[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / block / ll_rw_blk.c
blob11ef9d9ea139316e454cfae3d3b10f7aaab71959
1 /*
2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
33 * for max sense size
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
41 * For the allocated request tables
43 static kmem_cache_t *request_cachep;
46 * For queue allocation
48 static kmem_cache_t *requestq_cachep;
51 * For io context allocations
53 static kmem_cache_t *iocontext_cachep;
55 static wait_queue_head_t congestion_wqh[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 unsigned long blk_max_low_pfn, blk_max_pfn;
67 EXPORT_SYMBOL(blk_max_low_pfn);
68 EXPORT_SYMBOL(blk_max_pfn);
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME (HZ/50UL)
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ 32
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
81 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 return q->nr_congestion_on;
87 * The threshold at which a queue is considered to be uncongested
89 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 return q->nr_congestion_off;
94 static void blk_queue_congestion_threshold(struct request_queue *q)
96 int nr;
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
112 * put back.
114 static void clear_queue_congested(request_queue_t *q, int rw)
116 enum bdi_state bit;
117 wait_queue_head_t *wqh = &congestion_wqh[rw];
119 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
120 clear_bit(bit, &q->backing_dev_info.state);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh))
123 wake_up(wqh);
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
130 static void set_queue_congested(request_queue_t *q, int rw)
132 enum bdi_state bit;
134 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
135 set_bit(bit, &q->backing_dev_info.state);
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
140 * @bdev: device
142 * Locates the passed device's request queue and returns the address of its
143 * backing_dev_info
145 * Will return NULL if the request queue cannot be located.
147 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149 struct backing_dev_info *ret = NULL;
150 request_queue_t *q = bdev_get_queue(bdev);
152 if (q)
153 ret = &q->backing_dev_info;
154 return ret;
157 EXPORT_SYMBOL(blk_get_backing_dev_info);
159 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161 q->activity_fn = fn;
162 q->activity_data = data;
165 EXPORT_SYMBOL(blk_queue_activity_fn);
168 * blk_queue_prep_rq - set a prepare_request function for queue
169 * @q: queue
170 * @pfn: prepare_request function
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
178 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180 q->prep_rq_fn = pfn;
183 EXPORT_SYMBOL(blk_queue_prep_rq);
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
187 * @q: queue
188 * @mbfn: merge_bvec_fn
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
199 * honored.
201 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203 q->merge_bvec_fn = mbfn;
206 EXPORT_SYMBOL(blk_queue_merge_bvec);
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
213 * Description:
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
224 * Caveat:
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
230 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233 * set defaults
235 q->nr_requests = BLKDEV_MAX_RQ;
236 q->max_phys_segments = MAX_PHYS_SEGMENTS;
237 q->max_hw_segments = MAX_HW_SEGMENTS;
238 q->make_request_fn = mfn;
239 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
240 q->backing_dev_info.state = 0;
241 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
242 blk_queue_max_sectors(q, MAX_SECTORS);
243 blk_queue_hardsect_size(q, 512);
244 blk_queue_dma_alignment(q, 511);
245 blk_queue_congestion_threshold(q);
246 q->nr_batching = BLK_BATCH_REQ;
248 q->unplug_thresh = 4; /* hmm */
249 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
250 if (q->unplug_delay == 0)
251 q->unplug_delay = 1;
253 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255 q->unplug_timer.function = blk_unplug_timeout;
256 q->unplug_timer.data = (unsigned long)q;
259 * by default assume old behaviour and bounce for any highmem page
261 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263 blk_queue_activity_fn(q, NULL, NULL);
265 INIT_LIST_HEAD(&q->drain_list);
268 EXPORT_SYMBOL(blk_queue_make_request);
270 static inline void rq_init(request_queue_t *q, struct request *rq)
272 INIT_LIST_HEAD(&rq->queuelist);
274 rq->errors = 0;
275 rq->rq_status = RQ_ACTIVE;
276 rq->bio = rq->biotail = NULL;
277 rq->buffer = NULL;
278 rq->ref_count = 1;
279 rq->q = q;
280 rq->waiting = NULL;
281 rq->special = NULL;
282 rq->data_len = 0;
283 rq->data = NULL;
284 rq->sense = NULL;
285 rq->end_io = NULL;
286 rq->end_io_data = NULL;
290 * blk_queue_ordered - does this queue support ordered writes
291 * @q: the request queue
292 * @flag: see below
294 * Description:
295 * For journalled file systems, doing ordered writes on a commit
296 * block instead of explicitly doing wait_on_buffer (which is bad
297 * for performance) can be a big win. Block drivers supporting this
298 * feature should call this function and indicate so.
301 void blk_queue_ordered(request_queue_t *q, int flag)
303 switch (flag) {
304 case QUEUE_ORDERED_NONE:
305 if (q->flush_rq)
306 kmem_cache_free(request_cachep, q->flush_rq);
307 q->flush_rq = NULL;
308 q->ordered = flag;
309 break;
310 case QUEUE_ORDERED_TAG:
311 q->ordered = flag;
312 break;
313 case QUEUE_ORDERED_FLUSH:
314 q->ordered = flag;
315 if (!q->flush_rq)
316 q->flush_rq = kmem_cache_alloc(request_cachep,
317 GFP_KERNEL);
318 break;
319 default:
320 printk("blk_queue_ordered: bad value %d\n", flag);
321 break;
325 EXPORT_SYMBOL(blk_queue_ordered);
328 * blk_queue_issue_flush_fn - set function for issuing a flush
329 * @q: the request queue
330 * @iff: the function to be called issuing the flush
332 * Description:
333 * If a driver supports issuing a flush command, the support is notified
334 * to the block layer by defining it through this call.
337 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339 q->issue_flush_fn = iff;
342 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
345 * Cache flushing for ordered writes handling
347 static void blk_pre_flush_end_io(struct request *flush_rq)
349 struct request *rq = flush_rq->end_io_data;
350 request_queue_t *q = rq->q;
352 rq->flags |= REQ_BAR_PREFLUSH;
354 if (!flush_rq->errors)
355 elv_requeue_request(q, rq);
356 else {
357 q->end_flush_fn(q, flush_rq);
358 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
359 q->request_fn(q);
363 static void blk_post_flush_end_io(struct request *flush_rq)
365 struct request *rq = flush_rq->end_io_data;
366 request_queue_t *q = rq->q;
368 rq->flags |= REQ_BAR_POSTFLUSH;
370 q->end_flush_fn(q, flush_rq);
371 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
372 q->request_fn(q);
375 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377 struct request *flush_rq = q->flush_rq;
379 BUG_ON(!blk_barrier_rq(rq));
381 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
382 return NULL;
384 rq_init(q, flush_rq);
385 flush_rq->elevator_private = NULL;
386 flush_rq->flags = REQ_BAR_FLUSH;
387 flush_rq->rq_disk = rq->rq_disk;
388 flush_rq->rl = NULL;
391 * prepare_flush returns 0 if no flush is needed, just mark both
392 * pre and post flush as done in that case
394 if (!q->prepare_flush_fn(q, flush_rq)) {
395 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
396 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
397 return rq;
401 * some drivers dequeue requests right away, some only after io
402 * completion. make sure the request is dequeued.
