_inq(struct ahd_softc *ahd,
475 struct scsi_cmnd *cmd,
476 struct ahd_devinfo *devinfo,
477 struct ahd_linux_target *targ,
478 u_int request_length);
479 static void ahd_linux_dv_tur(struct ahd_softc *ahd,
480 struct scsi_cmnd *cmd,
481 struct ahd_devinfo *devinfo);
482 static void ahd_linux_dv_rebd(struct ahd_softc *ahd,
483 struct scsi_cmnd *cmd,
484 struct ahd_devinfo *devinfo,
485 struct ahd_linux_target *targ);
486 static void ahd_linux_dv_web(struct ahd_softc *ahd,
487 struct scsi_cmnd *cmd,
488 struct ahd_devinfo *devinfo,
489 struct ahd_linux_target *targ);
490 static void ahd_linux_dv_reb(struct ahd_softc *ahd,
491 struct scsi_cmnd *cmd,
492 struct ahd_devinfo *devinfo,
493 struct ahd_linux_target *targ);
494 static void ahd_linux_dv_su(struct ahd_softc *ahd,
495 struct scsi_cmnd *cmd,
496 struct ahd_devinfo *devinfo,
497 struct ahd_linux_target *targ);
498 static int ahd_linux_fallback(struct ahd_softc *ahd,
499 struct ahd_devinfo *devinfo);
500 static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd,
501 struct ahd_devinfo *devinfo);
502 static void ahd_linux_dv_complete(Scsi_Cmnd *cmd);
503 static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ);
504 static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd,
505 struct ahd_devinfo *devinfo);
506 static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd);
507 static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd);
508 static void ahd_linux_device_queue_depth(struct ahd_softc *ahd,
509 struct ahd_linux_device *dev);
510 static struct ahd_linux_target* ahd_linux_alloc_target(struct ahd_softc*,
511 u_int, u_int);
512 static void ahd_linux_free_target(struct ahd_softc*,
513 struct ahd_linux_target*);
514 static struct ahd_linux_device* ahd_linux_alloc_device(struct ahd_softc*,
515 struct ahd_linux_target*,
516 u_int);
517 static void ahd_linux_free_device(struct ahd_softc*,
518 struct ahd_linux_device*);
519 static void ahd_linux_run_device_queue(struct ahd_softc*,
520 struct ahd_linux_device*);
521 static void ahd_linux_setup_tag_info_global(char *p);
522 static aic_option_callback_t ahd_linux_setup_tag_info;
523 static aic_option_callback_t ahd_linux_setup_rd_strm_info;
524 static aic_option_callback_t ahd_linux_setup_dv;
525 static aic_option_callback_t ahd_linux_setup_iocell_info;
526 static int ahd_linux_next_unit(void);
527 static void ahd_runq_tasklet(unsigned long data);
528 static int aic79xx_setup(char *c);
530 /****************************** Inlines ***************************************/
531 static __inline void ahd_schedule_completeq(struct ahd_softc *ahd);
532 static __inline void ahd_schedule_runq(struct ahd_softc *ahd);
533 static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd);
534 static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd);
535 static __inline struct ahd_linux_device*
536 ahd_linux_get_device(struct ahd_softc *ahd, u_int channel,
537 u_int target, u_int lun, int alloc);
538 static struct ahd_cmd *ahd_linux_run_complete_queue(struct ahd_softc *ahd);
539 static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd,
540 struct ahd_linux_device *dev);
541 static __inline struct ahd_linux_device *
542 ahd_linux_next_device_to_run(struct ahd_softc *ahd);
543 static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd);
544 static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
546 static __inline void
547 ahd_schedule_completeq(struct ahd_softc *ahd)
549 if ((ahd->platform_data->flags & AHD_RUN_CMPLT_Q_TIMER) == 0) {
550 ahd->platform_data->flags |= AHD_RUN_CMPLT_Q_TIMER;
551 ahd->platform_data->completeq_timer.expires = jiffies;
552 add_timer(&ahd->platform_data->completeq_timer);
557 * Must be called with our lock held.
559 static __inline void
560 ahd_schedule_runq(struct ahd_softc *ahd)
562 tasklet_schedule(&ahd->platform_data->runq_tasklet);
565 static __inline
566 void ahd_setup_runq_tasklet(struct ahd_softc *ahd)
568 tasklet_init(&ahd->platform_data->runq_tasklet, ahd_runq_tasklet,
569 (unsigned long)ahd);
572 static __inline void
573 ahd_teardown_runq_tasklet(struct ahd_softc *ahd)
575 tasklet_kill(&ahd->platform_data->runq_tasklet);
578 static __inline struct ahd_linux_device*
579 ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target,
580 u_int lun, int alloc)
582 struct ahd_linux_target *targ;
583 struct ahd_linux_device *dev;
584 u_int target_offset;
586 target_offset = target;
587 if (channel != 0)
588 target_offset += 8;
589 targ = ahd->platform_data->targets[target_offset];
590 if (targ == NULL) {
591 if (alloc != 0) {
592 targ = ahd_linux_alloc_target(ahd, channel, target);
593 if (targ == NULL)
594 return (NULL);
595 } else
596 return (NULL);
598 dev = targ->devices[lun];
599 if (dev == NULL && alloc != 0)
600 dev = ahd_linux_alloc_device(ahd, targ, lun);
601 return (dev);
604 #define AHD_LINUX_MAX_RETURNED_ERRORS 4
605 static struct ahd_cmd *
606 ahd_linux_run_complete_queue(struct ahd_softc *ahd)
608 struct ahd_cmd *acmd;
609 u_long done_flags;
610 int with_errors;
612 with_errors = 0;
613 ahd_done_lock(ahd, &done_flags);
614 while ((acmd = TAILQ_FIRST(&ahd->platform_data->completeq)) != NULL) {
615 Scsi_Cmnd *cmd;
617 if (with_errors > AHD_LINUX_MAX_RETURNED_ERRORS) {
619 * Linux uses stack recursion to requeue
620 * commands that need to be retried. Avoid
621 * blowing out the stack by "spoon feeding"
622 * commands that completed with error back
623 * the operating system in case they are going
624 * to be retried. "ick"
626 ahd_schedule_completeq(ahd);
627 break;
629 TAILQ_REMOVE(&ahd->platform_data->completeq,
630 acmd, acmd_links.tqe);
631 cmd = &acmd_scsi_cmd(acmd);
632 cmd->host_scribble = NULL;
633 if (ahd_cmd_get_transaction_status(cmd) != DID_OK
634 || (cmd->result & 0xFF) != SCSI_STATUS_OK)
635 with_errors++;
637 cmd->scsi_done(cmd);
639 ahd_done_unlock(ahd, &done_flags);
640 return (acmd);
643 static __inline void
644 ahd_linux_check_device_queue(struct ahd_softc *ahd,
645 struct ahd_linux_device *dev)
647 if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) != 0
648 && dev->active == 0) {
649 dev->flags &= ~AHD_DEV_FREEZE_TIL_EMPTY;
650 dev->qfrozen--;
653 if (TAILQ_FIRST(&dev->busyq) == NULL
654 || dev->openings == 0 || dev->qfrozen != 0)
655 return;
657 ahd_linux_run_device_queue(ahd, dev);
660 static __inline struct ahd_linux_device *
661 ahd_linux_next_device_to_run(struct ahd_softc *ahd)
664 if ((ahd->flags & AHD_RESOURCE_SHORTAGE) != 0
665 || (ahd->platform_data->qfrozen != 0
666 && AHD_DV_SIMQ_FROZEN(ahd) == 0))
667 return (NULL);
668 return (TAILQ_FIRST(&ahd->platform_data->device_runq));
671 static __inline void
672 ahd_linux_run_device_queues(struct ahd_softc *ahd)
674 struct ahd_linux_device *dev;
676 while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
677 TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
678 dev->flags &= ~AHD_DEV_ON_RUN_LIST;
679 ahd_linux_check_device_queue(ahd, dev);
683 static __inline void
684 ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb)
686 Scsi_Cmnd *cmd;
687 int direction;
689 cmd = scb->io_ctx;
690 direction = cmd->sc_data_direction;
691 ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE);
692 if (cmd->use_sg != 0) {
693 struct scatterlist *sg;
695 sg = (struct scatterlist *)cmd->request_buffer;
696 pci_unmap_sg(ahd->dev_softc, sg, cmd->use_sg, direction);
697 } else if (cmd->request_bufflen != 0) {
698 pci_unmap_single(ahd->dev_softc,
699 scb->platform_data->buf_busaddr,
700 cmd->request_bufflen, direction);
704 /******************************** Macros **************************************/
705 #define BUILD_SCSIID(ahd, cmd) \
706 ((((cmd)->device->id << TID_SHIFT) & TID) | (ahd)->our_id)
708 /************************ Host template entry points *************************/
709 static int ahd_linux_detect(Scsi_Host_Template *);
710 static const char *ahd_linux_info(struct Scsi_Host *);
711 static int ahd_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
712 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
713 static int ahd_linux_slave_alloc(Scsi_Device *);
714 static int ahd_linux_slave_configure(Scsi_Device *);
715 static void ahd_linux_slave_destroy(Scsi_Device *);
716 #if defined(__i386__)
717 static int ahd_linux_biosparam(struct scsi_device*,
718 struct block_device*, sector_t, int[]);
719 #endif
720 #else
721 static int ahd_linux_release(struct Scsi_Host *);
722 static void ahd_linux_select_queue_depth(struct Scsi_Host *host,
723 Scsi_Device *scsi_devs);
724 #if defined(__i386__)
725 static int ahd_linux_biosparam(Disk *, kdev_t, int[]);
726 #endif
727 #endif
728 static int ahd_linux_bus_reset(Scsi_Cmnd *);
729 static int ahd_linux_dev_reset(Scsi_Cmnd *);
730 static int ahd_linux_abort(Scsi_Cmnd *);
733 * Calculate a safe value for AHD_NSEG (as expressed through ahd_linux_nseg).
735 * In pre-2.5.X...
736 * The midlayer allocates an S/G array dynamically when a command is issued
737 * using SCSI malloc. This array, which is in an OS dependent format that
738 * must later be copied to our private S/G list, is sized to house just the
739 * number of segments needed for the current transfer. Since the code that
740 * sizes the SCSI malloc pool does not take into consideration fragmentation
741 * of the pool, executing transactions numbering just a fraction of our
742 * concurrent transaction limit with SG list lengths aproaching AHC_NSEG will
743 * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
744 * mid-layer does not properly handle this scsi malloc failures for the S/G
745 * array and the result can be a lockup of the I/O subsystem. We try to size
746 * our S/G list so that it satisfies our drivers allocation requirements in
747 * addition to avoiding fragmentation of the SCSI malloc pool.
749 static void
750 ahd_linux_size_nseg(void)
752 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
753 u_int cur_size;
754 u_int best_size;
757 * The SCSI allocator rounds to the nearest 512 bytes
758 * an cannot allocate across a page boundary. Our algorithm
759 * is to start at 1K of scsi malloc space per-command and
760 * loop through all factors of the PAGE_SIZE and pick the best.
762 best_size = 0;
763 for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
764 u_int nseg;
766 nseg = cur_size / sizeof(struct scatterlist);
767 if (nseg < AHD_LINUX_MIN_NSEG)
768 continue;
770 if (best_size == 0) {
771 best_size = cur_size;
772 ahd_linux_nseg = nseg;
773 } else {
774 u_int best_rem;
775 u_int cur_rem;
778 * Compare the traits of the current "best_size"
779 * with the current size to determine if the
780 * current size is a better size.
782 best_rem = best_size % sizeof(struct scatterlist);
783 cur_rem = cur_size % sizeof(struct scatterlist);
784 if (cur_rem < best_rem) {
785 best_size = cur_size;
786 ahd_linux_nseg = nseg;
790 #endif
794 * Try to detect an Adaptec 79XX controller.
796 static int
797 ahd_linux_detect(Scsi_Host_Template *template)
799 struct ahd_softc *ahd;
800 int found;
801 int error = 0;
803 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
805 * It is a bug that the upper layer takes
806 * this lock just prior to calling us.
808 spin_unlock_irq(&io_request_lock);
809 #endif
812 * Sanity checking of Linux SCSI data structures so
813 * that some of our hacks^H^H^H^H^Hassumptions aren't
814 * violated.
816 if (offsetof(struct ahd_cmd_internal, end)
817 > offsetof(struct scsi_cmnd, host_scribble)) {
818 printf("ahd_linux_detect: SCSI data structures changed.\n");
819 printf("ahd_linux_detect: Unable to attach\n");
820 return (0);
823 * Determine an appropriate size for our Scatter Gatther lists.
825 ahd_linux_size_nseg();
826 #ifdef MODULE
828 * If we've been passed any parameters, process them now.
830 if (aic79xx)
831 aic79xx_setup(aic79xx);
832 #endif
834 template->proc_name = "aic79xx";
837 * Initialize our softc list lock prior to
838 * probing for any adapters.
840 ahd_list_lockinit();
842 #ifdef CONFIG_PCI
843 error = ahd_linux_pci_init();
844 if (error)
845 return error;
846 #endif
849 * Register with the SCSI layer all
850 * controllers we've found.
852 found = 0;
853 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
855 if (ahd_linux_register_host(ahd, template) == 0)
856 found++;
858 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
859 spin_lock_irq(&io_request_lock);
860 #endif
861 aic79xx_detect_complete++;
862 return 0;
865 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
867 * Free the passed in Scsi_Host memory structures prior to unloading the
868 * module.
870 static int
871 ahd_linux_release(struct Scsi_Host * host)
873 struct ahd_softc *ahd;
874 u_long l;
876 ahd_list_lock(&l);
877 if (host != NULL) {
880 * We should be able to just perform
881 * the free directly, but check our
882 * list for extra sanity.
884 ahd = ahd_find_softc(*(struct ahd_softc **)host->hostdata);
885 if (ahd != NULL) {
886 u_long s;
888 ahd_lock(ahd, &s);
889 ahd_intr_enable(ahd, FALSE);
890 ahd_unlock(ahd, &s);
891 ahd_free(ahd);
894 ahd_list_unlock(&l);
895 return (0);
897 #endif
900 * Return a string describing the driver.
902 static const char *
903 ahd_linux_info(struct Scsi_Host *host)
905 static char buffer[512];
906 char ahd_info[256];
907 char *bp;
908 struct ahd_softc *ahd;
910 bp = &buffer[0];
911 ahd = *(struct ahd_softc **)host->hostdata;
912 memset(bp, 0, sizeof(buffer));
913 strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev ");
914 strcat(bp, AIC79XX_DRIVER_VERSION);
915 strcat(bp, "\n");
916 strcat(bp, " <");
917 strcat(bp, ahd->description);
918 strcat(bp, ">\n");
919 strcat(bp, " ");
920 ahd_controller_info(ahd, ahd_info);
921 strcat(bp, ahd_info);
922 strcat(bp, "\n");
924 return (bp);
928 * Queue an SCB to the controller.
930 static int
931 ahd_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
933 struct ahd_softc *ahd;
934 struct ahd_linux_device *dev;
935 u_long flags;
937 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
940 * Save the callback on completion function.
942 cmd->scsi_done = scsi_done;
944 ahd_midlayer_entrypoint_lock(ahd, &flags);
947 * Close the race of a command that was in the process of
948 * being queued to us just as our simq was frozen. Let
949 * DV commands through so long as we are only frozen to
950 * perform DV.
952 if (ahd->platform_data->qfrozen != 0
953 && AHD_DV_CMD(cmd) == 0) {
955 ahd_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
956 ahd_linux_queue_cmd_complete(ahd, cmd);
957 ahd_schedule_completeq(ahd);
958 ahd_midlayer_entrypoint_unlock(ahd, &flags);
959 return (0);
961 dev = ahd_linux_get_device(ahd, cmd->device->channel,
962 cmd->device->id, cmd->device->lun,
963 /*alloc*/TRUE);
964 if (dev == NULL) {
965 ahd_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
966 ahd_linux_queue_cmd_complete(ahd, cmd);
967 ahd_schedule_completeq(ahd);
968 ahd_midlayer_entrypoint_unlock(ahd, &flags);
969 printf("%s: aic79xx_linux_queue - Unable to allocate device!\n",
970 ahd_name(ahd));
971 return (0);
973 if (cmd->cmd_len > MAX_CDB_LEN)
974 return (-EINVAL);
975 cmd->result = CAM_REQ_INPROG << 16;
976 TAILQ_INSERT_TAIL(&dev->busyq, (struct ahd_cmd *)cmd, acmd_links.tqe);
977 if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
978 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
979 dev->flags |= AHD_DEV_ON_RUN_LIST;
980 ahd_linux_run_device_queues(ahd);
982 ahd_midlayer_entrypoint_unlock(ahd, &flags);
983 return (0);
986 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
987 static int
988 ahd_linux_slave_alloc(Scsi_Device *device)
990 struct ahd_softc *ahd;
992 ahd = *((struct ahd_softc **)device->host->hostdata);
993 if (bootverbose)
994 printf("%s: Slave Alloc %d\n", ahd_name(ahd), device->id);
995 return (0);
998 static int
999 ahd_linux_slave_configure(Scsi_Device *device)
1001 struct ahd_softc *ahd;
1002 struct ahd_linux_device *dev;
1003 u_long flags;
1005 ahd = *((struct ahd_softc **)device->host->hostdata);
1006 if (bootverbose)
1007 printf("%s: Slave Configure %d\n", ahd_name(ahd), device->id);
1008 ahd_midlayer_entrypoint_lock(ahd, &flags);
1010 * Since Linux has attached to the device, configure
1011 * it so we don't free and allocate the device
1012 * structure on every command.
1014 dev = ahd_linux_get_device(ahd, device->channel,
1015 device->id, device->lun,
1016 /*alloc*/TRUE);
1017 if (dev != NULL) {
1018 dev->flags &= ~AHD_DEV_UNCONFIGURED;
1019 dev->flags |= AHD_DEV_SLAVE_CONFIGURED;
1020 dev->scsi_device = device;
1021 ahd_linux_device_queue_depth(ahd, dev);
1023 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1024 return (0);
1027 static void
1028 ahd_linux_slave_destroy(Scsi_Device *device)
1030 struct ahd_softc *ahd;
1031 struct ahd_linux_device *dev;
1032 u_long flags;
1034 ahd = *((struct ahd_softc **)device->host->hostdata);
1035 if (bootverbose)
1036 printf("%s: Slave Destroy %d\n", ahd_name(ahd), device->id);
1037 ahd_midlayer_entrypoint_lock(ahd, &flags);
1038 dev = ahd_linux_get_device(ahd, device->channel,
1039 device->id, device->lun,
1040 /*alloc*/FALSE);
1043 * Filter out "silly" deletions of real devices by only
1044 * deleting devices that have had slave_configure()
1045 * called on them. All other devices that have not
1046 * been configured will automatically be deleted by
1047 * the refcounting process.