404 if (!list_empty(&rq->queuelist))
405 blkdev_dequeue_request(rq);
407 elv_deactivate_request(q, rq);
409 flush_rq->end_io_data = rq;
410 flush_rq->end_io = blk_pre_flush_end_io;
412 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
413 return flush_rq;
416 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418 struct request *flush_rq = q->flush_rq;
420 BUG_ON(!blk_barrier_rq(rq));
422 rq_init(q, flush_rq);
423 flush_rq->elevator_private = NULL;
424 flush_rq->flags = REQ_BAR_FLUSH;
425 flush_rq->rq_disk = rq->rq_disk;
426 flush_rq->rl = NULL;
428 if (q->prepare_flush_fn(q, flush_rq)) {
429 flush_rq->end_io_data = rq;
430 flush_rq->end_io = blk_post_flush_end_io;
432 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
433 q->request_fn(q);
437 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
438 int sectors)
440 if (sectors > rq->nr_sectors)
441 sectors = rq->nr_sectors;
443 rq->nr_sectors -= sectors;
444 return rq->nr_sectors;
447 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
448 int sectors, int queue_locked)
450 if (q->ordered != QUEUE_ORDERED_FLUSH)
451 return 0;
452 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
453 return 0;
454 if (blk_barrier_postflush(rq))
455 return 0;
457 if (!blk_check_end_barrier(q, rq, sectors)) {
458 unsigned long flags = 0;
460 if (!queue_locked)
461 spin_lock_irqsave(q->queue_lock, flags);
463 blk_start_post_flush(q, rq);
465 if (!queue_locked)
466 spin_unlock_irqrestore(q->queue_lock, flags);
469 return 1;
473 * blk_complete_barrier_rq - complete possible barrier request
474 * @q: the request queue for the device
475 * @rq: the request
476 * @sectors: number of sectors to complete
478 * Description:
479 * Used in driver end_io handling to determine whether to postpone
480 * completion of a barrier request until a post flush has been done. This
481 * is the unlocked variant, used if the caller doesn't already hold the
482 * queue lock.
484 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488 EXPORT_SYMBOL(blk_complete_barrier_rq);
491 * blk_complete_barrier_rq_locked - complete possible barrier request
492 * @q: the request queue for the device
493 * @rq: the request
494 * @sectors: number of sectors to complete
496 * Description:
497 * See blk_complete_barrier_rq(). This variant must be used if the caller
498 * holds the queue lock.
500 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
501 int sectors)
503 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
508 * blk_queue_bounce_limit - set bounce buffer limit for queue
509 * @q: the request queue for the device
510 * @dma_addr: bus address limit
512 * Description:
513 * Different hardware can have different requirements as to what pages
514 * it can do I/O directly to. A low level driver can call
515 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
516 * buffers for doing I/O to pages residing above @page. By default
517 * the block layer sets this to the highest numbered "low" memory page.
519 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
524 * set appropriate bounce gfp mask -- unfortunately we don't have a
525 * full 4GB zone, so we have to resort to low memory for any bounces.
526 * ISA has its own < 16MB zone.
528 if (bounce_pfn < blk_max_low_pfn) {
529 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
530 init_emergency_isa_pool();
531 q->bounce_gfp = GFP_NOIO | GFP_DMA;
532 } else
533 q->bounce_gfp = GFP_NOIO;
535 q->bounce_pfn = bounce_pfn;
538 EXPORT_SYMBOL(blk_queue_bounce_limit);
541 * blk_queue_max_sectors - set max sectors for a request for this queue
542 * @q: the request queue for the device
543 * @max_sectors: max sectors in the usual 512b unit
545 * Description:
546 * Enables a low level driver to set an upper limit on the size of
547 * received requests.
549 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
552 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
553 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
556 q->max_sectors = q->max_hw_sectors = max_sectors;
559 EXPORT_SYMBOL(blk_queue_max_sectors);
562 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
563 * @q: the request queue for the device
564 * @max_segments: max number of segments
566 * Description:
567 * Enables a low level driver to set an upper limit on the number of
568 * physical data segments in a request. This would be the largest sized
569 * scatter list the driver could handle.
571 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573 if (!max_segments) {
574 max_segments = 1;
575 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
578 q->max_phys_segments = max_segments;
581 EXPORT_SYMBOL(blk_queue_max_phys_segments);
584 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
585 * @q: the request queue for the device
586 * @max_segments: max number of segments
588 * Description:
589 * Enables a low level driver to set an upper limit on the number of
590 * hw data segments in a request. This would be the largest number of
591 * address/length pairs the host adapter can actually give as once
592 * to the device.
594 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596 if (!max_segments) {
597 max_segments = 1;
598 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
601 q->max_hw_segments = max_segments;
604 EXPORT_SYMBOL(blk_queue_max_hw_segments);
607 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
608 * @q: the request queue for the device
609 * @max_size: max size of segment in bytes
611 * Description:
612 * Enables a low level driver to set an upper limit on the size of a
613 * coalesced segment
615 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617 if (max_size < PAGE_CACHE_SIZE) {
618 max_size = PAGE_CACHE_SIZE;
619 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
622 q->max_segment_size = max_size;
625 EXPORT_SYMBOL(blk_queue_max_segment_size);
628 * blk_queue_hardsect_size - set hardware sector size for the queue
629 * @q: the request queue for the device
630 * @size: the hardware sector size, in bytes
632 * Description:
633 * This should typically be set to the lowest possible sector size
634 * that the hardware can operate on (possible without reverting to
635 * even internal read-modify-write operations). Usually the default
636 * of 512 covers most hardware.
638 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640 q->hardsect_size = size;
643 EXPORT_SYMBOL(blk_queue_hardsect_size);
646 * Returns the minimum that is _not_ zero, unless both are zero.
648 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
651 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
652 * @t: the stacking driver (top)
653 * @b: the underlying device (bottom)
655 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657 /* zero is "infinity" */
658 t->max_sectors = t->max_hw_sectors =
659 min_not_zero(t->max_sectors,b->max_sectors);
661 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
662 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
663 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
664 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
667 EXPORT_SYMBOL(blk_queue_stack_limits);
670 * blk_queue_segment_boundary - set boundary rules for segment merging
671 * @q: the request queue for the device
672 * @mask: the memory boundary mask
674 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676 if (mask < PAGE_CACHE_SIZE - 1) {
677 mask = PAGE_CACHE_SIZE - 1;
678 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
681 q->seg_boundary_mask = mask;
684 EXPORT_SYMBOL(blk_queue_segment_boundary);
687 * blk_queue_dma_alignment - set dma length and memory alignment
688 * @q: the request queue for the device
689 * @mask: alignment mask
691 * description:
692 * set required memory and length aligment for direct dma transactions.