1049 if (dev != NULL
1050 && (dev->flags & AHD_DEV_SLAVE_CONFIGURED) != 0) {
1051 dev->flags |= AHD_DEV_UNCONFIGURED;
1052 if (TAILQ_EMPTY(&dev->busyq)
1053 && dev->active == 0
1054 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
1055 ahd_linux_free_device(ahd, dev);
1057 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1059 #else
1061 * Sets the queue depth for each SCSI device hanging
1062 * off the input host adapter.
1064 static void
1065 ahd_linux_select_queue_depth(struct Scsi_Host * host,
1066 Scsi_Device * scsi_devs)
1068 Scsi_Device *device;
1069 Scsi_Device *ldev;
1070 struct ahd_softc *ahd;
1071 u_long flags;
1073 ahd = *((struct ahd_softc **)host->hostdata);
1074 ahd_lock(ahd, &flags);
1075 for (device = scsi_devs; device != NULL; device = device->next) {
1078 * Watch out for duplicate devices. This works around
1079 * some quirks in how the SCSI scanning code does its
1080 * device management.
1082 for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
1083 if (ldev->host == device->host
1084 && ldev->channel == device->channel
1085 && ldev->id == device->id
1086 && ldev->lun == device->lun)
1087 break;
1089 /* Skip duplicate. */
1090 if (ldev != device)
1091 continue;
1093 if (device->host == host) {
1094 struct ahd_linux_device *dev;
1097 * Since Linux has attached to the device, configure
1098 * it so we don't free and allocate the device
1099 * structure on every command.
1101 dev = ahd_linux_get_device(ahd, device->channel,
1102 device->id, device->lun,
1103 /*alloc*/TRUE);
1104 if (dev != NULL) {
1105 dev->flags &= ~AHD_DEV_UNCONFIGURED;
1106 dev->scsi_device = device;
1107 ahd_linux_device_queue_depth(ahd, dev);
1108 device->queue_depth = dev->openings
1109 + dev->active;
1110 if ((dev->flags & (AHD_DEV_Q_BASIC
1111 | AHD_DEV_Q_TAGGED)) == 0) {
1113 * We allow the OS to queue 2 untagged
1114 * transactions to us at any time even
1115 * though we can only execute them
1116 * serially on the controller/device.
1117 * This should remove some latency.
1119 device->queue_depth = 2;
1124 ahd_unlock(ahd, &flags);
1126 #endif
1128 #if defined(__i386__)
1130 * Return the disk geometry for the given SCSI device.
1132 static int
1133 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1134 ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
1135 sector_t capacity, int geom[])
1137 uint8_t *bh;
1138 #else
1139 ahd_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
1141 struct scsi_device *sdev = disk->device;
1142 u_long capacity = disk->capacity;
1143 struct buffer_head *bh;
1144 #endif
1145 int heads;
1146 int sectors;
1147 int cylinders;
1148 int ret;
1149 int extended;
1150 struct ahd_softc *ahd;
1152 ahd = *((struct ahd_softc **)sdev->host->hostdata);
1154 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1155 bh = scsi_bios_ptable(bdev);
1156 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
1157 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
1158 #else
1159 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
1160 #endif
1162 if (bh) {
1163 ret = scsi_partsize(bh, capacity,
1164 &geom[2], &geom[0], &geom[1]);
1165 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1166 kfree(bh);
1167 #else
1168 brelse(bh);
1169 #endif
1170 if (ret != -1)
1171 return (ret);
1173 heads = 64;
1174 sectors = 32;
1175 cylinders = aic_sector_div(capacity, heads, sectors);
1177 if (aic79xx_extended != 0)
1178 extended = 1;
1179 else
1180 extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0;
1181 if (extended && cylinders >= 1024) {
1182 heads = 255;
1183 sectors = 63;
1184 cylinders = aic_sector_div(capacity, heads, sectors);
1186 geom[0] = heads;
1187 geom[1] = sectors;
1188 geom[2] = cylinders;
1189 return (0);
1191 #endif
1194 * Abort the current SCSI command(s).
1196 static int
1197 ahd_linux_abort(Scsi_Cmnd *cmd)
1199 struct ahd_softc *ahd;
1200 struct ahd_cmd *acmd;
1201 struct ahd_cmd *list_acmd;
1202 struct ahd_linux_device *dev;
1203 struct scb *pending_scb;
1204 u_long s;
1205 u_int saved_scbptr;
1206 u_int active_scbptr;
1207 u_int last_phase;
1208 u_int cdb_byte;
1209 int retval;
1210 int was_paused;
1211 int paused;
1212 int wait;
1213 int disconnected;
1214 ahd_mode_state saved_modes;
1216 pending_scb = NULL;
1217 paused = FALSE;
1218 wait = FALSE;
1219 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1220 acmd = (struct ahd_cmd *)cmd;
1222 printf("%s:%d:%d:%d: Attempting to abort cmd %p:",
1223 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1224 cmd->device->lun, cmd);
1225 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
1226 printf(" 0x%x", cmd->cmnd[cdb_byte]);
1227 printf("\n");
1230 * In all versions of Linux, we have to work around
1231 * a major flaw in how the mid-layer is locked down
1232 * if we are to sleep successfully in our error handler
1233 * while allowing our interrupt handler to run. Since
1234 * the midlayer acquires either the io_request_lock or
1235 * our lock prior to calling us, we must use the
1236 * spin_unlock_irq() method for unlocking our lock.
1237 * This will force interrupts to be enabled on the
1238 * current CPU. Since the EH thread should not have
1239 * been running with CPU interrupts disabled other than
1240 * by acquiring either the io_request_lock or our own
1241 * lock, this *should* be safe.
1243 ahd_midlayer_entrypoint_lock(ahd, &s);
1246 * First determine if we currently own this command.
1247 * Start by searching the device queue. If not found
1248 * there, check the pending_scb list. If not found
1249 * at all, and the system wanted us to just abort the
1250 * command, return success.
1252 dev = ahd_linux_get_device(ahd, cmd->device->channel,
1253 cmd->device->id, cmd->device->lun,
1254 /*alloc*/FALSE);
1256 if (dev == NULL) {
1258 * No target device for this command exists,
1259 * so we must not still own the command.
1261 printf("%s:%d:%d:%d: Is not an active device\n",
1262 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1263 cmd->device->lun);
1264 retval = SUCCESS;
1265 goto no_cmd;
1268 TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
1269 if (list_acmd == acmd)
1270 break;
1273 if (list_acmd != NULL) {
1274 printf("%s:%d:%d:%d: Command found on device queue\n",
1275 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1276 cmd->device->lun);
1277 TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
1278 cmd->result = DID_ABORT << 16;
1279 ahd_linux_queue_cmd_complete(ahd, cmd);
1280 retval = SUCCESS;
1281 goto done;
1285 * See if we can find a matching cmd in the pending list.
1287 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
1288 if (pending_scb->io_ctx == cmd)
1289 break;
1292 if (pending_scb == NULL) {
1293 printf("%s:%d:%d:%d: Command not found\n",
1294 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1295 cmd->device->lun);
1296 goto no_cmd;
1299 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
1301 * We can't queue two recovery actions using the same SCB
1303 retval = FAILED;
1304 goto done;
1308 * Ensure that the card doesn't do anything
1309 * behind our back. Also make sure that we
1310 * didn't "just" miss an interrupt that would
1311 * affect this cmd.
1313 was_paused = ahd_is_paused(ahd);
1314 ahd_pause_and_flushwork(ahd);
1315 paused = TRUE;
1317 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
1318 printf("%s:%d:%d:%d: Command already completed\n",
1319 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1320 cmd->device->lun);
1321 goto no_cmd;
1324 printf("%s: At time of recovery, card was %spaused\n",
1325 ahd_name(ahd), was_paused ? "" : "not ");
1326 ahd_dump_card_state(ahd);
1328 disconnected = TRUE;
1329 if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A',
1330 cmd->device->lun, SCB_GET_TAG(pending_scb),
1331 ROLE_INITIATOR, CAM_REQ_ABORTED,
1332 SEARCH_COMPLETE) > 0) {
1333 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
1334 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1335 cmd->device->lun);
1336 retval = SUCCESS;
1337 goto done;
1340 saved_modes = ahd_save_modes(ahd);
1341 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1342 last_phase = ahd_inb(ahd, LASTPHASE);
1343 saved_scbptr = ahd_get_scbptr(ahd);
1344 active_scbptr = saved_scbptr;
1345 if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
1346 struct scb *bus_scb;
1348 bus_scb = ahd_lookup_scb(ahd, active_scbptr);
1349 if (bus_scb == pending_scb)
1350 disconnected = FALSE;
1354 * At this point, pending_scb is the scb associated with the
1355 * passed in command. That command is currently active on the
1356 * bus or is in the disconnected state.
1358 if (last_phase != P_BUSFREE
1359 && SCB_GET_TAG(pending_scb) == active_scbptr) {
1362 * We're active on the bus, so assert ATN
1363 * and hope that the target responds.
1365 pending_scb = ahd_lookup_scb(ahd, active_scbptr);
1366 pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1367 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1368 ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
1369 printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
1370 ahd_name(ahd), cmd->device->channel,
1371 cmd->device->id, cmd->device->lun);
1372 wait = TRUE;
1373 } else if (disconnected) {
1376 * Actually re-queue this SCB in an attempt
1377 * to select the device before it reconnects.
1379 pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1380 ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb));
1381 pending_scb->hscb->cdb_len = 0;
1382 pending_scb->hscb->task_attribute = 0;
1383 pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
1385 if ((pending_scb->flags & SCB_PACKETIZED) != 0) {
1387 * Mark the SCB has having an outstanding
1388 * task management function. Should the command
1389 * complete normally before the task management
1390 * function can be sent, the host will be notified
1391 * to abort our requeued SCB.
1393 ahd_outb(ahd, SCB_TASK_MANAGEMENT,
1394 pending_scb->hscb->task_management);
1395 } else {
1397 * If non-packetized, set the MK_MESSAGE control
1398 * bit indicating that we desire to send a message.
1399 * We also set the disconnected flag since there is
1400 * no guarantee that our SCB control byte matches
1401 * the version on the card. We don't want the
1402 * sequencer to abort the command thinking an
1403 * unsolicited reselection occurred.
1405 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
1408 * The sequencer will never re-reference the
1409 * in-core SCB. To make sure we are notified
1410 * during reslection, set the MK_MESSAGE flag in
1411 * the card's copy of the SCB.
1413 ahd_outb(ahd, SCB_CONTROL,
1414 ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
1418 * Clear out any entries in the QINFIFO first
1419 * so we are the next SCB for this target
1420 * to run.
1422 ahd_search_qinfifo(ahd, cmd->device->id,
1423 cmd->device->channel + 'A', cmd->device->lun,
1424 SCB_LIST_NULL, ROLE_INITIATOR,
1425 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
1426 ahd_qinfifo_requeue_tail(ahd, pending_scb);
1427 ahd_set_scbptr(ahd, saved_scbptr);
1428 ahd_print_path(ahd, pending_scb);
1429 printf("Device is disconnected, re-queuing SCB\n");
1430 wait = TRUE;
1431 } else {
1432 printf("%s:%d:%d:%d: Unable to deliver message\n",
1433 ahd_name(ahd), cmd->device->channel,
1434 cmd->device->id, cmd->device->lun);
1435 retval = FAILED;
1436 goto done;
1439 no_cmd:
1441 * Our assumption is that if we don't have the command, no
1442 * recovery action was required, so we return success. Again,
1443 * the semantics of the mid-layer recovery engine are not
1444 * well defined, so this may change in time.
1446 retval = SUCCESS;
1447 done:
1448 if (paused)
1449 ahd_unpause(ahd);
1450 if (wait) {
1451 struct timer_list timer;
1452 int ret;
1454 pending_scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1455 spin_unlock_irq(&ahd->platform_data->spin_lock);
1456 init_timer(&timer);
1457 timer.data = (u_long)pending_scb;
1458 timer.expires = jiffies + (5 * HZ);
1459 timer.function = ahd_linux_sem_timeout;
1460 add_timer(&timer);
1461 printf("Recovery code sleeping\n");
1462 down(&ahd->platform_data->eh_sem);
1463 printf("Recovery code awake\n");
1464 ret = del_timer_sync(&timer);
1465 if (ret == 0) {
1466 printf("Timer Expired\n");
1467 retval = FAILED;
1469 spin_lock_irq(&ahd->platform_data->spin_lock);
1471 ahd_schedule_runq(ahd);
1472 ahd_linux_run_complete_queue(ahd);
1473 ahd_midlayer_entrypoint_unlock(ahd, &s);
1474 return (retval);
1478 static void
1479 ahd_linux_dev_reset_complete(Scsi_Cmnd *cmd)
1481 free(cmd, M_DEVBUF);
1485 * Attempt to send a target reset message to the device that timed out.
1487 static int
1488 ahd_linux_dev_reset(Scsi_Cmnd *cmd)
1490 struct ahd_softc *ahd;
1491 struct scsi_cmnd *recovery_cmd;
1492 struct ahd_linux_device *dev;
1493 struct ahd_initiator_tinfo *tinfo;
1494 struct ahd_tmode_tstate *tstate;
1495 struct scb *scb;
1496 struct hardware_scb *hscb;
1497 u_long s;
1498 struct timer_list timer;
1499 int retval;
1501 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1502 recovery_cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
1503 if (!recovery_cmd)
1504 return (FAILED);
1505 memset(recovery_cmd, 0, sizeof(struct scsi_cmnd));
1506 recovery_cmd->device = cmd->device;
1507 recovery_cmd->scsi_done = ahd_linux_dev_reset_complete;
1508 #if AHD_DEBUG
1509 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1510 printf("%s:%d:%d:%d: Device reset called for cmd %p\n",
1511 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1512 cmd->device->lun, cmd);
1513 #endif
1514 ahd_midlayer_entrypoint_lock(ahd, &s);
1516 dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id,
1517 cmd->device->lun, /*alloc*/FALSE);
1518 if (dev == NULL) {
1519 ahd_midlayer_entrypoint_unlock(ahd, &s);
1520 kfree(recovery_cmd);
1521 return (FAILED);
1523 if ((scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX)) == NULL) {
1524 ahd_midlayer_entrypoint_unlock(ahd, &s);
1525 kfree(recovery_cmd);
1526 return (FAILED);
1528 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
1529 cmd->device->id, &tstate);
1530 recovery_cmd->result = CAM_REQ_INPROG << 16;
1531 recovery_cmd->host_scribble = (char *)scb;
1532 scb->io_ctx = recovery_cmd;
1533 scb->platform_data->dev = dev;
1534 scb->sg_count = 0;
1535 ahd_set_residual(scb, 0);
1536 ahd_set_sense_residual(scb, 0);
1537 hscb = scb->hscb;
1538 hscb->control = 0;
1539 hscb->scsiid = BUILD_SCSIID(ahd, cmd);
1540 hscb->lun = cmd->device->lun;
1541 hscb->cdb_len = 0;
1542 hscb->task_management = SIU_TASKMGMT_LUN_RESET;
1543 scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE;
1544 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
1545 scb->flags |= SCB_PACKETIZED;
1546 } else {
1547 hscb->control |= MK_MESSAGE;
1549 dev->openings--;
1550 dev->active++;
1551 dev->commands_issued++;
1552 LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
1553 ahd_queue_scb(ahd, scb);
1555 scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1556 spin_unlock_irq(&ahd->platform_data->spin_lock);
1557 init_timer(&timer);
1558 timer.data = (u_long)scb;
1559 timer.expires = jiffies + (5 * HZ);
1560 timer.function = ahd_linux_sem_timeout;
1561 add_timer(&timer);
1562 printf("Recovery code sleeping\n");
1563 down(&ahd->platform_data->eh_sem);
1564 printf("Recovery code awake\n");
1565 retval = SUCCESS;
1566 if (del_timer_sync(&timer) == 0) {
1567 printf("Timer Expired\n");
1568 retval = FAILED;
1570 spin_lock_irq(&ahd->platform_data->spin_lock);
1571 ahd_schedule_runq(ahd);
1572 ahd_linux_run_complete_queue(ahd);
1573 ahd_midlayer_entrypoint_unlock(ahd, &s);
1574 printf("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval);
1575 return (retval);
1579 * Reset the SCSI bus.
1581 static int
1582 ahd_linux_bus_reset(Scsi_Cmnd *cmd)
1584 struct ahd_softc *ahd;
1585 u_long s;
1586 int found;
1588 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1589 #ifdef AHD_DEBUG
1590 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1591 printf("%s: Bus reset called for cmd %p\n",
1592 ahd_name(ahd), cmd);
1593 #endif
1594 ahd_midlayer_entrypoint_lock(ahd, &s);
1595 found = ahd_reset_channel(ahd, cmd->device->channel + 'A',
1596 /*initiate reset*/TRUE);
1597 ahd_linux_run_complete_queue(ahd);
1598 ahd_midlayer_entrypoint_unlock(ahd, &s);
1600 if (bootverbose)
1601 printf("%s: SCSI bus reset delivered. "
1602 "%d SCBs aborted.\n", ahd_name(ahd), found);
1604 return (SUCCESS);
1607 Scsi_Host_Template aic79xx_driver_template = {
1608 .module = THIS_MODULE,
1609 .name = "aic79xx",
1610 .proc_info = ahd_linux_proc_info,
1611 .info = ahd_linux_info,
1612 .queuecommand = ahd_linux_queue,
1613 .eh_abort_handler = ahd_linux_abort,
1614 .eh_device_reset_handler = ahd_linux_dev_reset,
1615 .eh_bus_reset_handler = ahd_linux_bus_reset,
1616 #if defined(__i386__)
1617 .bios_param = ahd_linux_biosparam,
1618 #endif
1619 .can_queue = AHD_MAX_QUEUE,
1620 .this_id = -1,
1621 .cmd_per_lun = 2,
1622 .use_clustering = ENABLE_CLUSTERING,
1623 .slave_alloc = ahd_linux_slave_alloc,
1624 .slave_configure = ahd_linux_slave_configure,
1625 .slave_destroy = ahd_linux_slave_destroy,
1628 /**************************** Tasklet Handler *********************************/
1631 * In 2.4.X and above, this routine is called from a tasklet,
1632 * so we must re-acquire our lock prior to executing this code.