693 * this is used when buiding direct io requests for the queue.
696 void blk_queue_dma_alignment(request_queue_t *q, int mask)
698 q->dma_alignment = mask;
701 EXPORT_SYMBOL(blk_queue_dma_alignment);
704 * blk_queue_find_tag - find a request by its tag and queue
706 * @q: The request queue for the device
707 * @tag: The tag of the request
709 * Notes:
710 * Should be used when a device returns a tag and you want to match
711 * it with a request.
713 * no locks need be held.
715 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717 struct blk_queue_tag *bqt = q->queue_tags;
719 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
720 return NULL;
722 return bqt->tag_index[tag];
725 EXPORT_SYMBOL(blk_queue_find_tag);
728 * __blk_queue_free_tags - release tag maintenance info
729 * @q: the request queue for the device
731 * Notes:
732 * blk_cleanup_queue() will take care of calling this function, if tagging
733 * has been used. So there's no need to call this directly.
735 static void __blk_queue_free_tags(request_queue_t *q)
737 struct blk_queue_tag *bqt = q->queue_tags;
739 if (!bqt)
740 return;
742 if (atomic_dec_and_test(&bqt->refcnt)) {
743 BUG_ON(bqt->busy);
744 BUG_ON(!list_empty(&bqt->busy_list));
746 kfree(bqt->tag_index);
747 bqt->tag_index = NULL;
749 kfree(bqt->tag_map);
750 bqt->tag_map = NULL;
752 kfree(bqt);
755 q->queue_tags = NULL;
756 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
760 * blk_queue_free_tags - release tag maintenance info
761 * @q: the request queue for the device
763 * Notes:
764 * This is used to disabled tagged queuing to a device, yet leave
765 * queue in function.
767 void blk_queue_free_tags(request_queue_t *q)
769 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
772 EXPORT_SYMBOL(blk_queue_free_tags);
774 static int
775 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777 int bits, i;
778 struct request **tag_index;
779 unsigned long *tag_map;
781 if (depth > q->nr_requests * 2) {
782 depth = q->nr_requests * 2;
783 printk(KERN_ERR "%s: adjusted depth to %d\n",
784 __FUNCTION__, depth);
787 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
788 if (!tag_index)
789 goto fail;
791 bits = (depth / BLK_TAGS_PER_LONG) + 1;
792 tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
793 if (!tag_map)
794 goto fail;
796 memset(tag_index, 0, depth * sizeof(struct request *));
797 memset(tag_map, 0, bits * sizeof(unsigned long));
798 tags->max_depth = depth;
799 tags->real_max_depth = bits * BITS_PER_LONG;
800 tags->tag_index = tag_index;
801 tags->tag_map = tag_map;
804 * set the upper bits if the depth isn't a multiple of the word size
806 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
807 __set_bit(i, tag_map);
809 return 0;
810 fail:
811 kfree(tag_index);
812 return -ENOMEM;
816 * blk_queue_init_tags - initialize the queue tag info
817 * @q: the request queue for the device
818 * @depth: the maximum queue depth supported
819 * @tags: the tag to use
821 int blk_queue_init_tags(request_queue_t *q, int depth,
822 struct blk_queue_tag *tags)
824 int rc;
826 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828 if (!tags && !q->queue_tags) {
829 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
830 if (!tags)
831 goto fail;
833 if (init_tag_map(q, tags, depth))
834 goto fail;
836 INIT_LIST_HEAD(&tags->busy_list);
837 tags->busy = 0;
838 atomic_set(&tags->refcnt, 1);
839 } else if (q->queue_tags) {
840 if ((rc = blk_queue_resize_tags(q, depth)))
841 return rc;
842 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
843 return 0;
844 } else
845 atomic_inc(&tags->refcnt);
848 * assign it, all done
850 q->queue_tags = tags;
851 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
852 return 0;
853 fail:
854 kfree(tags);
855 return -ENOMEM;
858 EXPORT_SYMBOL(blk_queue_init_tags);
861 * blk_queue_resize_tags - change the queueing depth
862 * @q: the request queue for the device
863 * @new_depth: the new max command queueing depth
865 * Notes:
866 * Must be called with the queue lock held.
868 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870 struct blk_queue_tag *bqt = q->queue_tags;
871 struct request **tag_index;
872 unsigned long *tag_map;
873 int bits, max_depth;
875 if (!bqt)
876 return -ENXIO;
879 * don't bother sizing down
881 if (new_depth <= bqt->real_max_depth) {
882 bqt->max_depth = new_depth;
883 return 0;
887 * save the old state info, so we can copy it back
889 tag_index = bqt->tag_index;
890 tag_map = bqt->tag_map;
891 max_depth = bqt->real_max_depth;
893 if (init_tag_map(q, bqt, new_depth))
894 return -ENOMEM;
896 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
897 bits = max_depth / BLK_TAGS_PER_LONG;
898 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
900 kfree(tag_index);
901 kfree(tag_map);
902 return 0;
905 EXPORT_SYMBOL(blk_queue_resize_tags);
908 * blk_queue_end_tag - end tag operations for a request
909 * @q: the request queue for the device
910 * @rq: the request that has completed
912 * Description:
913 * Typically called when end_that_request_first() returns 0, meaning
914 * all transfers have been done for a request. It's important to call
915 * this function before end_that_request_last(), as that will put the
916 * request back on the free list thus corrupting the internal tag list.
918 * Notes:
919 * queue lock must be held.
921 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923 struct blk_queue_tag *bqt = q->queue_tags;
924 int tag = rq->tag;
926 BUG_ON(tag == -1);
928 if (unlikely(tag >= bqt->real_max_depth))
929 return;
931 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
932 printk("attempt to clear non-busy tag (%d)\n", tag);
933 return;
936 list_del_init(&rq->queuelist);
937 rq->flags &= ~REQ_QUEUED;
938 rq->tag = -1;
940 if (unlikely(bqt->tag_index[tag] == NULL))
941 printk("tag %d is missing\n", tag);
943 bqt->tag_index[tag] = NULL;
944 bqt->busy--;
947 EXPORT_SYMBOL(blk_queue_end_tag);
950 * blk_queue_start_tag - find a free tag and assign it
951 * @q: the request queue for the device
952 * @rq: the block request that needs tagging
954 * Description:
955 * This can either be used as a stand-alone helper, or possibly be
956 * assigned as the queue &prep_rq_fn (in which case &struct request
957 * automagically gets a tag assigned). Note that this function
958 * assumes that any type of request can be queued! if this is not
959 * true for your device, you must check the request type before
960 * calling this function. The request will also be removed from
961 * the request queue, so it's the drivers responsibility to readd
962 * it if it should need to be restarted for some reason.
964 * Notes:
965 * queue lock must be held.
967 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
969 struct blk_queue_tag *bqt = q->queue_tags;
970 unsigned long *map = bqt->tag_map;
971 int tag = 0;
973 if (unlikely((rq->flags & REQ_QUEUED))) {
974 printk(KERN_ERR
975 "request %p for device [%s] already tagged %d",
976 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
977 BUG();
980 for (map = bqt->tag_map; *map == -1UL; map++) {
981 tag += BLK_TAGS_PER_LONG;
983 if (tag >= bqt->max_depth)
984 return 1;
987 tag += ffz(*map);
988 __set_bit(tag, bqt->tag_map);
990 rq->flags |= REQ_QUEUED;
991 rq->tag = tag;
992 bqt->tag_index[tag] = rq;
993 blkdev_dequeue_request(rq);
994 list_add(&rq->queuelist, &bqt->busy_list);
995 bqt->busy++;
996 return 0;
999 EXPORT_SYMBOL(blk_queue_start_tag);
1002 * blk_queue_invalidate_tags - invalidate all pending tags
1003 * @q: the request queue for the device
1005 * Description:
1006 * Hardware conditions may dictate a need to stop all pending requests.
1007 * In this case, we will safely clear the block side of the tag queue and
1008 * readd all requests to the request queue in the right order.
1010 * Notes:
1011 * queue lock must be held.
1013 void blk_queue_invalidate_tags(request_queue_t *q)
1015 struct blk_queue_tag *bqt = q->queue_tags;
1016 struct list_head *tmp, *n;
1017 struct request *rq;
1019 list_for_each_safe(tmp, n, &bqt->busy_list) {
1020 rq = list_entry_rq(tmp);
1022 if (rq->tag == -1) {
1023 printk("bad tag found on list\n");
1024 list_del_init(&rq->queuelist);
1025 rq->flags &= ~REQ_QUEUED;
1026 } else
1027 blk_queue_end_tag(q, rq);
1029 rq->flags &= ~REQ_STARTED;
1030 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1034 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1036 static char *rq_flags[] = {
1037 "REQ_RW",
1038 "REQ_FAILFAST",
1039 "REQ_SOFTBARRIER",
1040 "REQ_HARDBARRIER",
1041 "REQ_CMD",
1042 "REQ_NOMERGE",
1043 "REQ_STARTED",
1044 "REQ_DONTPREP",
1045 "REQ_QUEUED",
1046 "REQ_PC",
1047 "REQ_BLOCK_PC",
1048 "REQ_SENSE",
1049 "REQ_FAILED",
1050 "REQ_QUIET",
1051 "REQ_SPECIAL",
1052 "REQ_DRIVE_CMD",
1053 "REQ_DRIVE_TASK",
1054 "REQ_DRIVE_TASKFILE",
1055 "REQ_PREEMPT",
1056 "REQ_PM_SUSPEND",
1057 "REQ_PM_RESUME",
1058 "REQ_PM_SHUTDOWN",
1061 void blk_dump_rq_flags(struct request *rq, char *msg)
1063 int bit;
1065 printk("%s: dev %s: flags = ", msg,
1066 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1067 bit = 0;
1068 do {
1069 if (rq->flags & (1 << bit))
1070 printk("%s ", rq_flags[bit]);
1071 bit++;
1072 } while (bit < __REQ_NR_BITS);
1074 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1075 rq->nr_sectors,
1076 rq->current_nr_sectors);
1077 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1079 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1080 printk("cdb: ");
1081 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1082 printk("%02x ", rq->cmd[bit]);
1083 printk("\n");
1087 EXPORT_SYMBOL(blk_dump_rq_flags);
1089 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1091 struct bio_vec *bv, *bvprv = NULL;
1092 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1093 int high, highprv = 1;
1095 if (unlikely(!bio->bi_io_vec))
1096 return;
1098 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1099 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1100 bio_for_each_segment(bv, bio, i) {
1102 * the trick here is making sure that a high page is never
1103 * considered part of another segment, since that might
1104 * change with the bounce page.
1106 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1107 if (high || highprv)
1108 goto new_hw_segment;
1109 if (cluster) {
1110 if (seg_size + bv->bv_len > q->max_segment_size)
1111 goto new_segment;
1112 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1113 goto new_segment;
1114 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1115 goto new_segment;
1116 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1117 goto new_hw_segment;
1119 seg_size += bv->bv_len;
1120 hw_seg_size += bv->bv_len;
1121 bvprv = bv;
1122 continue;
1124 new_segment:
1125 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1126 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1127 hw_seg_size += bv->bv_len;
1128 } else {
1129 new_hw_segment:
1130 if (hw_seg_size > bio->bi_hw_front_size)
1131 bio->bi_hw_front_size = hw_seg_size;
1132 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1133 nr_hw_segs++;
1136 nr_phys_segs++;
1137 bvprv = bv;
1138 seg_size = bv->bv_len;
1139 highprv = high;
1141 if (hw_seg_size > bio->bi_hw_back_size)
1142 bio->bi_hw_back_size = hw_seg_size;
1143 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1144 bio->bi_hw_front_size = hw_seg_size;
1145 bio->bi_phys_segments = nr_phys_segs;
1146 bio->bi_hw_segments = nr_hw_segs;
1147 bio->bi_flags |= (1 << BIO_SEG_VALID);
1151 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1152 struct bio *nxt)
1154 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1155 return 0;
1157 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1158 return 0;
1159 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1160 return 0;
1163 * bio and nxt are contigous in memory, check if the queue allows
1164 * these two to be merged into one
1166 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1167 return 1;
1169 return 0;
1172 EXPORT_SYMBOL(blk_phys_contig_segment);
1174 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1175 struct bio *nxt)
1177 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1178 blk_recount_segments(q, bio);
1179 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1180 blk_recount_segments(q, nxt);
1181 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1182 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1183 return 0;
1184 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1185 return 0;
1187 return 1;
1190 EXPORT_SYMBOL(blk_hw_contig_segment);
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1196 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198 struct bio_vec *bvec, *bvprv;
1199 struct bio *bio;
1200 int nsegs, i, cluster;
1202 nsegs = 0;
1203 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1206 * for each bio in rq
1208 bvprv = NULL;
1209 rq_for_each_bio(bio, rq) {
1211 * for each segment in bio
1213 bio_for_each_segment(bvec, bio, i) {
1214 int nbytes = bvec->bv_len;
1216 if (bvprv && cluster) {
1217 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1218 goto new_segment;
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1221 goto new_segment;
1222 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1223 goto new_segment;
1225 sg[nsegs - 1].length += nbytes;
1226 } else {
1227 new_segment:
1228 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1229 sg[nsegs].page = bvec->bv_page;
1230 sg[nsegs].length = nbytes;
1231 sg[nsegs].offset = bvec->bv_offset;
1233 nsegs++;
1235 bvprv = bvec;
1236 } /* segments in bio */
1237 } /* bios in rq */
1239 return nsegs;
1242 EXPORT_SYMBOL(blk_rq_map_sg);
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1249 static inline int ll_new_mergeable(request_queue_t *q,
1250 struct request *req,
1251 struct bio *bio)
1253 int nr_phys_segs = bio_phys_segments(q, bio);
1255 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1256 req->flags |= REQ_NOMERGE;
1257 if (req == q->last_merge)
1258 q->last_merge = NULL;
1259 return 0;
1263 * A hw segment is just getting larger, bump just the phys
1264 * counter.