1633 * In all prior kernels, ahd_schedule_runq() calls this routine
1634 * directly and ahd_schedule_runq() is called with our lock held.
1636 static void
1637 ahd_runq_tasklet(unsigned long data)
1639 struct ahd_softc* ahd;
1640 struct ahd_linux_device *dev;
1641 u_long flags;
1643 ahd = (struct ahd_softc *)data;
1644 ahd_lock(ahd, &flags);
1645 while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
1647 TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
1648 dev->flags &= ~AHD_DEV_ON_RUN_LIST;
1649 ahd_linux_check_device_queue(ahd, dev);
1650 /* Yeild to our interrupt handler */
1651 ahd_unlock(ahd, &flags);
1652 ahd_lock(ahd, &flags);
1654 ahd_unlock(ahd, &flags);
1657 /******************************** Bus DMA *************************************/
1659 ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent,
1660 bus_size_t alignment, bus_size_t boundary,
1661 dma_addr_t lowaddr, dma_addr_t highaddr,
1662 bus_dma_filter_t *filter, void *filterarg,
1663 bus_size_t maxsize, int nsegments,
1664 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
1666 bus_dma_tag_t dmat;
1668 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
1669 if (dmat == NULL)
1670 return (ENOMEM);
1673 * Linux is very simplistic about DMA memory. For now don't
1674 * maintain all specification information. Once Linux supplies
1675 * better facilities for doing these operations, or the
1676 * needs of this particular driver change, we might need to do
1677 * more here.
1679 dmat->alignment = alignment;
1680 dmat->boundary = boundary;
1681 dmat->maxsize = maxsize;
1682 *ret_tag = dmat;
1683 return (0);
1686 void
1687 ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat)
1689 free(dmat, M_DEVBUF);
1693 ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr,
1694 int flags, bus_dmamap_t *mapp)
1696 bus_dmamap_t map;
1698 map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
1699 if (map == NULL)
1700 return (ENOMEM);
1702 * Although we can dma data above 4GB, our
1703 * "consistent" memory is below 4GB for
1704 * space efficiency reasons (only need a 4byte
1705 * address). For this reason, we have to reset
1706 * our dma mask when doing allocations.
1708 if (ahd->dev_softc != NULL)
1709 if (pci_set_dma_mask(ahd->dev_softc, 0xFFFFFFFF)) {
1710 printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
1711 kfree(map);
1712 return (ENODEV);
1714 *vaddr = pci_alloc_consistent(ahd->dev_softc,
1715 dmat->maxsize, &map->bus_addr);
1716 if (ahd->dev_softc != NULL)
1717 if (pci_set_dma_mask(ahd->dev_softc,
1718 ahd->platform_data->hw_dma_mask)) {
1719 printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
1720 kfree(map);
1721 return (ENODEV);
1723 if (*vaddr == NULL)
1724 return (ENOMEM);
1725 *mapp = map;
1726 return(0);
1729 void
1730 ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat,
1731 void* vaddr, bus_dmamap_t map)
1733 pci_free_consistent(ahd->dev_softc, dmat->maxsize,
1734 vaddr, map->bus_addr);
1738 ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map,
1739 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
1740 void *cb_arg, int flags)
1743 * Assume for now that this will only be used during
1744 * initialization and not for per-transaction buffer mapping.
1746 bus_dma_segment_t stack_sg;
1748 stack_sg.ds_addr = map->bus_addr;
1749 stack_sg.ds_len = dmat->maxsize;
1750 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
1751 return (0);
1754 void
1755 ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1758 * The map may is NULL in our < 2.3.X implementation.
1760 if (map != NULL)
1761 free(map, M_DEVBUF);
1765 ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1767 /* Nothing to do */
1768 return (0);
1771 /********************* Platform Dependent Functions ***************************/
1773 * Compare "left hand" softc with "right hand" softc, returning:
1774 * < 0 - lahd has a lower priority than rahd
1775 * 0 - Softcs are equal
1776 * > 0 - lahd has a higher priority than rahd
1779 ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd)
1781 int value;
1784 * Under Linux, cards are ordered as follows:
1785 * 1) PCI devices that are marked as the boot controller.
1786 * 2) PCI devices with BIOS enabled sorted by bus/slot/func.
1787 * 3) All remaining PCI devices sorted by bus/slot/func.
1789 #if 0
1790 value = (lahd->flags & AHD_BOOT_CHANNEL)
1791 - (rahd->flags & AHD_BOOT_CHANNEL);
1792 if (value != 0)
1793 /* Controllers set for boot have a *higher* priority */
1794 return (value);
1795 #endif
1797 value = (lahd->flags & AHD_BIOS_ENABLED)
1798 - (rahd->flags & AHD_BIOS_ENABLED);
1799 if (value != 0)
1800 /* Controllers with BIOS enabled have a *higher* priority */
1801 return (value);
1803 /* Still equal. Sort by bus/slot/func. */
1804 if (aic79xx_reverse_scan != 0)
1805 value = ahd_get_pci_bus(lahd->dev_softc)
1806 - ahd_get_pci_bus(rahd->dev_softc);
1807 else
1808 value = ahd_get_pci_bus(rahd->dev_softc)
1809 - ahd_get_pci_bus(lahd->dev_softc);
1810 if (value != 0)
1811 return (value);
1812 if (aic79xx_reverse_scan != 0)
1813 value = ahd_get_pci_slot(lahd->dev_softc)
1814 - ahd_get_pci_slot(rahd->dev_softc);
1815 else
1816 value = ahd_get_pci_slot(rahd->dev_softc)
1817 - ahd_get_pci_slot(lahd->dev_softc);
1818 if (value != 0)
1819 return (value);
1821 value = rahd->channel - lahd->channel;
1822 return (value);
1825 static void
1826 ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1829 if ((instance >= 0) && (targ >= 0)
1830 && (instance < NUM_ELEMENTS(aic79xx_tag_info))
1831 && (targ < AHD_NUM_TARGETS)) {
1832 aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF;
1833 if (bootverbose)
1834 printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1838 static void
1839 ahd_linux_setup_rd_strm_info(u_long arg, int instance, int targ, int32_t value)
1841 if ((instance >= 0)
1842 && (instance < NUM_ELEMENTS(aic79xx_rd_strm_info))) {
1843 aic79xx_rd_strm_info[instance] = value & 0xFFFF;
1844 if (bootverbose)
1845 printf("rd_strm[%d] = 0x%x\n", instance, value);
1849 static void
1850 ahd_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
1852 if ((instance >= 0)
1853 && (instance < NUM_ELEMENTS(aic79xx_dv_settings))) {
1854 aic79xx_dv_settings[instance] = value;
1855 if (bootverbose)
1856 printf("dv[%d] = %d\n", instance, value);
1860 static void
1861 ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value)
1864 if ((instance >= 0)
1865 && (instance < NUM_ELEMENTS(aic79xx_iocell_info))) {
1866 uint8_t *iocell_info;
1868 iocell_info = (uint8_t*)&aic79xx_iocell_info[instance];
1869 iocell_info[index] = value & 0xFFFF;
1870 if (bootverbose)
1871 printf("iocell[%d:%ld] = %d\n", instance, index, value);
1875 static void
1876 ahd_linux_setup_tag_info_global(char *p)
1878 int tags, i, j;
1880 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1881 printf("Setting Global Tags= %d\n", tags);
1883 for (i = 0; i < NUM_ELEMENTS(aic79xx_tag_info); i++) {
1884 for (j = 0; j < AHD_NUM_TARGETS; j++) {
1885 aic79xx_tag_info[i].tag_commands[j] = tags;
1891 * Handle Linux boot parameters. This routine allows for assigning a value
1892 * to a parameter with a ':' between the parameter and the value.
1893 * ie. aic79xx=stpwlev:1,extended
1895 static int
1896 aic79xx_setup(char *s)
1898 int i, n;
1899 char *p;
1900 char *end;
1902 static struct {
1903 const char *name;
1904 uint32_t *flag;
1905 } options[] = {
1906 { "extended", &aic79xx_extended },
1907 { "no_reset", &aic79xx_no_reset },
1908 { "verbose", &aic79xx_verbose },
1909 { "allow_memio", &aic79xx_allow_memio},
1910 #ifdef AHD_DEBUG
1911 { "debug", &ahd_debug },
1912 #endif
1913 { "reverse_scan", &aic79xx_reverse_scan },
1914 { "periodic_otag", &aic79xx_periodic_otag },
1915 { "pci_parity", &aic79xx_pci_parity },
1916 { "seltime", &aic79xx_seltime },
1917 { "tag_info", NULL },
1918 { "global_tag_depth", NULL},
1919 { "rd_strm", NULL },
1920 { "dv", NULL },
1921 { "slewrate", NULL },
1922 { "precomp", NULL },
1923 { "amplitude", NULL },
1926 end = strchr(s, '\0');
1929 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
1930 * will never be 0 in this case.
1932 n = 0;
1934 while ((p = strsep(&s, ",.")) != NULL) {
1935 if (*p == '\0')
1936 continue;
1937 for (i = 0; i < NUM_ELEMENTS(options); i++) {
1939 n = strlen(options[i].name);
1940 if (strncmp(options[i].name, p, n) == 0)
1941 break;
1943 if (i == NUM_ELEMENTS(options))
1944 continue;
1946 if (strncmp(p, "global_tag_depth", n) == 0) {
1947 ahd_linux_setup_tag_info_global(p + n);
1948 } else if (strncmp(p, "tag_info", n) == 0) {
1949 s = aic_parse_brace_option("tag_info", p + n, end,
1950 2, ahd_linux_setup_tag_info, 0);
1951 } else if (strncmp(p, "rd_strm", n) == 0) {
1952 s = aic_parse_brace_option("rd_strm", p + n, end,
1953 1, ahd_linux_setup_rd_strm_info, 0);
1954 } else if (strncmp(p, "dv", n) == 0) {
1955 s = aic_parse_brace_option("dv", p + n, end, 1,
1956 ahd_linux_setup_dv, 0);
1957 } else if (strncmp(p, "slewrate", n) == 0) {
1958 s = aic_parse_brace_option("slewrate",
1959 p + n, end, 1, ahd_linux_setup_iocell_info,
1960 AIC79XX_SLEWRATE_INDEX);
1961 } else if (strncmp(p, "precomp", n) == 0) {
1962 s = aic_parse_brace_option("precomp",
1963 p + n, end, 1, ahd_linux_setup_iocell_info,
1964 AIC79XX_PRECOMP_INDEX);
1965 } else if (strncmp(p, "amplitude", n) == 0) {
1966 s = aic_parse_brace_option("amplitude",
1967 p + n, end, 1, ahd_linux_setup_iocell_info,
1968 AIC79XX_AMPLITUDE_INDEX);
1969 } else if (p[n] == ':') {
1970 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1971 } else if (!strncmp(p, "verbose", n)) {
1972 *(options[i].flag) = 1;
1973 } else {
1974 *(options[i].flag) ^= 0xFFFFFFFF;
1977 return 1;
1980 __setup("aic79xx=", aic79xx_setup);
1982 uint32_t aic79xx_verbose;
1985 ahd_linux_register_host(struct ahd_softc *ahd, Scsi_Host_Template *template)
1987 char buf[80];
1988 struct Scsi_Host *host;
1989 char *new_name;
1990 u_long s;
1991 u_long target;
1993 template->name = ahd->description;
1994 host = scsi_host_alloc(template, sizeof(struct ahd_softc *));
1995 if (host == NULL)
1996 return (ENOMEM);
1998 *((struct ahd_softc **)host->hostdata) = ahd;
1999 ahd_lock(ahd, &s);
2000 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2001 scsi_assign_lock(host, &ahd->platform_data->spin_lock);
2002 #elif AHD_SCSI_HAS_HOST_LOCK != 0
2003 host->lock = &ahd->platform_data->spin_lock;
2004 #endif
2005 ahd->platform_data->host = host;
2006 host->can_queue = AHD_MAX_QUEUE;
2007 host->cmd_per_lun = 2;
2008 host->sg_tablesize = AHD_NSEG;
2009 host->this_id = ahd->our_id;
2010 host->irq = ahd->platform_data->irq;
2011 host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
2012 host->max_lun = AHD_NUM_LUNS;
2013 host->max_channel = 0;
2014 host->sg_tablesize = AHD_NSEG;
2015 ahd_set_unit(ahd, ahd_linux_next_unit());
2016 sprintf(buf, "scsi%d", host->host_no);
2017 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
2018 if (new_name != NULL) {
2019 strcpy(new_name, buf);
2020 ahd_set_name(ahd, new_name);
2022 host->unique_id = ahd->unit;
2023 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2024 scsi_set_pci_device(host, ahd->dev_softc);
2025 #endif
2026 ahd_linux_setup_user_rd_strm_settings(ahd);
2027 ahd_linux_initialize_scsi_bus(ahd);
2028 ahd_unlock(ahd, &s);
2029 ahd->platform_data->dv_pid = kernel_thread(ahd_linux_dv_thread, ahd, 0);
2030 ahd_lock(ahd, &s);
2031 if (ahd->platform_data->dv_pid < 0) {
2032 printf("%s: Failed to create DV thread, error= %d\n",
2033 ahd_name(ahd), ahd->platform_data->dv_pid);
2034 return (-ahd->platform_data->dv_pid);
2037 * Initially allocate *all* of our linux target objects
2038 * so that the DV thread will scan them all in parallel
2039 * just after driver initialization. Any device that
2040 * does not exist will have its target object destroyed
2041 * by the selection timeout handler. In the case of a
2042 * device that appears after the initial DV scan, async
2043 * negotiation will occur for the first command, and DV
2044 * will comence should that first command be successful.
2046 for (target = 0; target < host->max_id; target++) {
2049 * Skip our own ID. Some Compaq/HP storage devices
2050 * have enclosure management devices that respond to
2051 * single bit selection (i.e. selecting ourselves).
2052 * It is expected that either an external application
2053 * or a modified kernel will be used to probe this
2054 * ID if it is appropriate. To accommodate these
2055 * installations, ahc_linux_alloc_target() will allocate
2056 * for our ID if asked to do so.
2058 if (target == ahd->our_id)
2059 continue;
2061 ahd_linux_alloc_target(ahd, 0, target);
2063 ahd_intr_enable(ahd, TRUE);
2064 ahd_linux_start_dv(ahd);
2065 ahd_unlock(ahd, &s);
2067 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2068 scsi_add_host(host, &ahd->dev_softc->dev); /* XXX handle failure */
2069 scsi_scan_host(host);
2070 #endif
2071 return (0);
2074 uint64_t
2075 ahd_linux_get_memsize(void)
2077 struct sysinfo si;
2079 si_meminfo(&si);
2080 return ((uint64_t)si.totalram << PAGE_SHIFT);
2084 * Find the smallest available unit number to use
2085 * for a new device. We don't just use a static
2086 * count to handle the "repeated hot-(un)plug"
2087 * scenario.
2089 static int
2090 ahd_linux_next_unit(void)
2092 struct ahd_softc *ahd;
2093 int unit;
2095 unit = 0;
2096 retry:
2097 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
2098 if (ahd->unit == unit) {
2099 unit++;
2100 goto retry;
2103 return (unit);
2107 * Place the SCSI bus into a known state by either resetting it,
2108 * or forcing transfer negotiations on the next command to any
2109 * target.
2111 static void
2112 ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd)
2114 u_int target_id;
2115 u_int numtarg;
2117 target_id = 0;
2118 numtarg = 0;
2120 if (aic79xx_no_reset != 0)
2121 ahd->flags &= ~AHD_RESET_BUS_A;
2123 if ((ahd->flags & AHD_RESET_BUS_A) != 0)
2124 ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE);
2125 else
2126 numtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2129 * Force negotiation to async for all targets that
2130 * will not see an initial bus reset.
2132 for (; target_id < numtarg; target_id++) {
2133 struct ahd_devinfo devinfo;
2134 struct ahd_initiator_tinfo *tinfo;
2135 struct ahd_tmode_tstate *tstate;
2137 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
2138 target_id, &tstate);
2139 ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
2140 CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
2141 ahd_update_neg_request(ahd, &devinfo, tstate,
2142 tinfo, AHD_NEG_ALWAYS);
2144 /* Give the bus some time to recover */
2145 if ((ahd->flags & AHD_RESET_BUS_A) != 0) {
2146 ahd_freeze_simq(ahd);
2147 init_timer(&ahd->platform_data->reset_timer);
2148 ahd->platform_data->reset_timer.data = (u_long)ahd;
2149 ahd->platform_data->reset_timer.expires =
2150 jiffies + (AIC79XX_RESET_DELAY * HZ)/1000;
2151 ahd->platform_data->reset_timer.function =
2152 (ahd_linux_callback_t *)ahd_release_simq;
2153 add_timer(&ahd->platform_data->reset_timer);
2158 ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg)
2160 ahd->platform_data =
2161 malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT);
2162 if (ahd->platform_data == NULL)
2163 return (ENOMEM);
2164 memset(ahd->platform_data, 0, sizeof(struct ahd_platform_data));
2165 TAILQ_INIT(&ahd->platform_data->completeq);
2166 TAILQ_INIT(&ahd->platform_data->device_runq);
2167 ahd->platform_data->irq = AHD_LINUX_NOIRQ;
2168 ahd->platform_data->hw_dma_mask = 0xFFFFFFFF;
2169 ahd_lockinit(ahd);
2170 ahd_done_lockinit(ahd);
2171 init_timer(&ahd->platform_data->completeq_timer);
2172 ahd->platform_data->completeq_timer.data = (u_long)ahd;
2173 ahd->platform_data->completeq_timer.function =
2174 (ahd_linux_callback_t *)ahd_linux_thread_run_complete_queue;
2175 init_MUTEX_LOCKED(&ahd->platform_data->eh_sem);
2176 init_MUTEX_LOCKED(&ahd->platform_data->dv_sem);
2177 init_MUTEX_LOCKED(&ahd->platform_data->dv_cmd_sem);
2178 ahd_setup_runq_tasklet(ahd);
2179 ahd->seltime = (aic79xx_seltime & 0x3) << 4;
2180 return (0);
2183 void
2184 ahd_platform_free(struct ahd_softc *ahd)
2186 struct ahd_linux_target *targ;
2187 struct ahd_linux_device *dev;
2188 int i, j;
2190 if (ahd->platform_data != NULL) {
2191 del_timer_sync(&ahd->platform_data->completeq_timer);
2192 ahd_linux_kill_dv_thread(ahd);
2193 ahd_teardown_runq_tasklet(ahd);
2194 if (ahd->platform_data->host != NULL) {
2195 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2196 scsi_remove_host(ahd->platform_data->host);
2197 #endif
2198 scsi_host_put(ahd->platform_data->host);
2201 /* destroy all of the device and target objects */
2202 for (i = 0; i < AHD_NUM_TARGETS; i++) {
2203 targ = ahd->platform_data->targets[i];
2204 if (targ != NULL) {
2205 /* Keep target around through the loop. */
2206 targ->refcount++;
2207 for (j = 0; j < AHD_NUM_LUNS; j++) {
2209 if (targ->devices[j] == NULL)
2210 continue;
2211 dev = targ->devices[j];
2212 ahd_linux_free_device(ahd, dev);
2215 * Forcibly free the target now that
2216 * all devices are gone.