1266 req->nr_phys_segments += nr_phys_segs;
1267 return 1;
1270 static inline int ll_new_hw_segment(request_queue_t *q,
1271 struct request *req,
1272 struct bio *bio)
1274 int nr_hw_segs = bio_hw_segments(q, bio);
1275 int nr_phys_segs = bio_phys_segments(q, bio);
1277 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1278 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1279 req->flags |= REQ_NOMERGE;
1280 if (req == q->last_merge)
1281 q->last_merge = NULL;
1282 return 0;
1286 * This will form the start of a new hw segment. Bump both
1287 * counters.
1289 req->nr_hw_segments += nr_hw_segs;
1290 req->nr_phys_segments += nr_phys_segs;
1291 return 1;
1294 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1295 struct bio *bio)
1297 int len;
1299 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1300 req->flags |= REQ_NOMERGE;
1301 if (req == q->last_merge)
1302 q->last_merge = NULL;
1303 return 0;
1305 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1306 blk_recount_segments(q, req->biotail);
1307 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1308 blk_recount_segments(q, bio);
1309 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len)) {
1312 int mergeable = ll_new_mergeable(q, req, bio);
1314 if (mergeable) {
1315 if (req->nr_hw_segments == 1)
1316 req->bio->bi_hw_front_size = len;
1317 if (bio->bi_hw_segments == 1)
1318 bio->bi_hw_back_size = len;
1320 return mergeable;
1323 return ll_new_hw_segment(q, req, bio);
1326 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1327 struct bio *bio)
1329 int len;
1331 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1332 req->flags |= REQ_NOMERGE;
1333 if (req == q->last_merge)
1334 q->last_merge = NULL;
1335 return 0;
1337 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1338 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1339 blk_recount_segments(q, bio);
1340 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1341 blk_recount_segments(q, req->bio);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len)) {
1344 int mergeable = ll_new_mergeable(q, req, bio);
1346 if (mergeable) {
1347 if (bio->bi_hw_segments == 1)
1348 bio->bi_hw_front_size = len;
1349 if (req->nr_hw_segments == 1)
1350 req->biotail->bi_hw_back_size = len;
1352 return mergeable;
1355 return ll_new_hw_segment(q, req, bio);
1358 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1359 struct request *next)
1361 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1362 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1368 if (req->special || next->special)
1369 return 0;
1372 * Will it become to large?
1374 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1375 return 0;
1377 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1378 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1379 total_phys_segments--;
1381 if (total_phys_segments > q->max_phys_segments)
1382 return 0;
1384 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1385 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1386 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388 * propagate the combined length to the end of the requests
1390 if (req->nr_hw_segments == 1)
1391 req->bio->bi_hw_front_size = len;
1392 if (next->nr_hw_segments == 1)
1393 next->biotail->bi_hw_back_size = len;
1394 total_hw_segments--;
1397 if (total_hw_segments > q->max_hw_segments)
1398 return 0;
1400 /* Merge is OK... */
1401 req->nr_phys_segments = total_phys_segments;
1402 req->nr_hw_segments = total_hw_segments;
1403 return 1;
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1409 * on the list.
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1414 void blk_plug_device(request_queue_t *q)
1416 WARN_ON(!irqs_disabled());
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1422 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1423 return;
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1426 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1429 EXPORT_SYMBOL(blk_plug_device);
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1435 int blk_remove_plug(request_queue_t *q)
1437 WARN_ON(!irqs_disabled());
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1440 return 0;
1442 del_timer(&q->unplug_timer);
1443 return 1;
1446 EXPORT_SYMBOL(blk_remove_plug);
1449 * remove the plug and let it rip..
1451 void __generic_unplug_device(request_queue_t *q)
1453 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1454 return;
1456 if (!blk_remove_plug(q))
1457 return;
1460 * was plugged, fire request_fn if queue has stuff to do
1462 if (elv_next_request(q))
1463 q->request_fn(q);
1465 EXPORT_SYMBOL(__generic_unplug_device);
1468 * generic_unplug_device - fire a request queue
1469 * @q: The &request_queue_t in question
1471 * Description:
1472 * Linux uses plugging to build bigger requests queues before letting
1473 * the device have at them. If a queue is plugged, the I/O scheduler
1474 * is still adding and merging requests on the queue. Once the queue
1475 * gets unplugged, the request_fn defined for the queue is invoked and
1476 * transfers started.
1478 void generic_unplug_device(request_queue_t *q)
1480 spin_lock_irq(q->queue_lock);
1481 __generic_unplug_device(q);
1482 spin_unlock_irq(q->queue_lock);
1484 EXPORT_SYMBOL(generic_unplug_device);
1486 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1487 struct page *page)
1489 request_queue_t *q = bdi->unplug_io_data;
1492 * devices don't necessarily have an ->unplug_fn defined
1494 if (q->unplug_fn)
1495 q->unplug_fn(q);
1498 static void blk_unplug_work(void *data)
1500 request_queue_t *q = data;
1502 q->unplug_fn(q);
1505 static void blk_unplug_timeout(unsigned long data)
1507 request_queue_t *q = (request_queue_t *)data;
1509 kblockd_schedule_work(&q->unplug_work);
1513 * blk_start_queue - restart a previously stopped queue
1514 * @q: The &request_queue_t in question
1516 * Description:
1517 * blk_start_queue() will clear the stop flag on the queue, and call
1518 * the request_fn for the queue if it was in a stopped state when
1519 * entered. Also see blk_stop_queue(). Queue lock must be held.
1521 void blk_start_queue(request_queue_t *q)
1523 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1526 * one level of recursion is ok and is much faster than kicking
1527 * the unplug handling
1529 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1530 q->request_fn(q);
1531 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1532 } else {
1533 blk_plug_device(q);
1534 kblockd_schedule_work(&q->unplug_work);
1538 EXPORT_SYMBOL(blk_start_queue);
1541 * blk_stop_queue - stop a queue
1542 * @q: The &request_queue_t in question
1544 * Description:
1545 * The Linux block layer assumes that a block driver will consume all
1546 * entries on the request queue when the request_fn strategy is called.
1547 * Often this will not happen, because of hardware limitations (queue
1548 * depth settings). If a device driver gets a 'queue full' response,
1549 * or if it simply chooses not to queue more I/O at one point, it can
1550 * call this function to prevent the request_fn from being called until
1551 * the driver has signalled it's ready to go again. This happens by calling
1552 * blk_start_queue() to restart queue operations. Queue lock must be held.