2218 ahd_linux_free_target(ahd, targ);
2222 if (ahd->platform_data->irq != AHD_LINUX_NOIRQ)
2223 free_irq(ahd->platform_data->irq, ahd);
2224 if (ahd->tags[0] == BUS_SPACE_PIO
2225 && ahd->bshs[0].ioport != 0)
2226 release_region(ahd->bshs[0].ioport, 256);
2227 if (ahd->tags[1] == BUS_SPACE_PIO
2228 && ahd->bshs[1].ioport != 0)
2229 release_region(ahd->bshs[1].ioport, 256);
2230 if (ahd->tags[0] == BUS_SPACE_MEMIO
2231 && ahd->bshs[0].maddr != NULL) {
2232 iounmap(ahd->bshs[0].maddr);
2233 release_mem_region(ahd->platform_data->mem_busaddr,
2234 0x1000);
2236 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2238 * In 2.4 we detach from the scsi midlayer before the PCI
2239 * layer invokes our remove callback. No per-instance
2240 * detach is provided, so we must reach inside the PCI
2241 * subsystem's internals and detach our driver manually.
2243 if (ahd->dev_softc != NULL)
2244 ahd->dev_softc->driver = NULL;
2245 #endif
2246 free(ahd->platform_data, M_DEVBUF);
2250 void
2251 ahd_platform_init(struct ahd_softc *ahd)
2254 * Lookup and commit any modified IO Cell options.
2256 if (ahd->unit < NUM_ELEMENTS(aic79xx_iocell_info)) {
2257 struct ahd_linux_iocell_opts *iocell_opts;
2259 iocell_opts = &aic79xx_iocell_info[ahd->unit];
2260 if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP)
2261 AHD_SET_PRECOMP(ahd, iocell_opts->precomp);
2262 if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE)
2263 AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate);
2264 if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE)
2265 AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude);
2270 void
2271 ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
2273 ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2274 SCB_GET_CHANNEL(ahd, scb),
2275 SCB_GET_LUN(scb), SCB_LIST_NULL,
2276 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
2279 void
2280 ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
2281 ahd_queue_alg alg)
2283 struct ahd_linux_device *dev;
2284 int was_queuing;
2285 int now_queuing;
2287 dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
2288 devinfo->target,
2289 devinfo->lun, /*alloc*/FALSE);
2290 if (dev == NULL)
2291 return;
2292 was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED);
2293 switch (alg) {
2294 default:
2295 case AHD_QUEUE_NONE:
2296 now_queuing = 0;
2297 break;
2298 case AHD_QUEUE_BASIC:
2299 now_queuing = AHD_DEV_Q_BASIC;
2300 break;
2301 case AHD_QUEUE_TAGGED:
2302 now_queuing = AHD_DEV_Q_TAGGED;
2303 break;
2305 if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0
2306 && (was_queuing != now_queuing)
2307 && (dev->active != 0)) {
2308 dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY;
2309 dev->qfrozen++;
2312 dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG);
2313 if (now_queuing) {
2314 u_int usertags;
2316 usertags = ahd_linux_user_tagdepth(ahd, devinfo);
2317 if (!was_queuing) {
2319 * Start out agressively and allow our
2320 * dynamic queue depth algorithm to take
2321 * care of the rest.
2323 dev->maxtags = usertags;
2324 dev->openings = dev->maxtags - dev->active;
2326 if (dev->maxtags == 0) {
2328 * Queueing is disabled by the user.
2330 dev->openings = 1;
2331 } else if (alg == AHD_QUEUE_TAGGED) {
2332 dev->flags |= AHD_DEV_Q_TAGGED;
2333 if (aic79xx_periodic_otag != 0)
2334 dev->flags |= AHD_DEV_PERIODIC_OTAG;
2335 } else
2336 dev->flags |= AHD_DEV_Q_BASIC;
2337 } else {
2338 /* We can only have one opening. */
2339 dev->maxtags = 0;
2340 dev->openings = 1 - dev->active;
2342 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2343 if (dev->scsi_device != NULL) {
2344 switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) {
2345 case AHD_DEV_Q_BASIC:
2346 scsi_adjust_queue_depth(dev->scsi_device,
2347 MSG_SIMPLE_TASK,
2348 dev->openings + dev->active);
2349 break;
2350 case AHD_DEV_Q_TAGGED:
2351 scsi_adjust_queue_depth(dev->scsi_device,
2352 MSG_ORDERED_TASK,
2353 dev->openings + dev->active);
2354 break;
2355 default:
2357 * We allow the OS to queue 2 untagged transactions to
2358 * us at any time even though we can only execute them
2359 * serially on the controller/device. This should
2360 * remove some latency.
2362 scsi_adjust_queue_depth(dev->scsi_device,
2363 /*NON-TAGGED*/0,
2364 /*queue depth*/2);
2365 break;
2368 #endif
2372 ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel,
2373 int lun, u_int tag, role_t role, uint32_t status)
2375 int targ;
2376 int maxtarg;
2377 int maxlun;
2378 int clun;
2379 int count;
2381 if (tag != SCB_LIST_NULL)
2382 return (0);
2384 targ = 0;
2385 if (target != CAM_TARGET_WILDCARD) {
2386 targ = target;
2387 maxtarg = targ + 1;
2388 } else {
2389 maxtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2391 clun = 0;
2392 if (lun != CAM_LUN_WILDCARD) {
2393 clun = lun;
2394 maxlun = clun + 1;
2395 } else {
2396 maxlun = AHD_NUM_LUNS;
2399 count = 0;
2400 for (; targ < maxtarg; targ++) {
2402 for (; clun < maxlun; clun++) {
2403 struct ahd_linux_device *dev;
2404 struct ahd_busyq *busyq;
2405 struct ahd_cmd *acmd;
2407 dev = ahd_linux_get_device(ahd, /*chan*/0, targ,
2408 clun, /*alloc*/FALSE);
2409 if (dev == NULL)
2410 continue;
2412 busyq = &dev->busyq;
2413 while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
2414 Scsi_Cmnd *cmd;
2416 cmd = &acmd_scsi_cmd(acmd);
2417 TAILQ_REMOVE(busyq, acmd,
2418 acmd_links.tqe);
2419 count++;
2420 cmd->result = status << 16;
2421 ahd_linux_queue_cmd_complete(ahd, cmd);
2426 return (count);
2429 static void
2430 ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd)
2432 u_long flags;
2434 ahd_lock(ahd, &flags);
2435 del_timer(&ahd->platform_data->completeq_timer);
2436 ahd->platform_data->flags &= ~AHD_RUN_CMPLT_Q_TIMER;
2437 ahd_linux_run_complete_queue(ahd);
2438 ahd_unlock(ahd, &flags);
2441 static void
2442 ahd_linux_start_dv(struct ahd_softc *ahd)
2446 * Freeze the simq and signal ahd_linux_queue to not let any
2447 * more commands through
2449 if ((ahd->platform_data->flags & AHD_DV_ACTIVE) == 0) {
2450 #ifdef AHD_DEBUG
2451 if (ahd_debug & AHD_SHOW_DV)
2452 printf("%s: Starting DV\n", ahd_name(ahd));
2453 #endif
2455 ahd->platform_data->flags |= AHD_DV_ACTIVE;
2456 ahd_freeze_simq(ahd);
2458 /* Wake up the DV kthread */
2459 up(&ahd->platform_data->dv_sem);
2463 static int
2464 ahd_linux_dv_thread(void *data)
2466 struct ahd_softc *ahd;
2467 int target;
2468 u_long s;
2470 ahd = (struct ahd_softc *)data;
2472 #ifdef AHD_DEBUG
2473 if (ahd_debug & AHD_SHOW_DV)
2474 printf("In DV Thread\n");
2475 #endif
2478 * Complete thread creation.
2480 lock_kernel();
2481 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,60)
2483 * Don't care about any signals.
2485 siginitsetinv(&current->blocked, 0);
2487 daemonize();
2488 sprintf(current->comm, "ahd_dv_%d", ahd->unit);
2489 #else
2490 daemonize("ahd_dv_%d", ahd->unit);
2491 current->flags |= PF_FREEZE;
2492 #endif
2493 unlock_kernel();
2495 while (1) {
2497 * Use down_interruptible() rather than down() to
2498 * avoid inclusion in the load average.
2500 down_interruptible(&ahd->platform_data->dv_sem);
2502 /* Check to see if we've been signaled to exit */
2503 ahd_lock(ahd, &s);
2504 if ((ahd->platform_data->flags & AHD_DV_SHUTDOWN) != 0) {
2505 ahd_unlock(ahd, &s);
2506 break;
2508 ahd_unlock(ahd, &s);
2510 #ifdef AHD_DEBUG
2511 if (ahd_debug & AHD_SHOW_DV)
2512 printf("%s: Beginning Domain Validation\n",
2513 ahd_name(ahd));
2514 #endif
2517 * Wait for any pending commands to drain before proceeding.
2519 ahd_lock(ahd, &s);
2520 while (LIST_FIRST(&ahd->pending_scbs) != NULL) {
2521 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_EMPTY;
2522 ahd_unlock(ahd, &s);
2523 down_interruptible(&ahd->platform_data->dv_sem);
2524 ahd_lock(ahd, &s);
2528 * Wait for the SIMQ to be released so that DV is the
2529 * only reason the queue is frozen.
2531 while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2532 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2533 ahd_unlock(ahd, &s);
2534 down_interruptible(&ahd->platform_data->dv_sem);
2535 ahd_lock(ahd, &s);
2537 ahd_unlock(ahd, &s);
2539 for (target = 0; target < AHD_NUM_TARGETS; target++)
2540 ahd_linux_dv_target(ahd, target);
2542 ahd_lock(ahd, &s);
2543 ahd->platform_data->flags &= ~AHD_DV_ACTIVE;
2544 ahd_unlock(ahd, &s);
2547 * Release the SIMQ so that normal commands are
2548 * allowed to continue on the bus.
2550 ahd_release_simq(ahd);
2552 up(&ahd->platform_data->eh_sem);
2553 return (0);
2556 static void
2557 ahd_linux_kill_dv_thread(struct ahd_softc *ahd)
2559 u_long s;
2561 ahd_lock(ahd, &s);
2562 if (ahd->platform_data->dv_pid != 0) {
2563 ahd->platform_data->flags |= AHD_DV_SHUTDOWN;
2564 ahd_unlock(ahd, &s);
2565 up(&ahd->platform_data->dv_sem);
2568 * Use the eh_sem as an indicator that the
2569 * dv thread is exiting. Note that the dv
2570 * thread must still return after performing
2571 * the up on our semaphore before it has
2572 * completely exited this module. Unfortunately,
2573 * there seems to be no easy way to wait for the
2574 * exit of a thread for which you are not the
2575 * parent (dv threads are parented by init).
2576 * Cross your fingers...
2578 down(&ahd->platform_data->eh_sem);
2581 * Mark the dv thread as already dead. This
2582 * avoids attempting to kill it a second time.
2583 * This is necessary because we must kill the
2584 * DV thread before calling ahd_free() in the
2585 * module shutdown case to avoid bogus locking
2586 * in the SCSI mid-layer, but we ahd_free() is
2587 * called without killing the DV thread in the
2588 * instance detach case, so ahd_platform_free()
2589 * calls us again to verify that the DV thread
2590 * is dead.
2592 ahd->platform_data->dv_pid = 0;
2593 } else {
2594 ahd_unlock(ahd, &s);
2598 #define AHD_LINUX_DV_INQ_SHORT_LEN 36
2599 #define AHD_LINUX_DV_INQ_LEN 256
2600 #define AHD_LINUX_DV_TIMEOUT (HZ / 4)
2602 #define AHD_SET_DV_STATE(ahd, targ, newstate) \
2603 ahd_set_dv_state(ahd, targ, newstate, __LINE__)
2605 static __inline void
2606 ahd_set_dv_state(struct ahd_softc *ahd, struct ahd_linux_target *targ,
2607 ahd_dv_state newstate, u_int line)
2609 ahd_dv_state oldstate;
2611 oldstate = targ->dv_state;
2612 #ifdef AHD_DEBUG
2613 if (ahd_debug & AHD_SHOW_DV)
2614 printf("%s:%d: Going from state %d to state %d\n",
2615 ahd_name(ahd), line, oldstate, newstate);
2616 #endif
2618 if (oldstate == newstate)
2619 targ->dv_state_retry++;
2620 else
2621 targ->dv_state_retry = 0;
2622 targ->dv_state = newstate;
2625 static void
2626 ahd_linux_dv_target(struct ahd_softc *ahd, u_int target_offset)
2628 struct ahd_devinfo devinfo;
2629 struct ahd_linux_target *targ;
2630 struct scsi_cmnd *cmd;
2631 struct scsi_device *scsi_dev;
2632 struct scsi_sense_data *sense;
2633 uint8_t *buffer;
2634 u_long s;
2635 u_int timeout;
2636 int echo_size;
2638 sense = NULL;
2639 buffer = NULL;
2640 echo_size = 0;
2641 ahd_lock(ahd, &s);
2642 targ = ahd->platform_data->targets[target_offset];
2643 if (targ == NULL || (targ->flags & AHD_DV_REQUIRED) == 0) {
2644 ahd_unlock(ahd, &s);
2645 return;
2647 ahd_compile_devinfo(&devinfo, ahd->our_id, targ->target, /*lun*/0,
2648 targ->channel + 'A', ROLE_INITIATOR);
2649 #ifdef AHD_DEBUG
2650 if (ahd_debug & AHD_SHOW_DV) {
2651 ahd_print_devinfo(ahd, &devinfo);
2652 printf("Performing DV\n");
2654 #endif
2656 ahd_unlock(ahd, &s);
2658 cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
2659 scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
2660 scsi_dev->host = ahd->platform_data->host;
2661 scsi_dev->id = devinfo.target;
2662 scsi_dev->lun = devinfo.lun;
2663 scsi_dev->channel = devinfo.channel - 'A';
2664 ahd->platform_data->dv_scsi_dev = scsi_dev;
2666 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC);
2668 while (targ->dv_state != AHD_DV_STATE_EXIT) {
2669 timeout = AHD_LINUX_DV_TIMEOUT;
2670 switch (targ->dv_state) {
2671 case AHD_DV_STATE_INQ_SHORT_ASYNC:
2672 case AHD_DV_STATE_INQ_ASYNC:
2673 case AHD_DV_STATE_INQ_ASYNC_VERIFY:
2675 * Set things to async narrow to reduce the
2676 * chance that the INQ will fail.
2678 ahd_lock(ahd, &s);
2679 ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
2680 AHD_TRANS_GOAL, /*paused*/FALSE);
2681 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
2682 AHD_TRANS_GOAL, /*paused*/FALSE);
2683 ahd_unlock(ahd, &s);
2684 timeout = 10 * HZ;
2685 targ->flags &= ~AHD_INQ_VALID;
2686 /* FALLTHROUGH */
2687 case AHD_DV_STATE_INQ_VERIFY:
2689 u_int inq_len;
2691 if (targ->dv_state == AHD_DV_STATE_INQ_SHORT_ASYNC)
2692 inq_len = AHD_LINUX_DV_INQ_SHORT_LEN;
2693 else
2694 inq_len = targ->inq_data->additional_length + 5;
2695 ahd_linux_dv_inq(ahd, cmd, &devinfo, targ, inq_len);
2696 break;
2698 case AHD_DV_STATE_TUR:
2699 case AHD_DV_STATE_BUSY:
2700 timeout = 5 * HZ;
2701 ahd_linux_dv_tur(ahd, cmd, &devinfo);
2702 break;
2703 case AHD_DV_STATE_REBD:
2704 ahd_linux_dv_rebd(ahd, cmd, &devinfo, targ);
2705 break;
2706 case AHD_DV_STATE_WEB:
2707 ahd_linux_dv_web(ahd, cmd, &devinfo, targ);
2708 break;
2710 case AHD_DV_STATE_REB:
2711 ahd_linux_dv_reb(ahd, cmd, &devinfo, targ);
2712 break;
2714 case AHD_DV_STATE_SU:
2715 ahd_linux_dv_su(ahd, cmd, &devinfo, targ);
2716 timeout = 50 * HZ;
2717 break;
2719 default:
2720 ahd_print_devinfo(ahd, &devinfo);
2721 printf("Unknown DV state %d\n", targ->dv_state);
2722 goto out;
2725 /* Queue the command and wait for it to complete */
2726 /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
2727 init_timer(&cmd->eh_timeout);
2728 #ifdef AHD_DEBUG
2729 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2731 * All of the printfs during negotiation
2732 * really slow down the negotiation.
2733 * Add a bit of time just to be safe.
2735 timeout += HZ;
2736 #endif
2737 scsi_add_timer(cmd, timeout, ahd_linux_dv_timeout);
2739 * In 2.5.X, it is assumed that all calls from the
2740 * "midlayer" (which we are emulating) will have the
2741 * ahd host lock held. For other kernels, the
2742 * io_request_lock must be held.