1554 void blk_stop_queue(request_queue_t *q)
1556 blk_remove_plug(q);
1557 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1559 EXPORT_SYMBOL(blk_stop_queue);
1562 * blk_sync_queue - cancel any pending callbacks on a queue
1563 * @q: the queue
1565 * Description:
1566 * The block layer may perform asynchronous callback activity
1567 * on a queue, such as calling the unplug function after a timeout.
1568 * A block device may call blk_sync_queue to ensure that any
1569 * such activity is cancelled, thus allowing it to release resources
1570 * the the callbacks might use. The caller must already have made sure
1571 * that its ->make_request_fn will not re-add plugging prior to calling
1572 * this function.
1575 void blk_sync_queue(struct request_queue *q)
1577 del_timer_sync(&q->unplug_timer);
1578 kblockd_flush();
1580 EXPORT_SYMBOL(blk_sync_queue);
1583 * blk_run_queue - run a single device queue
1584 * @q: The queue to run
1586 void blk_run_queue(struct request_queue *q)
1588 unsigned long flags;
1590 spin_lock_irqsave(q->queue_lock, flags);
1591 blk_remove_plug(q);
1592 if (!elv_queue_empty(q))
1593 q->request_fn(q);
1594 spin_unlock_irqrestore(q->queue_lock, flags);
1596 EXPORT_SYMBOL(blk_run_queue);
1599 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1600 * @q: the request queue to be released
1602 * Description:
1603 * blk_cleanup_queue is the pair to blk_init_queue() or
1604 * blk_queue_make_request(). It should be called when a request queue is
1605 * being released; typically when a block device is being de-registered.
1606 * Currently, its primary task it to free all the &struct request
1607 * structures that were allocated to the queue and the queue itself.
1609 * Caveat:
1610 * Hopefully the low level driver will have finished any
1611 * outstanding requests first...
1613 void blk_cleanup_queue(request_queue_t * q)
1615 struct request_list *rl = &q->rq;
1617 if (!atomic_dec_and_test(&q->refcnt))
1618 return;
1620 if (q->elevator)
1621 elevator_exit(q->elevator);
1623 blk_sync_queue(q);
1625 if (rl->rq_pool)
1626 mempool_destroy(rl->rq_pool);
1628 if (q->queue_tags)
1629 __blk_queue_free_tags(q);
1631 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1633 kmem_cache_free(requestq_cachep, q);
1636 EXPORT_SYMBOL(blk_cleanup_queue);
1638 static int blk_init_free_list(request_queue_t *q)
1640 struct request_list *rl = &q->rq;
1642 rl->count[READ] = rl->count[WRITE] = 0;
1643 rl->starved[READ] = rl->starved[WRITE] = 0;
1644 init_waitqueue_head(&rl->wait[READ]);
1645 init_waitqueue_head(&rl->wait[WRITE]);
1646 init_waitqueue_head(&rl->drain);
1648 rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1650 if (!rl->rq_pool)
1651 return -ENOMEM;
1653 return 0;
1656 static int __make_request(request_queue_t *, struct bio *);
1658 request_queue_t *blk_alloc_queue(int gfp_mask)
1660 request_queue_t *q = kmem_cache_alloc(requestq_cachep, gfp_mask);
1662 if (!q)
1663 return NULL;
1665 memset(q, 0, sizeof(*q));
1666 init_timer(&q->unplug_timer);
1667 atomic_set(&q->refcnt, 1);
1669 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1670 q->backing_dev_info.unplug_io_data = q;
1672 return q;
1675 EXPORT_SYMBOL(blk_alloc_queue);
1678 * blk_init_queue - prepare a request queue for use with a block device
1679 * @rfn: The function to be called to process requests that have been
1680 * placed on the queue.
1681 * @lock: Request queue spin lock
1683 * Description:
1684 * If a block device wishes to use the standard request handling procedures,
1685 * which sorts requests and coalesces adjacent requests, then it must
1686 * call blk_init_queue(). The function @rfn will be called when there
1687 * are requests on the queue that need to be processed. If the device
1688 * supports plugging, then @rfn may not be called immediately when requests
1689 * are available on the queue, but may be called at some time later instead.
1690 * Plugged queues are generally unplugged when a buffer belonging to one
1691 * of the requests on the queue is needed, or due to memory pressure.
1693 * @rfn is not required, or even expected, to remove all requests off the
1694 * queue, but only as many as it can handle at a time. If it does leave
1695 * requests on the queue, it is responsible for arranging that the requests
1696 * get dealt with eventually.
1698 * The queue spin lock must be held while manipulating the requests on the
1699 * request queue.
1701 * Function returns a pointer to the initialized request queue, or NULL if
1702 * it didn't succeed.
1704 * Note:
1705 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1706 * when the block device is deactivated (such as at module unload).
1708 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1710 request_queue_t *q = blk_alloc_queue(GFP_KERNEL);
1712 if (!q)
1713 return NULL;
1715 if (blk_init_free_list(q))
1716 goto out_init;
1719 * if caller didn't supply a lock, they get per-queue locking with
1720 * our embedded lock
1722 if (!lock) {
1723 spin_lock_init(&q->__queue_lock);
1724 lock = &q->__queue_lock;
1727 q->request_fn = rfn;
1728 q->back_merge_fn = ll_back_merge_fn;
1729 q->front_merge_fn = ll_front_merge_fn;
1730 q->merge_requests_fn = ll_merge_requests_fn;
1731 q->prep_rq_fn = NULL;
1732 q->unplug_fn = generic_unplug_device;
1733 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1734 q->queue_lock = lock;
1736 blk_queue_segment_boundary(q, 0xffffffff);
1738 blk_queue_make_request(q, __make_request);
1739 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1741 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1742 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1745 * all done
1747 if (!elevator_init(q, NULL)) {
1748 blk_queue_congestion_threshold(q);
1749 return q;
1752 blk_cleanup_queue(q);
1753 out_init:
1754 kmem_cache_free(requestq_cachep, q);
1755 return NULL;
1758 EXPORT_SYMBOL(blk_init_queue);
1760 int blk_get_queue(request_queue_t *q)
1762 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1763 atomic_inc(&q->refcnt);
1764 return 0;
1767 return 1;
1770 EXPORT_SYMBOL(blk_get_queue);
1772 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1774 elv_put_request(q, rq);
1775 mempool_free(rq, q->rq.rq_pool);
1778 static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1779 int gfp_mask)
1781 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1783 if (!rq)
1784 return NULL;
1787 * first three bits are identical in rq->flags and bio->bi_rw,
1788 * see bio.h and blkdev.h
1790 rq->flags = rw;
1792 if (!elv_set_request(q, rq, gfp_mask))
1793 return rq;
1795 mempool_free(rq, q->rq.rq_pool);
1796 return NULL;
1800 * ioc_batching returns true if the ioc is a valid batching request and
1801 * should be given priority access to a request.
1803 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1805 if (!ioc)
1806 return 0;
1809 * Make sure the process is able to allocate at least 1 request
1810 * even if the batch times out, otherwise we could theoretically
1811 * lose wakeups.
1813 return ioc->nr_batch_requests == q->nr_batching ||
1814 (ioc->nr_batch_requests > 0
1815 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1819 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1820 * will cause the process to be a "batcher" on all queues in the system. This
1821 * is the behaviour we want though - once it gets a wakeup it should be given
1822 * a nice run.
1824 void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1826 if (!ioc || ioc_batching(q, ioc))
1827 return;
1829 ioc->nr_batch_requests = q->nr_batching;
1830 ioc->last_waited = jiffies;
1833 static void __freed_request(request_queue_t *q, int rw)
1835 struct request_list *rl = &q->rq;
1837 if (rl->count[rw] < queue_congestion_off_threshold(q))
1838 clear_queue_congested(q, rw);
1840 if (rl->count[rw] + 1 <= q->nr_requests) {
1841 smp_mb();
1842 if (waitqueue_active(&rl->wait[rw]))
1843 wake_up(&rl->wait[rw]);
1845 blk_clear_queue_full(q, rw);
1850 * A request has just been released. Account for it, update the full and
1851 * congestion status, wake up any waiters. Called under q->queue_lock.
1853 static void freed_request(request_queue_t *q, int rw)
1855 struct request_list *rl = &q->rq;
1857 rl->count[rw]--;
1859 __freed_request(q, rw);
1861 if (unlikely(rl->starved[rw ^ 1]))
1862 __freed_request(q, rw ^ 1);
1864 if (!rl->count[READ] && !rl->count[WRITE]) {
1865 smp_mb();
1866 if (unlikely(waitqueue_active(&rl->drain)))
1867 wake_up(&rl->drain);
1871 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1873 * Get a free request, queue_lock must not be held
1875 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1877 struct request *rq = NULL;
1878 struct request_list *rl = &q->rq;
1879 struct io_context *ioc = get_io_context(gfp_mask);
1881 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1882 goto out;
1884 spin_lock_irq(q->queue_lock);
1885 if (rl->count[rw]+1 >= q->nr_requests) {
1887 * The queue will fill after this allocation, so set it as
1888 * full, and mark this process as "batching". This process
1889 * will be allowed to complete a batch of requests, others
1890 * will be blocked.
1892 if (!blk_queue_full(q, rw)) {
1893 ioc_set_batching(q, ioc);
1894 blk_set_queue_full(q, rw);
1898 switch (elv_may_queue(q, rw)) {
1899 case ELV_MQUEUE_NO:
1900 goto rq_starved;
1901 case ELV_MQUEUE_MAY:
1902 break;
1903 case ELV_MQUEUE_MUST:
1904 goto get_rq;
1907 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1909 * The queue is full and the allocating process is not a
1910 * "batcher", and not exempted by the IO scheduler
1912 spin_unlock_irq(q->queue_lock);
1913 goto out;
1916 get_rq:
1917 rl->count[rw]++;
1918 rl->starved[rw] = 0;
1919 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1920 set_queue_congested(q, rw);
1921 spin_unlock_irq(q->queue_lock);
1923 rq = blk_alloc_request(q, rw, gfp_mask);
1924 if (!rq) {
1926 * Allocation failed presumably due to memory. Undo anything
1927 * we might have messed up.
1929 * Allocating task should really be put onto the front of the
1930 * wait queue, but this is pretty rare.
1932 spin_lock_irq(q->queue_lock);
1933 freed_request(q, rw);
1936 * in the very unlikely event that allocation failed and no
1937 * requests for this direction was pending, mark us starved
1938 * so that freeing of a request in the other direction will
1939 * notice us. another possible fix would be to split the
1940 * rq mempool into READ and WRITE
1942 rq_starved:
1943 if (unlikely(rl->count[rw] == 0))
1944 rl->starved[rw] = 1;
1946 spin_unlock_irq(q->queue_lock);
1947 goto out;
1950 if (ioc_batching(q, ioc))
1951 ioc->nr_batch_requests--;
1953 rq_init(q, rq);
1954 rq->rl = rl;
1955 out:
1956 put_io_context(ioc);
1957 return rq;
1961 * No available requests for this queue, unplug the device and wait for some
1962 * requests to become available.
1964 static struct request *get_request_wait(request_queue_t *q, int rw)
1966 DEFINE_WAIT(wait);
1967 struct request *rq;
1969 generic_unplug_device(q);
1970 do {
1971 struct request_list *rl = &q->rq;
1973 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1974 TASK_UNINTERRUPTIBLE);
1976 rq = get_request(q, rw, GFP_NOIO);
1978 if (!rq) {
1979 struct io_context *ioc;
1981 io_schedule();
1984 * After sleeping, we become a "batching" process and
1985 * will be able to allocate at least one request, and
1986 * up to a big batch of them for a small period time.
1987 * See ioc_batching, ioc_set_batching
1989 ioc = get_io_context(GFP_NOIO);
1990 ioc_set_batching(q, ioc);
1991 put_io_context(ioc);
1993 finish_wait(&rl->wait[rw], &wait);
1994 } while (!rq);
1996 return rq;
1999 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2001 struct request *rq;
2003 BUG_ON(rw != READ && rw != WRITE);
2005 if (gfp_mask & __GFP_WAIT)
2006 rq = get_request_wait(q, rw);
2007 else
2008 rq = get_request(q, rw, gfp_mask);
2010 return rq;
2013 EXPORT_SYMBOL(blk_get_request);
2016 * blk_requeue_request - put a request back on queue
2017 * @q: request queue where request should be inserted
2018 * @rq: request to be inserted
2020 * Description:
2021 * Drivers often keep queueing requests until the hardware cannot accept
2022 * more, when that condition happens we need to put the request back
2023 * on the queue. Must be called with queue lock held.
2025 void blk_requeue_request(request_queue_t *q, struct request *rq)
2027 if (blk_rq_tagged(rq))
2028 blk_queue_end_tag(q, rq);
2030 elv_requeue_request(q, rq);
2033 EXPORT_SYMBOL(blk_requeue_request);
2036 * blk_insert_request - insert a special request in to a request queue
2037 * @q: request queue where request should be inserted
2038 * @rq: request to be inserted
2039 * @at_head: insert request at head or tail of queue
2040 * @data: private data
2041 * @reinsert: true if request it a reinsertion of previously processed one
2043 * Description:
2044 * Many block devices need to execute commands asynchronously, so they don't
2045 * block the whole kernel from preemption during request execution. This is
2046 * accomplished normally by inserting aritficial requests tagged as
2047 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2048 * scheduled for actual execution by the request queue.
2050 * We have the option of inserting the head or the tail of the queue.
2051 * Typically we use the tail for new ioctls and so forth. We use the head
2052 * of the queue for things like a QUEUE_FULL message from a device, or a
2053 * host that is unable to accept a particular command.