2744 #if AHD_SCSI_HAS_HOST_LOCK != 0
2745 ahd_lock(ahd, &s);
2746 #else
2747 spin_lock_irqsave(&io_request_lock, s);
2748 #endif
2749 ahd_linux_queue(cmd, ahd_linux_dv_complete);
2750 #if AHD_SCSI_HAS_HOST_LOCK != 0
2751 ahd_unlock(ahd, &s);
2752 #else
2753 spin_unlock_irqrestore(&io_request_lock, s);
2754 #endif
2755 down_interruptible(&ahd->platform_data->dv_cmd_sem);
2757 * Wait for the SIMQ to be released so that DV is the
2758 * only reason the queue is frozen.
2760 ahd_lock(ahd, &s);
2761 while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2762 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2763 ahd_unlock(ahd, &s);
2764 down_interruptible(&ahd->platform_data->dv_sem);
2765 ahd_lock(ahd, &s);
2767 ahd_unlock(ahd, &s);
2769 ahd_linux_dv_transition(ahd, cmd, &devinfo, targ);
2772 out:
2773 if ((targ->flags & AHD_INQ_VALID) != 0
2774 && ahd_linux_get_device(ahd, devinfo.channel - 'A',
2775 devinfo.target, devinfo.lun,
2776 /*alloc*/FALSE) == NULL) {
2778 * The DV state machine failed to configure this device.
2779 * This is normal if DV is disabled. Since we have inquiry
2780 * data, filter it and use the "optimistic" negotiation
2781 * parameters found in the inquiry string.
2783 ahd_linux_filter_inquiry(ahd, &devinfo);
2784 if ((targ->flags & (AHD_BASIC_DV|AHD_ENHANCED_DV)) != 0) {
2785 ahd_print_devinfo(ahd, &devinfo);
2786 printf("DV failed to configure device. "
2787 "Please file a bug report against "
2788 "this driver.\n");
2792 if (cmd != NULL)
2793 free(cmd, M_DEVBUF);
2795 if (ahd->platform_data->dv_scsi_dev != NULL) {
2796 free(ahd->platform_data->dv_scsi_dev, M_DEVBUF);
2797 ahd->platform_data->dv_scsi_dev = NULL;
2800 ahd_lock(ahd, &s);
2801 if (targ->dv_buffer != NULL) {
2802 free(targ->dv_buffer, M_DEVBUF);
2803 targ->dv_buffer = NULL;
2805 if (targ->dv_buffer1 != NULL) {
2806 free(targ->dv_buffer1, M_DEVBUF);
2807 targ->dv_buffer1 = NULL;
2809 targ->flags &= ~AHD_DV_REQUIRED;
2810 if (targ->refcount == 0)
2811 ahd_linux_free_target(ahd, targ);
2812 ahd_unlock(ahd, &s);
2815 static __inline int
2816 ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
2818 u_long s;
2819 int retval;
2821 ahd_lock(ahd, &s);
2822 retval = ahd_linux_fallback(ahd, devinfo);
2823 ahd_unlock(ahd, &s);
2825 return (retval);
2828 static void
2829 ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
2830 struct ahd_devinfo *devinfo,
2831 struct ahd_linux_target *targ)
2833 u_int32_t status;
2835 status = aic_error_action(cmd, targ->inq_data,
2836 ahd_cmd_get_transaction_status(cmd),
2837 ahd_cmd_get_scsi_status(cmd));
2840 #ifdef AHD_DEBUG
2841 if (ahd_debug & AHD_SHOW_DV) {
2842 ahd_print_devinfo(ahd, devinfo);
2843 printf("Entering ahd_linux_dv_transition, state= %d, "
2844 "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
2845 status, cmd->result);
2847 #endif
2849 switch (targ->dv_state) {
2850 case AHD_DV_STATE_INQ_SHORT_ASYNC:
2851 case AHD_DV_STATE_INQ_ASYNC:
2852 switch (status & SS_MASK) {
2853 case SS_NOP:
2855 AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
2856 break;
2858 case SS_INQ_REFRESH:
2859 AHD_SET_DV_STATE(ahd, targ,
2860 AHD_DV_STATE_INQ_SHORT_ASYNC);
2861 break;
2862 case SS_TUR:
2863 case SS_RETRY:
2864 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2865 if (ahd_cmd_get_transaction_status(cmd)
2866 == CAM_REQUEUE_REQ)
2867 targ->dv_state_retry--;
2868 if ((status & SS_ERRMASK) == EBUSY)
2869 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
2870 if (targ->dv_state_retry < 10)
2871 break;
2872 /* FALLTHROUGH */
2873 default:
2874 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2875 #ifdef AHD_DEBUG
2876 if (ahd_debug & AHD_SHOW_DV) {
2877 ahd_print_devinfo(ahd, devinfo);
2878 printf("Failed DV inquiry, skipping\n");
2880 #endif
2881 break;
2883 break;
2884 case AHD_DV_STATE_INQ_ASYNC_VERIFY:
2885 switch (status & SS_MASK) {
2886 case SS_NOP:
2888 u_int xportflags;
2889 u_int spi3data;
2891 if (memcmp(targ->inq_data, targ->dv_buffer,
2892 AHD_LINUX_DV_INQ_LEN) != 0) {
2894 * Inquiry data must have changed.
2895 * Try from the top again.
2897 AHD_SET_DV_STATE(ahd, targ,
2898 AHD_DV_STATE_INQ_SHORT_ASYNC);
2899 break;
2902 AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
2903 targ->flags |= AHD_INQ_VALID;
2904 if (ahd_linux_user_dv_setting(ahd) == 0)
2905 break;
2907 xportflags = targ->inq_data->flags;
2908 if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
2909 break;
2911 spi3data = targ->inq_data->spi3data;
2912 switch (spi3data & SID_SPI_CLOCK_DT_ST) {
2913 default:
2914 case SID_SPI_CLOCK_ST:
2915 /* Assume only basic DV is supported. */
2916 targ->flags |= AHD_BASIC_DV;
2917 break;
2918 case SID_SPI_CLOCK_DT:
2919 case SID_SPI_CLOCK_DT_ST:
2920 targ->flags |= AHD_ENHANCED_DV;
2921 break;
2923 break;
2925 case SS_INQ_REFRESH:
2926 AHD_SET_DV_STATE(ahd, targ,
2927 AHD_DV_STATE_INQ_SHORT_ASYNC);
2928 break;
2929 case SS_TUR:
2930 case SS_RETRY:
2931 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2932 if (ahd_cmd_get_transaction_status(cmd)
2933 == CAM_REQUEUE_REQ)
2934 targ->dv_state_retry--;
2936 if ((status & SS_ERRMASK) == EBUSY)
2937 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
2938 if (targ->dv_state_retry < 10)
2939 break;
2940 /* FALLTHROUGH */
2941 default:
2942 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2943 #ifdef AHD_DEBUG
2944 if (ahd_debug & AHD_SHOW_DV) {
2945 ahd_print_devinfo(ahd, devinfo);
2946 printf("Failed DV inquiry, skipping\n");
2948 #endif
2949 break;
2951 break;
2952 case AHD_DV_STATE_INQ_VERIFY:
2953 switch (status & SS_MASK) {
2954 case SS_NOP:
2957 if (memcmp(targ->inq_data, targ->dv_buffer,
2958 AHD_LINUX_DV_INQ_LEN) == 0) {
2959 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2960 break;
2963 #ifdef AHD_DEBUG
2964 if (ahd_debug & AHD_SHOW_DV) {
2965 int i;
2967 ahd_print_devinfo(ahd, devinfo);
2968 printf("Inquiry buffer mismatch:");
2969 for (i = 0; i < AHD_LINUX_DV_INQ_LEN; i++) {
2970 if ((i & 0xF) == 0)
2971 printf("\n ");
2972 printf("0x%x:0x0%x ",
2973 ((uint8_t *)targ->inq_data)[i],
2974 targ->dv_buffer[i]);
2976 printf("\n");
2978 #endif
2980 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
2981 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2982 break;
2985 * Do not count "falling back"
2986 * against our retries.
2988 targ->dv_state_retry = 0;
2989 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2990 break;
2992 case SS_INQ_REFRESH:
2993 AHD_SET_DV_STATE(ahd, targ,
2994 AHD_DV_STATE_INQ_SHORT_ASYNC);
2995 break;
2996 case SS_TUR:
2997 case SS_RETRY:
2998 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2999 if (ahd_cmd_get_transaction_status(cmd)
3000 == CAM_REQUEUE_REQ) {
3001 targ->dv_state_retry--;
3002 } else if ((status & SSQ_FALLBACK) != 0) {
3003 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3004 AHD_SET_DV_STATE(ahd, targ,
3005 AHD_DV_STATE_EXIT);
3006 break;
3009 * Do not count "falling back"
3010 * against our retries.
3012 targ->dv_state_retry = 0;
3013 } else if ((status & SS_ERRMASK) == EBUSY)
3014 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3015 if (targ->dv_state_retry < 10)
3016 break;
3017 /* FALLTHROUGH */
3018 default:
3019 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3020 #ifdef AHD_DEBUG
3021 if (ahd_debug & AHD_SHOW_DV) {
3022 ahd_print_devinfo(ahd, devinfo);
3023 printf("Failed DV inquiry, skipping\n");
3025 #endif
3026 break;
3028 break;
3030 case AHD_DV_STATE_TUR:
3031 switch (status & SS_MASK) {
3032 case SS_NOP:
3033 if ((targ->flags & AHD_BASIC_DV) != 0) {
3034 ahd_linux_filter_inquiry(ahd, devinfo);
3035 AHD_SET_DV_STATE(ahd, targ,
3036 AHD_DV_STATE_INQ_VERIFY);
3037 } else if ((targ->flags & AHD_ENHANCED_DV) != 0) {
3038 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REBD);
3039 } else {
3040 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3042 break;
3043 case SS_RETRY:
3044 case SS_TUR:
3045 if ((status & SS_ERRMASK) == EBUSY) {
3046 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3047 break;
3049 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3050 if (ahd_cmd_get_transaction_status(cmd)
3051 == CAM_REQUEUE_REQ) {
3052 targ->dv_state_retry--;
3053 } else if ((status & SSQ_FALLBACK) != 0) {
3054 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3055 AHD_SET_DV_STATE(ahd, targ,
3056 AHD_DV_STATE_EXIT);
3057 break;
3060 * Do not count "falling back"
3061 * against our retries.
3063 targ->dv_state_retry = 0;
3065 if (targ->dv_state_retry >= 10) {
3066 #ifdef AHD_DEBUG
3067 if (ahd_debug & AHD_SHOW_DV) {
3068 ahd_print_devinfo(ahd, devinfo);
3069 printf("DV TUR reties exhausted\n");
3071 #endif
3072 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3073 break;
3075 if (status & SSQ_DELAY)
3076 ssleep(1);
3078 break;
3079 case SS_START:
3080 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_SU);
3081 break;
3082 case SS_INQ_REFRESH:
3083 AHD_SET_DV_STATE(ahd, targ,
3084 AHD_DV_STATE_INQ_SHORT_ASYNC);
3085 break;
3086 default:
3087 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3088 break;
3090 break;
3092 case AHD_DV_STATE_REBD:
3093 switch (status & SS_MASK) {
3094 case SS_NOP:
3096 uint32_t echo_size;
3098 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3099 echo_size = scsi_3btoul(&targ->dv_buffer[1]);
3100 echo_size &= 0x1FFF;
3101 #ifdef AHD_DEBUG
3102 if (ahd_debug & AHD_SHOW_DV) {
3103 ahd_print_devinfo(ahd, devinfo);
3104 printf("Echo buffer size= %d\n", echo_size);
3106 #endif
3107 if (echo_size == 0) {
3108 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3109 break;
3112 /* Generate the buffer pattern */
3113 targ->dv_echo_size = echo_size;
3114 ahd_linux_generate_dv_pattern(targ);
3116 * Setup initial negotiation values.
3118 ahd_linux_filter_inquiry(ahd, devinfo);
3119 break;
3121 case SS_INQ_REFRESH:
3122 AHD_SET_DV_STATE(ahd, targ,
3123 AHD_DV_STATE_INQ_SHORT_ASYNC);
3124 break;
3125 case SS_RETRY:
3126 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3127 if (ahd_cmd_get_transaction_status(cmd)
3128 == CAM_REQUEUE_REQ)
3129 targ->dv_state_retry--;
3130 if (targ->dv_state_retry <= 10)
3131 break;
3132 #ifdef AHD_DEBUG
3133 if (ahd_debug & AHD_SHOW_DV) {
3134 ahd_print_devinfo(ahd, devinfo);
3135 printf("DV REBD reties exhausted\n");
3137 #endif
3138 /* FALLTHROUGH */
3139 case SS_FATAL:
3140 default:
3142 * Setup initial negotiation values
3143 * and try level 1 DV.
3145 ahd_linux_filter_inquiry(ahd, devinfo);
3146 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY);
3147 targ->dv_echo_size = 0;
3148 break;
3150 break;
3152 case AHD_DV_STATE_WEB:
3153 switch (status & SS_MASK) {
3154 case SS_NOP:
3155 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REB);
3156 break;
3157 case SS_INQ_REFRESH:
3158 AHD_SET_DV_STATE(ahd, targ,
3159 AHD_DV_STATE_INQ_SHORT_ASYNC);
3160 break;
3161 case SS_RETRY:
3162 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3163 if (ahd_cmd_get_transaction_status(cmd)
3164 == CAM_REQUEUE_REQ) {
3165 targ->dv_state_retry--;
3166 } else if ((status & SSQ_FALLBACK) != 0) {
3167 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3168 AHD_SET_DV_STATE(ahd, targ,
3169 AHD_DV_STATE_EXIT);
3170 break;
3173 * Do not count "falling back"
3174 * against our retries.
3176 targ->dv_state_retry = 0;
3178 if (targ->dv_state_retry <= 10)
3179 break;
3180 /* FALLTHROUGH */
3181 #ifdef AHD_DEBUG
3182 if (ahd_debug & AHD_SHOW_DV) {
3183 ahd_print_devinfo(ahd, devinfo);
3184 printf("DV WEB reties exhausted\n");
3186 #endif
3187 default:
3188 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3189 break;
3191 break;
3193 case AHD_DV_STATE_REB:
3194 switch (status & SS_MASK) {
3195 case SS_NOP:
3196 if (memcmp(targ->dv_buffer, targ->dv_buffer1,
3197 targ->dv_echo_size) != 0) {
3198 if (ahd_linux_dv_fallback(ahd, devinfo) != 0)
3199 AHD_SET_DV_STATE(ahd, targ,
3200 AHD_DV_STATE_EXIT);
3201 else
3202 AHD_SET_DV_STATE(ahd, targ,
3203 AHD_DV_STATE_WEB);
3204 break;
3207 if (targ->dv_buffer != NULL) {
3208 free(targ->dv_buffer, M_DEVBUF);
3209 targ->dv_buffer = NULL;
3211 if (targ->dv_buffer1 != NULL) {
3212 free(targ->dv_buffer1, M_DEVBUF);
3213 targ->dv_buffer1 = NULL;
3215 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3216 break;
3217 case SS_INQ_REFRESH:
3218 AHD_SET_DV_STATE(ahd, targ,
3219 AHD_DV_STATE_INQ_SHORT_ASYNC);
3220 break;
3221 case SS_RETRY:
3222 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3223 if (ahd_cmd_get_transaction_status(cmd)
3224 == CAM_REQUEUE_REQ) {
3225 targ->dv_state_retry--;
3226 } else if ((status & SSQ_FALLBACK) != 0) {
3227 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3228 AHD_SET_DV_STATE(ahd, targ,
3229 AHD_DV_STATE_EXIT);
3230 break;
3232 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3234 if (targ->dv_state_retry <= 10) {
3235 if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
3236 msleep(ahd->our_id*1000/10);
3237 break;
3239 #ifdef AHD_DEBUG
3240 if (ahd_debug & AHD_SHOW_DV) {
3241 ahd_print_devinfo(ahd, devinfo);
3242 printf("DV REB reties exhausted\n");
3244 #endif
3245 /* FALLTHROUGH */
3246 default:
3247 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3248 break;
3250 break;
3252 case AHD_DV_STATE_SU:
3253 switch (status & SS_MASK) {
3254 case SS_NOP:
3255 case SS_INQ_REFRESH:
3256 AHD_SET_DV_STATE(ahd, targ,
3257 AHD_DV_STATE_INQ_SHORT_ASYNC);
3258 break;
3259 default:
3260 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3261 break;
3263 break;
3265 case AHD_DV_STATE_BUSY:
3266 switch (status & SS_MASK) {
3267 case SS_NOP:
3268 case SS_INQ_REFRESH:
3269 AHD_SET_DV_STATE(ahd, targ,
3270 AHD_DV_STATE_INQ_SHORT_ASYNC);
3271 break;
3272 case SS_TUR:
3273 case SS_RETRY:
3274 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3275 if (ahd_cmd_get_transaction_status(cmd)
3276 == CAM_REQUEUE_REQ) {
3277 targ->dv_state_retry--;
3278 } else if (targ->dv_state_retry < 60) {
3279 if ((status & SSQ_DELAY) != 0)
3280 ssleep(1);
3281 } else {
3282 #ifdef AHD_DEBUG
3283 if (ahd_debug & AHD_SHOW_DV) {
3284 ahd_print_devinfo(ahd, devinfo);
3285 printf("DV BUSY reties exhausted\n");
3287 #endif
3288 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3290 break;
3291 default:
3292 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3293 break;
3295 break;
3297 default:
3298 printf("%s: Invalid DV completion state %d\n", ahd_name(ahd),
3299 targ->dv_state);
3300 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3301 break;
3305 static void
3306 ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3307 struct ahd_devinfo *devinfo)
3309 memset(cmd, 0, sizeof(struct scsi_cmnd));
3310 cmd->device = ahd->platform_data->dv_scsi_dev;
3311 cmd->scsi_done = ahd_linux_dv_complete;
3315 * Synthesize an inquiry command. On the return trip, it'll be
3316 * sniffed and the device transfer settings set for us.
3318 static void
3319 ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3320 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ,
3321 u_int request_length)
3324 #ifdef AHD_DEBUG
3325 if (ahd_debug & AHD_SHOW_DV) {
3326 ahd_print_devinfo(ahd, devinfo);
3327 printf("Sending INQ\n");
3329 #endif
3330 if (targ->inq_data == NULL)
3331 targ->inq_data = malloc(AHD_LINUX_DV_INQ_LEN,
3332 M_DEVBUF, M_WAITOK);
3333 if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) {
3334 if (targ->dv_buffer != NULL)
3335 free(targ->dv_buffer, M_DEVBUF);
3336 targ->dv_buffer = malloc(AHD_LINUX_DV_INQ_LEN,
3337 M_DEVBUF, M_WAITOK);
3340 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3341 cmd->sc_data_direction = DMA_FROM_DEVICE;
3342 cmd->cmd_len = 6;
3343 cmd->cmnd[0] = INQUIRY;
3344 cmd->cmnd[4] = request_length;
3345 cmd->request_bufflen = request_length;
3346 if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC)
3347 cmd->request_buffer = targ->dv_buffer;
3348 else
3349 cmd->request_buffer = targ->inq_data;
3350 memset(cmd->request_buffer, 0, AHD_LINUX_DV_INQ_LEN);
3353 static void
3354 ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3355 struct ahd_devinfo *devinfo)
3358 #ifdef AHD_DEBUG
3359 if (ahd_debug & AHD_SHOW_DV) {
3360 ahd_print_devinfo(ahd, devinfo);
3361 printf("Sending TUR\n");
3363 #endif
3364 /* Do a TUR to clear out any non-fatal transitional state */
3365 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3366 cmd->sc_data_direction = DMA_NONE;
3367 cmd->cmd_len = 6;
3368 cmd->cmnd[0] = TEST_UNIT_READY;
3371 #define AHD_REBD_LEN 4
3373 static void
3374 ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3375 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3378 #ifdef AHD_DEBUG
3379 if (ahd_debug & AHD_SHOW_DV) {
3380 ahd_print_devinfo(ahd, devinfo);
3381 printf("Sending REBD\n");
3383 #endif
3384 if (targ->dv_buffer != NULL)
3385 free(targ->dv_buffer, M_DEVBUF);
3386 targ->dv_buffer = malloc(AHD_REBD_LEN, M_DEVBUF, M_WAITOK);
3387 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3388 cmd->sc_data_direction = DMA_FROM_DEVICE;
3389 cmd->cmd_len = 10;
3390 cmd->cmnd[0] = READ_BUFFER;
3391 cmd->cmnd[1] = 0x0b;
3392 scsi_ulto3b(AHD_REBD_LEN, &cmd->cmnd[6]);
3393 cmd->request_bufflen = AHD_REBD_LEN;
3394 cmd->underflow = cmd->request_bufflen;
3395 cmd->request_buffer = targ->dv_buffer;
3398 static void
3399 ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3400 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3403 #ifdef AHD_DEBUG
3404 if (ahd_debug & AHD_SHOW_DV) {
3405 ahd_print_devinfo(ahd, devinfo);
3406 printf("Sending WEB\n");
3408 #endif
3409 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3410 cmd->sc_data_direction = DMA_TO_DEVICE;
3411 cmd->cmd_len = 10;
3412 cmd->cmnd[0] = WRITE_BUFFER;
3413 cmd->cmnd[1] = 0x0a;
3414 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3415 cmd->request_bufflen = targ->dv_echo_size;
3416 cmd->underflow = cmd->request_bufflen;
3417 cmd->request_buffer = targ->dv_buffer;
3420 static void
3421 ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3422 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3425 #ifdef AHD_DEBUG
3426 if (ahd_debug & AHD_SHOW_DV) {
3427 ahd_print_devinfo(ahd, devinfo);
3428 printf("Sending REB\n");
3430 #endif
3431 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3432 cmd->sc_data_direction = DMA_FROM_DEVICE;
3433 cmd->cmd_len = 10;
3434 cmd->cmnd[0] = READ_BUFFER;
3435 cmd->cmnd[1] = 0x0a;
3436 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3437 cmd->request_bufflen = targ->dv_echo_size;
3438 cmd->underflow = cmd->request_bufflen;
3439 cmd->request_buffer = targ->dv_buffer1;
3442 static void
3443 ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3444 struct ahd_devinfo *devinfo,
3445 struct ahd_linux_target *targ)
3447 u_int le;
3449 le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
3451 #ifdef AHD_DEBUG
3452 if (ahd_debug & AHD_SHOW_DV) {
3453 ahd_print_devinfo(ahd, devinfo);
3454 printf("Sending SU\n");
3456 #endif
3457 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3458 cmd->sc_data_direction = DMA_NONE;
3459 cmd->cmd_len = 6;
3460 cmd->cmnd[0] = START_STOP_UNIT;
3461 cmd->cmnd[4] = le | SSS_START;
3464 static int
3465 ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3467 struct ahd_linux_target *targ;
3468 struct ahd_initiator_tinfo *tinfo;
3469 struct ahd_transinfo *goal;
3470 struct ahd_tmode_tstate *tstate;
3471 u_int width;
3472 u_int period;
3473 u_int offset;
3474 u_int ppr_options;
3475 u_int cur_speed;
3476 u_int wide_speed;
3477 u_int narrow_speed;
3478 u_int fallback_speed;
3480 #ifdef AHD_DEBUG
3481 if (ahd_debug & AHD_SHOW_DV) {
3482 ahd_print_devinfo(ahd, devinfo);
3483 printf("Trying to fallback\n");
3485 #endif
3486 targ = ahd->platform_data->targets[devinfo->target_offset];
3487 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
3488 devinfo->our_scsiid,
3489 devinfo->target, &tstate);
3490 goal = &tinfo->goal;
3491 width = goal->width;
3492 period = goal->period;
3493 offset = goal->offset;
3494 ppr_options = goal->ppr_options;
3495 if (offset == 0)
3496 period = AHD_ASYNC_XFER_PERIOD;
3497 if (targ->dv_next_narrow_period == 0)
3498 targ->dv_next_narrow_period = MAX(period, AHD_SYNCRATE_ULTRA2);
3499 if (targ->dv_next_wide_period == 0)
3500 targ->dv_next_wide_period = period;
3501 if (targ->dv_max_width == 0)
3502 targ->dv_max_width = width;
3503 if (targ->dv_max_ppr_options == 0)
3504 targ->dv_max_ppr_options = ppr_options;
3505 if (targ->dv_last_ppr_options == 0)
3506 targ->dv_last_ppr_options = ppr_options;
3508 cur_speed = aic_calc_speed(width, period, offset, AHD_SYNCRATE_MIN);
3509 wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
3510 targ->dv_next_wide_period,
3511 MAX_OFFSET, AHD_SYNCRATE_MIN);
3512 narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
3513 targ->dv_next_narrow_period,
3514 MAX_OFFSET, AHD_SYNCRATE_MIN);
3515 fallback_speed = aic_calc_speed(width, period+1, offset,
3516 AHD_SYNCRATE_MIN);
3517 #ifdef AHD_DEBUG
3518 if (ahd_debug & AHD_SHOW_DV) {
3519 printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
3520 "fallback_speed= %d\n", cur_speed, wide_speed,
3521 narrow_speed, fallback_speed);
3523 #endif
3525 if (cur_speed > 160000) {
3527 * Paced/DT/IU_REQ only transfer speeds. All we
3528 * can do is fallback in terms of syncrate.
3530 period++;
3531 } else if (cur_speed > 80000) {
3532 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3534 * Try without IU_REQ as it may be confusing
3535 * an expander.
3537 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3538 } else {
3540 * Paced/DT only transfer speeds. All we
3541 * can do is fallback in terms of syncrate.
3543 period++;
3544 ppr_options = targ->dv_max_ppr_options;
3546 } else if (cur_speed > 3300) {
3549 * In this range we the following
3550 * options ordered from highest to
3551 * lowest desireability:
3553 * o Wide/DT
3554 * o Wide/non-DT
3555 * o Narrow at a potentally higher sync rate.
3557 * All modes are tested with and without IU_REQ
3558 * set since using IUs may confuse an expander.
3560 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3562 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3563 } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3565 * Try going non-DT.
3567 ppr_options = targ->dv_max_ppr_options;
3568 ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3569 } else if (targ->dv_last_ppr_options != 0) {
3571 * Try without QAS or any other PPR options.
3572 * We may need a non-PPR message to work with
3573 * an expander. We look at the "last PPR options"
3574 * so we will perform this fallback even if the
3575 * target responded to our PPR negotiation with
3576 * no option bits set.
3578 ppr_options = 0;
3579 } else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
3581 * If the next narrow speed is greater than
3582 * the next wide speed, fallback to narrow.
3583 * Otherwise fallback to the next DT/Wide setting.
3584 * The narrow async speed will always be smaller
3585 * than the wide async speed, so handle this case
3586 * specifically.
3588 ppr_options = targ->dv_max_ppr_options;
3589 if (narrow_speed > fallback_speed
3590 || period >= AHD_ASYNC_XFER_PERIOD) {
3591 targ->dv_next_wide_period = period+1;
3592 width = MSG_EXT_WDTR_BUS_8_BIT;
3593 period = targ->dv_next_narrow_period;
3594 } else {
3595 period++;
3597 } else if ((ahd->features & AHD_WIDE) != 0
3598 && targ->dv_max_width != 0
3599 && wide_speed >= fallback_speed
3600 && (targ->dv_next_wide_period <= AHD_ASYNC_XFER_PERIOD
3601 || period >= AHD_ASYNC_XFER_PERIOD)) {
3604 * We are narrow. Try falling back
3605 * to the next wide speed with
3606 * all supported ppr options set.
3608 targ->dv_next_narrow_period = period+1;
3609 width = MSG_EXT_WDTR_BUS_16_BIT;
3610 period = targ->dv_next_wide_period;
3611 ppr_options = targ->dv_max_ppr_options;
3612 } else {
3613 /* Only narrow fallback is allowed. */
3614 period++;
3615 ppr_options = targ->dv_max_ppr_options;
3617 } else {
3618 return (-1);
3620 offset = MAX_OFFSET;
3621 ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_PACED);
3622 ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, FALSE);
3623 if (period == 0) {
3624 period = 0;
3625 offset = 0;
3626 ppr_options = 0;
3627 if (width == MSG_EXT_WDTR_BUS_8_BIT)
3628 targ->dv_next_narrow_period = AHD_ASYNC_XFER_PERIOD;
3629 else
3630 targ->dv_next_wide_period = AHD_ASYNC_XFER_PERIOD;
3632 ahd_set_syncrate(ahd, devinfo, period, offset,
3633 ppr_options, AHD_TRANS_GOAL, FALSE);
3634 targ->dv_last_ppr_options = ppr_options;
3635 return (0);
3638 static void
3639 ahd_linux_dv_timeout(struct scsi_cmnd *cmd)
3641 struct ahd_softc *ahd;
3642 struct scb *scb;
3643 u_long flags;
3645 ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3646 ahd_lock(ahd, &flags);
3648 #ifdef AHD_DEBUG
3649 if (ahd_debug & AHD_SHOW_DV) {
3650 printf("%s: Timeout while doing DV command %x.\n",
3651 ahd_name(ahd), cmd->cmnd[0]);
3652 ahd_dump_card_state(ahd);
3654 #endif
3657 * Guard against "done race". No action is
3658 * required if we just completed.
3660 if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
3661 ahd_unlock(ahd, &flags);
3662 return;
3666 * Command has not completed. Mark this
3667 * SCB as having failing status prior to
3668 * resetting the bus, so we get the correct
3669 * error code.
3671 if ((scb->flags & SCB_SENSE) != 0)
3672 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
3673 else
3674 ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
3675 ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate*/TRUE);
3678 * Add a minimal bus settle delay for devices that are slow to
3679 * respond after bus resets.
3681 ahd_freeze_simq(ahd);
3682 init_timer(&ahd->platform_data->reset_timer);
3683 ahd->platform_data->reset_timer.data = (u_long)ahd;
3684 ahd->platform_data->reset_timer.expires = jiffies + HZ / 2;
3685 ahd->platform_data->reset_timer.function =
3686 (ahd_linux_callback_t *)ahd_release_simq;
3687 add_timer(&ahd->platform_data->reset_timer);
3688 if (ahd_linux_next_device_to_run(ahd) != NULL)
3689 ahd_schedule_runq(ahd);
3690 ahd_linux_run_complete_queue(ahd);
3691 ahd_unlock(ahd, &flags);
3694 static void
3695 ahd_linux_dv_complete(struct scsi_cmnd *cmd)
3697 struct ahd_softc *ahd;
3699 ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3701 /* Delete the DV timer before it goes off! */
3702 scsi_delete_timer(cmd);
3704 #ifdef AHD_DEBUG
3705 if (ahd_debug & AHD_SHOW_DV)
3706 printf("%s:%c:%d: Command completed, status= 0x%x\n",
3707 ahd_name(ahd), cmd->device->channel, cmd->device->id,
3708 cmd->result);
3709 #endif
3711 /* Wake up the state machine */
3712 up(&ahd->platform_data->dv_cmd_sem);
3715 static void
3716 ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ)
3718 uint16_t b;
3719 u_int i;
3720 u_int j;
3722 if (targ->dv_buffer != NULL)
3723 free(targ->dv_buffer, M_DEVBUF);
3724 targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3725 if (targ->dv_buffer1 != NULL)
3726 free(targ->dv_buffer1, M_DEVBUF);
3727 targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3729 i = 0;
3731 b = 0x0001;
3732 for (j = 0 ; i < targ->dv_echo_size; j++) {
3733 if (j < 32) {
3735 * 32bytes of sequential numbers.
3737 targ->dv_buffer[i++] = j & 0xff;
3738 } else if (j < 48) {
3740 * 32bytes of repeating 0x0000, 0xffff.
3742 targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
3743 } else if (j < 64) {
3745 * 32bytes of repeating 0x5555, 0xaaaa.
3747 targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
3748 } else {
3750 * Remaining buffer is filled with a repeating
3751 * patter of:
3753 * 0xffff
3754 * ~0x0001 << shifted once in each loop.
3756 if (j & 0x02) {
3757 if (j & 0x01) {
3758 targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
3759 b <<= 1;
3760 if (b == 0x0000)
3761 b = 0x0001;
3762 } else {
3763 targ->dv_buffer[i++] = (~b & 0xff);
3765 } else {
3766 targ->dv_buffer[i++] = 0xff;
3772 static u_int
3773 ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3775 static int warned_user;
3776 u_int tags;
3778 tags = 0;
3779 if ((ahd->user_discenable & devinfo->target_mask) != 0) {
3780 if (ahd->unit >= NUM_ELEMENTS(aic79xx_tag_info)) {
3782 if (warned_user == 0) {
3783 printf(KERN_WARNING
3784 "aic79xx: WARNING: Insufficient tag_info instances\n"
3785 "aic79xx: for installed controllers. Using defaults\n"
3786 "aic79xx: Please update the aic79xx_tag_info array in\n"
3787 "aic79xx: the aic79xx_osm.c source file.\n");
3788 warned_user++;
3790 tags = AHD_MAX_QUEUE;
3791 } else {
3792 adapter_tag_info_t *tag_info;
3794 tag_info = &aic79xx_tag_info[ahd->unit];
3795 tags = tag_info->tag_commands[devinfo->target_offset];
3796 if (tags > AHD_MAX_QUEUE)
3797 tags = AHD_MAX_QUEUE;
3800 return (tags);
3803 static u_int
3804 ahd_linux_user_dv_setting(struct ahd_softc *ahd)
3806 static int warned_user;
3807 int dv;
3809 if (ahd->unit >= NUM_ELEMENTS(aic79xx_dv_settings)) {
3811 if (warned_user == 0) {
3812 printf(KERN_WARNING
3813 "aic79xx: WARNING: Insufficient dv settings instances\n"
3814 "aic79xx: for installed controllers. Using defaults\n"
3815 "aic79xx: Please update the aic79xx_dv_settings array in"
3816 "aic79xx: the aic79xx_osm.c source file.\n");
3817 warned_user++;
3819 dv = -1;
3820 } else {
3822 dv = aic79xx_dv_settings[ahd->unit];
3825 if (dv < 0) {
3827 * Apply the default.
3829 dv = 1;
3830 if (ahd->seep_config != 0)
3831 dv = (ahd->seep_config->bios_control & CFENABLEDV);
3833 return (dv);
3836 static void
3837 ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd)
3839 static int warned_user;
3840 u_int rd_strm_mask;
3841 u_int target_id;
3844 * If we have specific read streaming info for this controller,
3845 * apply it. Otherwise use the defaults.
3847 if (ahd->unit >= NUM_ELEMENTS(aic79xx_rd_strm_info)) {
3849 if (warned_user == 0) {
3851 printf(KERN_WARNING
3852 "aic79xx: WARNING: Insufficient rd_strm instances\n"
3853 "aic79xx: for installed controllers. Using defaults\n"
3854 "aic79xx: Please update the aic79xx_rd_strm_info array\n"
3855 "aic79xx: in the aic79xx_osm.c source file.\n");
3856 warned_user++;
3858 rd_strm_mask = AIC79XX_CONFIGED_RD_STRM;
3859 } else {
3861 rd_strm_mask = aic79xx_rd_strm_info[ahd->unit];
3863 for (target_id = 0; target_id < 16; target_id++) {
3864 struct ahd_devinfo devinfo;
3865 struct ahd_initiator_tinfo *tinfo;
3866 struct ahd_tmode_tstate *tstate;
3868 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
3869 target_id, &tstate);
3870 ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
3871 CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
3872 tinfo->user.ppr_options &= ~MSG_EXT_PPR_RD_STRM;
3873 if ((rd_strm_mask & devinfo.target_mask) != 0)
3874 tinfo->user.ppr_options |= MSG_EXT_PPR_RD_STRM;
3879 * Determines the queue depth for a given device.
3881 static void
3882 ahd_linux_device_queue_depth(struct ahd_softc *ahd,
3883 struct ahd_linux_device *dev)
3885 struct ahd_devinfo devinfo;
3886 u_int tags;
3888 ahd_compile_devinfo(&devinfo,
3889 ahd->our_id,
3890 dev->target->target, dev->lun,
3891 dev->target->channel == 0 ? 'A' : 'B',
3892 ROLE_INITIATOR);
3893 tags = ahd_linux_user_tagdepth(ahd, &devinfo);
3894 if (tags != 0
3895 && dev->scsi_device != NULL
3896 && dev->scsi_device->tagged_supported != 0) {
3898 ahd_set_tags(ahd, &devinfo, AHD_QUEUE_TAGGED);
3899 ahd_print_devinfo(ahd, &devinfo);
3900 printf("Tagged Queuing enabled. Depth %d\n", tags);
3901 } else {
3902 ahd_set_tags(ahd, &devinfo, AHD_QUEUE_NONE);
3906 static void
3907 ahd_linux_run_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev)
3909 struct ahd_cmd *acmd;
3910 struct scsi_cmnd *cmd;
3911 struct scb *scb;
3912 struct hardware_scb *hscb;
3913 struct ahd_initiator_tinfo *tinfo;
3914 struct ahd_tmode_tstate *tstate;
3915 u_int col_idx;
3916 uint16_t mask;
3918 if ((dev->flags & AHD_DEV_ON_RUN_LIST) != 0)
3919 panic("running device on run list");
3921 while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
3922 && dev->openings > 0 && dev->qfrozen == 0) {
3925 * Schedule us to run later. The only reason we are not
3926 * running is because the whole controller Q is frozen.
3928 if (ahd->platform_data->qfrozen != 0
3929 && AHD_DV_SIMQ_FROZEN(ahd) == 0) {
3931 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
3932 dev, links);
3933 dev->flags |= AHD_DEV_ON_RUN_LIST;
3934 return;
3937 cmd = &acmd_scsi_cmd(acmd);
3940 * Get an scb to use.
3942 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
3943 cmd->device->id, &tstate);
3944 if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0
3945 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3946 col_idx = AHD_NEVER_COL_IDX;
3947 } else {
3948 col_idx = AHD_BUILD_COL_IDX(cmd->device->id,
3949 cmd->device->lun);
3951 if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) {
3952 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
3953 dev, links);
3954 dev->flags |= AHD_DEV_ON_RUN_LIST;
3955 ahd->flags |= AHD_RESOURCE_SHORTAGE;
3956 return;
3958 TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
3959 scb->io_ctx = cmd;
3960 scb->platform_data->dev = dev;
3961 hscb = scb->hscb;
3962 cmd->host_scribble = (char *)scb;
3965 * Fill out basics of the HSCB.
3967 hscb->control = 0;
3968 hscb->scsiid = BUILD_SCSIID(ahd, cmd);
3969 hscb->lun = cmd->device->lun;
3970 scb->hscb->task_management = 0;
3971 mask = SCB_GET_TARGET_MASK(ahd, scb);
3973 if ((ahd->user_discenable & mask) != 0)
3974 hscb->control |= DISCENB;
3976 if (AHD_DV_CMD(cmd) != 0)
3977 scb->flags |= SCB_SILENT;
3979 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0)
3980 scb->flags |= SCB_PACKETIZED;
3982 if ((tstate->auto_negotiate & mask) != 0) {
3983 scb->flags |= SCB_AUTO_NEGOTIATE;
3984 scb->hscb->control |= MK_MESSAGE;
3987 if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) {
3988 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
3989 int msg_bytes;
3990 uint8_t tag_msgs[2];
3992 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
3993 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
3994 hscb->control |= tag_msgs[0];
3995 if (tag_msgs[0] == MSG_ORDERED_TASK)
3996 dev->commands_since_idle_or_otag = 0;
3997 } else
3998 #endif
3999 if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH
4000 && (dev->flags & AHD_DEV_Q_TAGGED) != 0) {
4001 hscb->control |= MSG_ORDERED_TASK;
4002 dev->commands_since_idle_or_otag = 0;
4003 } else {
4004 hscb->control |= MSG_SIMPLE_TASK;
4008 hscb->cdb_len = cmd->cmd_len;
4009 memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len);
4011 scb->sg_count = 0;
4012 ahd_set_residual(scb, 0);
4013 ahd_set_sense_residual(scb, 0);
4014 if (cmd->use_sg != 0) {
4015 void *sg;
4016 struct scatterlist *cur_seg;
4017 u_int nseg;
4018 int dir;
4020 cur_seg = (struct scatterlist *)cmd->request_buffer;
4021 dir = cmd->sc_data_direction;
4022 nseg = pci_map_sg(ahd->dev_softc, cur_seg,
4023 cmd->use_sg, dir);
4024 scb->platform_data->xfer_len = 0;
4025 for (sg = scb->sg_list; nseg > 0; nseg--, cur_seg++) {
4026 dma_addr_t addr;
4027 bus_size_t len;
4029 addr = sg_dma_address(cur_seg);
4030 len = sg_dma_len(cur_seg);
4031 scb->platform_data->xfer_len += len;
4032 sg = ahd_sg_setup(ahd, scb, sg, addr, len,
4033 /*last*/nseg == 1);
4035 } else if (cmd->request_bufflen != 0) {
4036 void *sg;
4037 dma_addr_t addr;
4038 int dir;
4040 sg = scb->sg_list;
4041 dir = cmd->sc_data_direction;
4042 addr = pci_map_single(ahd->dev_softc,
4043 cmd->request_buffer,
4044 cmd->request_bufflen, dir);
4045 scb->platform_data->xfer_len = cmd->request_bufflen;
4046 scb->platform_data->buf_busaddr = addr;
4047 sg = ahd_sg_setup(ahd, scb, sg, addr,
4048 cmd->request_bufflen, /*last*/TRUE);
4051 LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
4052 dev->openings--;
4053 dev->active++;
4054 dev->commands_issued++;
4056 /* Update the error counting bucket and dump if needed */
4057 if (dev->target->cmds_since_error) {
4058 dev->target->cmds_since_error++;
4059 if (dev->target->cmds_since_error >
4060 AHD_LINUX_ERR_THRESH)
4061 dev->target->cmds_since_error = 0;
4064 if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0)
4065 dev->commands_since_idle_or_otag++;
4066 scb->flags |= SCB_ACTIVE;
4067 ahd_queue_scb(ahd, scb);
4072 * SCSI controller interrupt handler.
4074 irqreturn_t
4075 ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
4077 struct ahd_softc *ahd;
4078 u_long flags;
4079 int ours;
4081 ahd = (struct ahd_softc *) dev_id;
4082 ahd_lock(ahd, &flags);
4083 ours = ahd_intr(ahd);
4084 if (ahd_linux_next_device_to_run(ahd) != NULL)
4085 ahd_schedule_runq(ahd);
4086 ahd_linux_run_complete_queue(ahd);
4087 ahd_unlock(ahd, &flags);
4088 return IRQ_RETVAL(ours);
4091 void
4092 ahd_platform_flushwork(struct ahd_softc *ahd)
4095 while (ahd_linux_run_complete_queue(ahd) != NULL)
4099 static struct ahd_linux_target*
4100 ahd_linux_alloc_target(struct ahd_softc *ahd, u_int channel, u_int target)
4102 struct ahd_linux_target *targ;
4104 targ = malloc(sizeof(*targ), M_DEVBUF, M_NOWAIT);
4105 if (targ == NULL)
4106 return (NULL);
4107 memset(targ, 0, sizeof(*targ));
4108 targ->channel = channel;
4109 targ->target = target;
4110 targ->ahd = ahd;
4111 targ->flags = AHD_DV_REQUIRED;
4112 ahd->platform_data->targets[target] = targ;
4113 return (targ);
4116 static void
4117 ahd_linux_free_target(struct ahd_softc *ahd, struct ahd_linux_target *targ)
4119 struct ahd_devinfo devinfo;
4120 struct ahd_initiator_tinfo *tinfo;
4121 struct ahd_tmode_tstate *tstate;
4122 u_int our_id;
4123 u_int target_offset;
4124 char channel;
4127 * Force a negotiation to async/narrow on any
4128 * future command to this device unless a bus
4129 * reset occurs between now and that command.
4131 channel = 'A' + targ->channel;
4132 our_id = ahd->our_id;
4133 target_offset = targ->target;
4134 tinfo = ahd_fetch_transinfo(ahd, channel, our_id,
4135 targ->target, &tstate);
4136 ahd_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
4137 channel, ROLE_INITIATOR);
4138 ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
4139 AHD_TRANS_GOAL, /*paused*/FALSE);
4140 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
4141 AHD_TRANS_GOAL, /*paused*/FALSE);
4142 ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS);
4143 ahd->platform_data->targets[target_offset] = NULL;
4144 if (targ->inq_data != NULL)
4145 free(targ->inq_data, M_DEVBUF);
4146 if (targ->dv_buffer != NULL)
4147 free(targ->dv_buffer, M_DEVBUF);
4148 if (targ->dv_buffer1 != NULL)
4149 free(targ->dv_buffer1, M_DEVBUF);
4150 free(targ, M_DEVBUF);
4153 static struct ahd_linux_device*
4154 ahd_linux_alloc_device(struct ahd_softc *ahd,
4155 struct ahd_linux_target *targ, u_int lun)
4157 struct ahd_linux_device *dev;
4159 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
4160 if (dev == NULL)
4161 return (NULL);
4162 memset(dev, 0, sizeof(*dev));
4163 init_timer(&dev->timer);
4164 TAILQ_INIT(&dev->busyq);
4165 dev->flags = AHD_DEV_UNCONFIGURED;
4166 dev->lun = lun;
4167 dev->target = targ;
4170 * We start out life using untagged
4171 * transactions of which we allow one.
4173 dev->openings = 1;
4176 * Set maxtags to 0. This will be changed if we
4177 * later determine that we are dealing with
4178 * a tagged queuing capable device.
4180 dev->maxtags = 0;
4182 targ->refcount++;
4183 targ->devices[lun] = dev;
4184 return (dev);
4187 static void
4188 ahd_linux_free_device(struct ahd_softc *ahd, struct ahd_linux_device *dev)
4190 struct ahd_linux_target *targ;
4192 del_timer(&dev->timer);
4193 targ = dev->target;
4194 targ->devices[dev->lun] = NULL;
4195 free(dev, M_DEVBUF);
4196 targ->refcount--;
4197 if (targ->refcount == 0
4198 && (targ->flags & AHD_DV_REQUIRED) == 0)
4199 ahd_linux_free_target(ahd, targ);
4202 void
4203 ahd_send_async(struct ahd_softc *ahd, char channel,
4204 u_int target, u_int lun, ac_code code, void *arg)
4206 switch (code) {
4207 case AC_TRANSFER_NEG:
4209 char buf[80];
4210 struct ahd_linux_target *targ;
4211 struct info_str info;
4212 struct ahd_initiator_tinfo *tinfo;
4213 struct ahd_tmode_tstate *tstate;
4215 info.buffer = buf;
4216 info.length = sizeof(buf);
4217 info.offset = 0;
4218 info.pos = 0;
4219 tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id,
4220 target, &tstate);
4223 * Don't bother reporting results while
4224 * negotiations are still pending.
4226 if (tinfo->curr.period != tinfo->goal.period
4227 || tinfo->curr.width != tinfo->goal.width
4228 || tinfo->curr.offset != tinfo->goal.offset
4229 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
4230 if (bootverbose == 0)
4231 break;
4234 * Don't bother reporting results that
4235 * are identical to those last reported.
4237 targ = ahd->platform_data->targets[target];
4238 if (targ == NULL)
4239 break;
4240 if (tinfo->curr.period == targ->last_tinfo.period
4241 && tinfo->curr.width == targ->last_tinfo.width
4242 && tinfo->curr.offset == targ->last_tinfo.offset
4243 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
4244 if (bootverbose == 0)
4245 break;
4247 targ->last_tinfo.period = tinfo->curr.period;
4248 targ->last_tinfo.width = tinfo->curr.width;
4249 targ->last_tinfo.offset = tinfo->curr.offset;
4250 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
4252 printf("(%s:%c:", ahd_name(ahd), channel);
4253 if (target == CAM_TARGET_WILDCARD)
4254 printf("*): ");
4255 else
4256 printf("%d): ", target);
4257 ahd_format_transinfo(&info, &tinfo->curr);
4258 if (info.pos < info.length)
4259 *info.buffer = '\0';
4260 else
4261 buf[info.length - 1] = '\0';
4262 printf("%s", buf);
4263 break;
4265 case AC_SENT_BDR:
4267 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4268 WARN_ON(lun != CAM_LUN_WILDCARD);
4269 scsi_report_device_reset(ahd->platform_data->host,
4270 channel - 'A', target);
4271 #else
4272 Scsi_Device *scsi_dev;
4275 * Find the SCSI device associated with this
4276 * request and indicate that a UA is expected.
4278 for (scsi_dev = ahd->platform_data->host->host_queue;
4279 scsi_dev != NULL; scsi_dev = scsi_dev->next) {
4280 if (channel - 'A' == scsi_dev->channel
4281 && target == scsi_dev->id
4282 && (lun == CAM_LUN_WILDCARD
4283 || lun == scsi_dev->lun)) {
4284 scsi_dev->was_reset = 1;
4285 scsi_dev->expecting_cc_ua = 1;
4288 #endif
4289 break;
4291 case AC_BUS_RESET:
4292 if (ahd->platform_data->host != NULL) {
4293 scsi_report_bus_reset(ahd->platform_data->host,
4294 channel - 'A');
4296 break;
4297 default:
4298 panic("ahd_send_async: Unexpected async event");
4303 * Calls the higher level scsi done function and frees the scb.
4305 void
4306 ahd_done(struct ahd_softc *ahd, struct scb *scb)
4308 Scsi_Cmnd *cmd;
4309 struct ahd_linux_device *dev;
4311 if ((scb->flags & SCB_ACTIVE) == 0) {
4312 printf("SCB %d done'd twice\n", SCB_GET_TAG(scb));
4313 ahd_dump_card_state(ahd);
4314 panic("Stopping for safety");
4316 LIST_REMOVE(scb, pending_links);
4317 cmd = scb->io_ctx;
4318 dev = scb->platform_data->dev;
4319 dev->active--;
4320 dev->openings++;
4321 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
4322 cmd->result &= ~(CAM_DEV_QFRZN << 16);
4323 dev->qfrozen--;
4325 ahd_linux_unmap_scb(ahd, scb);
4328 * Guard against stale sense data.
4329 * The Linux mid-layer assumes that sense
4330 * was retrieved anytime the first byte of
4331 * the sense buffer looks "sane".
4333 cmd->sense_buffer[0] = 0;
4334 if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) {
4335 uint32_t amount_xferred;
4337 amount_xferred =
4338 ahd_get_transfer_length(scb) - ahd_get_residual(scb);
4339 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
4340 #ifdef AHD_DEBUG
4341 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
4342 ahd_print_path(ahd, scb);
4343 printf("Set CAM_UNCOR_PARITY\n");
4345 #endif
4346 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
4347 #ifdef AHD_REPORT_UNDERFLOWS
4349 * This code is disabled by default as some
4350 * clients of the SCSI system do not properly
4351 * initialize the underflow parameter. This
4352 * results in spurious termination of commands
4353 * that complete as expected (e.g. underflow is
4354 * allowed as command can return variable amounts
4355 * of data.
4357 } else if (amount_xferred < scb->io_ctx->underflow) {
4358 u_int i;
4360 ahd_print_path(ahd, scb);
4361 printf("CDB:");
4362 for (i = 0; i < scb->io_ctx->cmd_len; i++)
4363 printf(" 0x%x", scb->io_ctx->cmnd[i]);
4364 printf("\n");
4365 ahd_print_path(ahd, scb);
4366 printf("Saw underflow (%ld of %ld bytes). "
4367 "Treated as error\n",
4368 ahd_get_residual(scb),
4369 ahd_get_transfer_length(scb));
4370 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
4371 #endif
4372 } else {
4373 ahd_set_transaction_status(scb, CAM_REQ_CMP);
4375 } else if (ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
4376 ahd_linux_handle_scsi_status(ahd, dev, scb);
4377 } else if (ahd_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
4378 dev->flags |= AHD_DEV_UNCONFIGURED;
4379 if (AHD_DV_CMD(cmd) == FALSE)
4380 dev->target->flags &= ~AHD_DV_REQUIRED;
4383 * Start DV for devices that require it assuming the first command
4384 * sent does not result in a selection timeout.
4386 if (ahd_get_transaction_status(scb) != CAM_SEL_TIMEOUT
4387 && (dev->target->flags & AHD_DV_REQUIRED) != 0)
4388 ahd_linux_start_dv(ahd);
4390 if (dev->openings == 1
4391 && ahd_get_transaction_status(scb) == CAM_REQ_CMP
4392 && ahd_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
4393 dev->tag_success_count++;
4395 * Some devices deal with temporary internal resource
4396 * shortages by returning queue full. When the queue
4397 * full occurrs, we throttle back. Slowly try to get
4398 * back to our previous queue depth.
4400 if ((dev->openings + dev->active) < dev->maxtags
4401 && dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) {
4402 dev->tag_success_count = 0;
4403 dev->openings++;
4406 if (dev->active == 0)
4407 dev->commands_since_idle_or_otag = 0;
4409 if (TAILQ_EMPTY(&dev->busyq)) {
4410 if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
4411 && dev->active == 0
4412 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
4413 ahd_linux_free_device(ahd, dev);
4414 } else if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
4415 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
4416 dev->flags |= AHD_DEV_ON_RUN_LIST;
4419 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
4420 printf("Recovery SCB completes\n");
4421 if (ahd_get_transaction_status(scb) == CAM_BDR_SENT
4422 || ahd_get_transaction_status(scb) == CAM_REQ_ABORTED)
4423 ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
4424 if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
4425 scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
4426 up(&ahd->platform_data->eh_sem);
4430 ahd_free_scb(ahd, scb);
4431 ahd_linux_queue_cmd_complete(ahd, cmd);
4433 if ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_EMPTY) != 0
4434 && LIST_FIRST(&ahd->pending_scbs) == NULL) {
4435 ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_EMPTY;
4436 up(&ahd->platform_data->dv_sem);
4440 static void
4441 ahd_linux_handle_scsi_status(struct ahd_softc *ahd,
4442 struct ahd_linux_device *dev, struct scb *scb)
4444 struct ahd_devinfo devinfo;
4446 ahd_compile_devinfo(&devinfo,
4447 ahd->our_id,
4448 dev->target->target, dev->lun,
4449 dev->target->channel == 0 ? 'A' : 'B',
4450 ROLE_INITIATOR);
4453 * We don't currently trust the mid-layer to
4454 * properly deal with queue full or busy. So,
4455 * when one occurs, we tell the mid-layer to
4456 * unconditionally requeue the command to us
4457 * so that we can retry it ourselves. We also
4458 * implement our own throttling mechanism so
4459 * we don't clobber the device with too many
4460 * commands.
4462 switch (ahd_get_scsi_status(scb)) {
4463 default:
4464 break;
4465 case SCSI_STATUS_CHECK_COND:
4466 case SCSI_STATUS_CMD_TERMINATED:
4468 Scsi_Cmnd *cmd;
4471 * Copy sense information to the OS's cmd
4472 * structure if it is available.
4474 cmd = scb->io_ctx;
4475 if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) {
4476 struct scsi_status_iu_header *siu;
4477 u_int sense_size;
4478 u_int sense_offset;
4480 if (scb->flags & SCB_SENSE) {
4481 sense_size = MIN(sizeof(struct scsi_sense_data)
4482 - ahd_get_sense_residual(scb),
4483 sizeof(cmd->sense_buffer));
4484 sense_offset = 0;
4485 } else {
4487 * Copy only the sense data into the provided
4488 * buffer.
4490 siu = (struct scsi_status_iu_header *)
4491 scb->sense_data;
4492 sense_size = MIN(scsi_4btoul(siu->sense_length),
4493 sizeof(cmd->sense_buffer));
4494 sense_offset = SIU_SENSE_OFFSET(siu);
4497 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
4498 memcpy(cmd->sense_buffer,
4499 ahd_get_sense_buf(ahd, scb)
4500 + sense_offset, sense_size);
4501 cmd->result |= (DRIVER_SENSE << 24);
4503 #ifdef AHD_DEBUG
4504 if (ahd_debug & AHD_SHOW_SENSE) {
4505 int i;
4507 printf("Copied %d bytes of sense data at %d:",
4508 sense_size, sense_offset);
4509 for (i = 0; i < sense_size; i++) {
4510 if ((i & 0xF) == 0)
4511 printf("\n");
4512 printf("0x%x ", cmd->sense_buffer[i]);
4514 printf("\n");
4516 #endif
4518 break;
4520 case SCSI_STATUS_QUEUE_FULL:
4523 * By the time the core driver has returned this
4524 * command, all other commands that were queued
4525 * to us but not the device have been returned.
4526 * This ensures that dev->active is equal to
4527 * the number of commands actually queued to
4528 * the device.
4530 dev->tag_success_count = 0;
4531 if (dev->active != 0) {
4533 * Drop our opening count to the number
4534 * of commands currently outstanding.
4536 dev->openings = 0;
4537 #ifdef AHD_DEBUG
4538 if ((ahd_debug & AHD_SHOW_QFULL) != 0) {
4539 ahd_print_path(ahd, scb);
4540 printf("Dropping tag count to %d\n",
4541 dev->active);
4543 #endif
4544 if (dev->active == dev->tags_on_last_queuefull) {
4546 dev->last_queuefull_same_count++;
4548 * If we repeatedly see a queue full
4549 * at the same queue depth, this
4550 * device has a fixed number of tag
4551 * slots. Lock in this tag depth
4552 * so we stop seeing queue fulls from
4553 * this device.
4555 if (dev->last_queuefull_same_count
4556 == AHD_LOCK_TAGS_COUNT) {
4557 dev->maxtags = dev->active;
4558 ahd_print_path(ahd, scb);
4559 printf("Locking max tag count at %d\n",
4560 dev->active);
4562 } else {
4563 dev->tags_on_last_queuefull = dev->active;
4564 dev->last_queuefull_same_count = 0;
4566 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
4567 ahd_set_scsi_status(scb, SCSI_STATUS_OK);
4568 ahd_platform_set_tags(ahd, &devinfo,
4569 (dev->flags & AHD_DEV_Q_BASIC)
4570 ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4571 break;
4574 * Drop down to a single opening, and treat this
4575 * as if the target returned BUSY SCSI status.
4577 dev->openings = 1;
4578 ahd_platform_set_tags(ahd, &devinfo,
4579 (dev->flags & AHD_DEV_Q_BASIC)
4580 ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4581 ahd_set_scsi_status(scb, SCSI_STATUS_BUSY);
4582 /* FALLTHROUGH */
4584 case SCSI_STATUS_BUSY:
4586 * Set a short timer to defer sending commands for
4587 * a bit since Linux will not delay in this case.
4589 if ((dev->flags & AHD_DEV_TIMER_ACTIVE) != 0) {
4590 printf("%s:%c:%d: Device Timer still active during "
4591 "busy processing\n", ahd_name(ahd),
4592 dev->target->channel, dev->target->target);
4593 break;
4595 dev->flags |= AHD_DEV_TIMER_ACTIVE;
4596 dev->qfrozen++;
4597 init_timer(&dev->timer);
4598 dev->timer.data = (u_long)dev;
4599 dev->timer.expires = jiffies + (HZ/2);
4600 dev->timer.function = ahd_linux_dev_timed_unfreeze;
4601 add_timer(&dev->timer);
4602 break;
4606 static void
4607 ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd)
4610 * Typically, the complete queue has very few entries
4611 * queued to it before the queue is emptied by
4612 * ahd_linux_run_complete_queue, so sorting the entries
4613 * by generation number should be inexpensive.
4614 * We perform the sort so that commands that complete
4615 * with an error are retuned in the order origionally
4616 * queued to the controller so that any subsequent retries
4617 * are performed in order. The underlying ahd routines do
4618 * not guarantee the order that aborted commands will be
4619 * returned to us.
4621 struct ahd_completeq *completeq;
4622 struct ahd_cmd *list_cmd;
4623 struct ahd_cmd *acmd;
4626 * Map CAM error codes into Linux Error codes. We
4627 * avoid the conversion so that the DV code has the
4628 * full error information available when making
4629 * state change decisions.
4631 if (AHD_DV_CMD(cmd) == FALSE) {
4632 uint32_t status;
4633 u_int new_status;
4635 status = ahd_cmd_get_transaction_status(cmd);
4636 if (status != CAM_REQ_CMP) {
4637 struct ahd_linux_device *dev;
4638 struct ahd_devinfo devinfo;
4639 cam_status cam_status;
4640 uint32_t action;
4641 u_int scsi_status;
4643 dev = ahd_linux_get_device(ahd, cmd->device->channel,
4644 cmd->device->id,
4645 cmd->device->lun,
4646 /*alloc*/FALSE);
4648 if (dev == NULL)
4649 goto no_fallback;
4651 ahd_compile_devinfo(&devinfo,
4652 ahd->our_id,
4653 dev->target->target, dev->lun,
4654 dev->target->channel == 0 ? 'A':'B',
4655 ROLE_INITIATOR);
4657 scsi_status = ahd_cmd_get_scsi_status(cmd);
4658 cam_status = ahd_cmd_get_transaction_status(cmd);
4659 action = aic_error_action(cmd, dev->target->inq_data,
4660 cam_status, scsi_status);
4661 if ((action & SSQ_FALLBACK) != 0) {
4663 /* Update stats */
4664 dev->target->errors_detected++;
4665 if (dev->target->cmds_since_error == 0)
4666 dev->target->cmds_since_error++;
4667 else {
4668 dev->target->cmds_since_error = 0;
4669 ahd_linux_fallback(ahd, &devinfo);
4673 no_fallback:
4674 switch (status) {
4675 case CAM_REQ_INPROG:
4676 case CAM_REQ_CMP:
4677 case CAM_SCSI_STATUS_ERROR:
4678 new_status = DID_OK;
4679 break;
4680 case CAM_REQ_ABORTED:
4681 new_status = DID_ABORT;
4682 break;
4683 case CAM_BUSY:
4684 new_status = DID_BUS_BUSY;
4685 break;
4686 case CAM_REQ_INVALID:
4687 case CAM_PATH_INVALID:
4688 new_status = DID_BAD_TARGET;
4689 break;
4690 case CAM_SEL_TIMEOUT:
4691 new_status = DID_NO_CONNECT;
4692 break;
4693 case CAM_SCSI_BUS_RESET:
4694 case CAM_BDR_SENT:
4695 new_status = DID_RESET;
4696 break;
4697 case CAM_UNCOR_PARITY:
4698 new_status = DID_PARITY;
4699 break;
4700 case CAM_CMD_TIMEOUT:
4701 new_status = DID_TIME_OUT;
4702 break;
4703 case CAM_UA_ABORT:
4704 case CAM_REQ_CMP_ERR:
4705 case CAM_AUTOSENSE_FAIL:
4706 case CAM_NO_HBA:
4707 case CAM_DATA_RUN_ERR:
4708 case CAM_UNEXP_BUSFREE:
4709 case CAM_SEQUENCE_FAIL:
4710 case CAM_CCB_LEN_ERR:
4711 case CAM_PROVIDE_FAIL:
4712 case CAM_REQ_TERMIO:
4713 case CAM_UNREC_HBA_ERROR:
4714 case CAM_REQ_TOO_BIG:
4715 new_status = DID_ERROR;
4716 break;
4717 case CAM_REQUEUE_REQ:
4719 * If we want the request requeued, make sure there
4720 * are sufficent retries. In the old scsi error code,
4721 * we used to be able to specify a result code that
4722 * bypassed the retry count. Now we must use this
4723 * hack. We also "fake" a check condition with
4724 * a sense code of ABORTED COMMAND. This seems to
4725 * evoke a retry even if this command is being sent
4726 * via the eh thread. Ick! Ick! Ick!
4728 if (cmd->retries > 0)
4729 cmd->retries--;
4730 new_status = DID_OK;
4731 ahd_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
4732 cmd->result |= (DRIVER_SENSE << 24);
4733 memset(cmd->sense_buffer, 0,
4734 sizeof(cmd->sense_buffer));
4735 cmd->sense_buffer[0] = SSD_ERRCODE_VALID
4736 | SSD_CURRENT_ERROR;
4737 cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
4738 break;
4739 default:
4740 /* We should never get here */
4741 new_status = DID_ERROR;
4742 break;
4745 ahd_cmd_set_transaction_status(cmd, new_status);
4748 completeq = &ahd->platform_data->completeq;
4749 list_cmd = TAILQ_FIRST(completeq);
4750 acmd = (struct ahd_cmd *)cmd;
4751 while (list_cmd != NULL
4752 && acmd_scsi_cmd(list_cmd).serial_number
4753 < acmd_scsi_cmd(acmd).serial_number)
4754 list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
4755 if (list_cmd != NULL)
4756 TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
4757 else
4758 TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
4761 static void
4762 ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4764 struct scsi_inquiry_data *sid;
4765 struct ahd_initiator_tinfo *tinfo;
4766 struct ahd_transinfo *user;
4767 struct ahd_transinfo *goal;
4768 struct ahd_transinfo *curr;
4769 struct ahd_tmode_tstate *tstate;
4770 struct ahd_linux_device *dev;
4771 u_int width;
4772 u_int period;
4773 u_int offset;
4774 u_int ppr_options;
4775 u_int trans_version;
4776 u_int prot_version;
4779 * Determine if this lun actually exists. If so,
4780 * hold on to its corresponding device structure.
4781 * If not, make sure we release the device and
4782 * don't bother processing the rest of this inquiry
4783 * command.
4785 dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
4786 devinfo->target, devinfo->lun,
4787 /*alloc*/TRUE);
4789 sid = (struct scsi_inquiry_data *)dev->target->inq_data;
4790 if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
4792 dev->flags &= ~AHD_DEV_UNCONFIGURED;
4793 } else {
4794 dev->flags |= AHD_DEV_UNCONFIGURED;
4795 return;
4799 * Update our notion of this device's transfer
4800 * negotiation capabilities.
4802 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
4803 devinfo->our_scsiid,
4804 devinfo->target, &tstate);
4805 user = &tinfo->user;
4806 goal = &tinfo->goal;
4807 curr = &tinfo->curr;
4808 width = user->width;
4809 period = user->period;
4810 offset = user->offset;
4811 ppr_options = user->ppr_options;
4812 trans_version = user->transport_version;
4813 prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
4816 * Only attempt SPI3/4 once we've verified that
4817 * the device claims to support SPI3/4 features.
4819 if (prot_version < SCSI_REV_2)
4820 trans_version = SID_ANSI_REV(sid);
4821 else
4822 trans_version = SCSI_REV_2;
4824 if ((sid->flags & SID_WBus16) == 0)
4825 width = MSG_EXT_WDTR_BUS_8_BIT;
4826 if ((sid->flags & SID_Sync) == 0) {
4827 period = 0;
4828 offset = 0;
4829 ppr_options = 0;
4831 if ((sid->spi3data & SID_SPI_QAS) == 0)
4832 ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
4833 if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
4834 ppr_options &= MSG_EXT_PPR_QAS_REQ;
4835 if ((sid->spi3data & SID_SPI_IUS) == 0)
4836 ppr_options &= (MSG_EXT_PPR_DT_REQ
4837 | MSG_EXT_PPR_QAS_REQ);
4839 if (prot_version > SCSI_REV_2
4840 && ppr_options != 0)
4841 trans_version = user->transport_version;
4843 ahd_validate_width(ahd, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
4844 ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_MAX);
4845 ahd_validate_offset(ahd, /*tinfo limit*/NULL, period,
4846 &offset, width, ROLE_UNKNOWN);
4847 if (offset == 0 || period == 0) {
4848 period = 0;
4849 offset = 0;
4850 ppr_options = 0;
4852 /* Apply our filtered user settings. */
4853 curr->transport_version = trans_version;
4854 curr->protocol_version = prot_version;
4855 ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, /*paused*/FALSE);
4856 ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options,
4857 AHD_TRANS_GOAL, /*paused*/FALSE);
4860 void
4861 ahd_freeze_simq(struct ahd_softc *ahd)
4863 ahd->platform_data->qfrozen++;
4864 if (ahd->platform_data->qfrozen == 1) {
4865 scsi_block_requests(ahd->platform_data->host);
4866 ahd_platform_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
4867 CAM_LUN_WILDCARD, SCB_LIST_NULL,
4868 ROLE_INITIATOR, CAM_REQUEUE_REQ);
4872 void
4873 ahd_release_simq(struct ahd_softc *ahd)
4875 u_long s;
4876 int unblock_reqs;
4878 unblock_reqs = 0;
4879 ahd_lock(ahd, &s);
4880 if (ahd->platform_data->qfrozen > 0)
4881 ahd->platform_data->qfrozen--;
4882 if (ahd->platform_data->qfrozen == 0) {
4883 unblock_reqs = 1;
4885 if (AHD_DV_SIMQ_FROZEN(ahd)
4886 && ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_RELEASE) != 0)) {
4887 ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_RELEASE;
4888 up(&ahd->platform_data->dv_sem);
4890 ahd_schedule_runq(ahd);
4891 ahd_unlock(ahd, &s);
4893 * There is still a race here. The mid-layer
4894 * should keep its own freeze count and use
4895 * a bottom half handler to run the queues
4896 * so we can unblock with our own lock held.
4898 if (unblock_reqs)
4899 scsi_unblock_requests(ahd->platform_data->host);
4902 static void
4903 ahd_linux_sem_timeout(u_long arg)
4905 struct scb *scb;
4906 struct ahd_softc *ahd;
4907 u_long s;
4909 scb = (struct scb *)arg;
4910 ahd = scb->ahd_softc;
4911 ahd_lock(ahd, &s);
4912 if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
4913 scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
4914 up(&ahd->platform_data->eh_sem);
4916 ahd_unlock(ahd, &s);
4919 static void
4920 ahd_linux_dev_timed_unfreeze(u_long arg)
4922 struct ahd_linux_device *dev;
4923 struct ahd_softc *ahd;
4924 u_long s;
4926 dev = (struct ahd_linux_device *)arg;
4927 ahd = dev->target->ahd;
4928 ahd_lock(ahd, &s);
4929 dev->flags &= ~AHD_DEV_TIMER_ACTIVE;
4930 if (dev->qfrozen > 0)
4931 dev->qfrozen--;
4932 if (dev->qfrozen == 0
4933 && (dev->flags & AHD_DEV_ON_RUN_LIST) == 0)
4934 ahd_linux_run_device_queue(ahd, dev);
4935 if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
4936 && dev->active == 0)
4937 ahd_linux_free_device(ahd, dev);
4938 ahd_unlock(ahd, &s);
4941 void
4942 ahd_platform_dump_card_state(struct ahd_softc *ahd)
4944 struct ahd_linux_device *dev;
4945 int target;
4946 int maxtarget;
4947 int lun;
4948 int i;
4950 maxtarget = (ahd->features & AHD_WIDE) ? 15 : 7;
4951 for (target = 0; target <=maxtarget; target++) {
4953 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
4954 struct ahd_cmd *acmd;
4956 dev = ahd_linux_get_device(ahd, 0, target,
4957 lun, /*alloc*/FALSE);
4958 if (dev == NULL)
4959 continue;
4961 printf("DevQ(%d:%d:%d): ", 0, target, lun);
4962 i = 0;
4963 TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) {
4964 if (i++ > AHD_SCB_MAX)
4965 break;
4967 printf("%d waiting\n", i);
4972 static int __init
4973 ahd_linux_init(void)
4975 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4976 return ahd_linux_detect(&aic79xx_driver_template);
4977 #else
4978 scsi_register_module(MODULE_SCSI_HA, &aic79xx_driver_template);
4979 if (aic79xx_driver_template.present == 0) {
4980 scsi_unregister_module(MODULE_SCSI_HA,
4981 &aic79xx_driver_template);
4982 return (-ENODEV);
4985 return (0);
4986 #endif
4989 static void __exit
4990 ahd_linux_exit(void)
4992 struct ahd_softc *ahd;
4995 * Shutdown DV threads before going into the SCSI mid-layer.
4996 * This avoids situations where the mid-layer locks the entire
4997 * kernel so that waiting for our DV threads to exit leads
4998 * to deadlock.
5000 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
5002 ahd_linux_kill_dv_thread(ahd);
5005 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
5007 * In 2.4 we have to unregister from the PCI core _after_
5008 * unregistering from the scsi midlayer to avoid dangling
5009 * references.
5011 scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template);
5012 #endif
5013 ahd_linux_pci_exit();
5016 module_init(ahd_linux_init);
5017 module_exit(ahd_linux_exit);