2055 void blk_insert_request(request_queue_t *q, struct request *rq,
2056 int at_head, void *data, int reinsert)
2058 unsigned long flags;
2061 * tell I/O scheduler that this isn't a regular read/write (ie it
2062 * must not attempt merges on this) and that it acts as a soft
2063 * barrier
2065 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2067 rq->special = data;
2069 spin_lock_irqsave(q->queue_lock, flags);
2072 * If command is tagged, release the tag
2074 if (reinsert)
2075 blk_requeue_request(q, rq);
2076 else {
2077 int where = ELEVATOR_INSERT_BACK;
2079 if (at_head)
2080 where = ELEVATOR_INSERT_FRONT;
2082 if (blk_rq_tagged(rq))
2083 blk_queue_end_tag(q, rq);
2085 drive_stat_acct(rq, rq->nr_sectors, 1);
2086 __elv_add_request(q, rq, where, 0);
2088 if (blk_queue_plugged(q))
2089 __generic_unplug_device(q);
2090 else
2091 q->request_fn(q);
2092 spin_unlock_irqrestore(q->queue_lock, flags);
2095 EXPORT_SYMBOL(blk_insert_request);
2098 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2099 * @q: request queue where request should be inserted
2100 * @rw: READ or WRITE data
2101 * @ubuf: the user buffer
2102 * @len: length of user data
2104 * Description:
2105 * Data will be mapped directly for zero copy io, if possible. Otherwise
2106 * a kernel bounce buffer is used.
2108 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2109 * still in process context.
2111 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2112 * before being submitted to the device, as pages mapped may be out of
2113 * reach. It's the callers responsibility to make sure this happens. The
2114 * original bio must be passed back in to blk_rq_unmap_user() for proper
2115 * unmapping.
2117 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2118 unsigned int len)
2120 unsigned long uaddr;
2121 struct request *rq;
2122 struct bio *bio;
2124 if (len > (q->max_sectors << 9))
2125 return ERR_PTR(-EINVAL);
2126 if ((!len && ubuf) || (len && !ubuf))
2127 return ERR_PTR(-EINVAL);
2129 rq = blk_get_request(q, rw, __GFP_WAIT);
2130 if (!rq)
2131 return ERR_PTR(-ENOMEM);
2134 * if alignment requirement is satisfied, map in user pages for
2135 * direct dma. else, set up kernel bounce buffers
2137 uaddr = (unsigned long) ubuf;
2138 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2139 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2140 else
2141 bio = bio_copy_user(q, uaddr, len, rw == READ);
2143 if (!IS_ERR(bio)) {
2144 rq->bio = rq->biotail = bio;
2145 blk_rq_bio_prep(q, rq, bio);
2147 rq->buffer = rq->data = NULL;
2148 rq->data_len = len;
2149 return rq;
2153 * bio is the err-ptr
2155 blk_put_request(rq);
2156 return (struct request *) bio;
2159 EXPORT_SYMBOL(blk_rq_map_user);
2162 * blk_rq_unmap_user - unmap a request with user data
2163 * @rq: request to be unmapped
2164 * @bio: bio for the request
2165 * @ulen: length of user buffer
2167 * Description:
2168 * Unmap a request previously mapped by blk_rq_map_user().
2170 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2172 int ret = 0;
2174 if (bio) {
2175 if (bio_flagged(bio, BIO_USER_MAPPED))
2176 bio_unmap_user(bio);
2177 else
2178 ret = bio_uncopy_user(bio);
2181 blk_put_request(rq);
2182 return ret;
2185 EXPORT_SYMBOL(blk_rq_unmap_user);
2188 * blk_execute_rq - insert a request into queue for execution
2189 * @q: queue to insert the request in
2190 * @bd_disk: matching gendisk
2191 * @rq: request to insert
2193 * Description:
2194 * Insert a fully prepared request at the back of the io scheduler queue
2195 * for execution.
2197 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2198 struct request *rq)
2200 DECLARE_COMPLETION(wait);
2201 char sense[SCSI_SENSE_BUFFERSIZE];
2202 int err = 0;
2204 rq->rq_disk = bd_disk;
2207 * we need an extra reference to the request, so we can look at
2208 * it after io completion
2210 rq->ref_count++;
2212 if (!rq->sense) {
2213 memset(sense, 0, sizeof(sense));
2214 rq->sense = sense;
2215 rq->sense_len = 0;
2218 rq->flags |= REQ_NOMERGE;
2219 rq->waiting = &wait;
2220 rq->end_io = blk_end_sync_rq;
2221 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2222 generic_unplug_device(q);
2223 wait_for_completion(&wait);
2224 rq->waiting = NULL;
2226 if (rq->errors)
2227 err = -EIO;
2229 return err;
2232 EXPORT_SYMBOL(blk_execute_rq);
2235 * blkdev_issue_flush - queue a flush
2236 * @bdev: blockdev to issue flush for
2237 * @error_sector: error sector
2239 * Description:
2240 * Issue a flush for the block device in question. Caller can supply
2241 * room for storing the error offset in case of a flush error, if they
2242 * wish to. Caller must run wait_for_completion() on its own.
2244 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2246 request_queue_t *q;
2248 if (bdev->bd_disk == NULL)
2249 return -ENXIO;
2251 q = bdev_get_queue(bdev);
2252 if (!q)
2253 return -ENXIO;
2254 if (!q->issue_flush_fn)
2255 return -EOPNOTSUPP;
2257 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2260 EXPORT_SYMBOL(blkdev_issue_flush);
2263 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2264 * @q: device queue
2265 * @disk: gendisk
2266 * @error_sector: error offset
2268 * Description:
2269 * Devices understanding the SCSI command set, can use this function as
2270 * a helper for issuing a cache flush. Note: driver is required to store
2271 * the error offset (in case of error flushing) in ->sector of struct
2272 * request.
2274 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2275 sector_t *error_sector)
2277 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2278 int ret;
2280 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2281 rq->sector = 0;
2282 memset(rq->cmd, 0, sizeof(rq->cmd));
2283 rq->cmd[0] = 0x35;
2284 rq->cmd_len = 12;
2285 rq->data = NULL;
2286 rq->data_len = 0;
2287 rq->timeout = 60 * HZ;
2289 ret = blk_execute_rq(q, disk, rq);
2291 if (ret && error_sector)
2292 *error_sector = rq->sector;
2294 blk_put_request(rq);
2295 return ret;
2298 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2300 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2302 int rw = rq_data_dir(rq);
2304 if (!blk_fs_request(rq) || !rq->rq_disk)
2305 return;
2307 if (rw == READ) {
2308 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2309 if (!new_io)
2310 __disk_stat_inc(rq->rq_disk, read_merges);
2311 } else if (rw == WRITE) {
2312 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2313 if (!new_io)
2314 __disk_stat_inc(rq->rq_disk, write_merges);
2316 if (new_io) {
2317 disk_round_stats(rq->rq_disk);
2318 rq->rq_disk->in_flight++;
2323 * add-request adds a request to the linked list.
2324 * queue lock is held and interrupts disabled, as we muck with the
2325 * request queue list.
2327 static inline void add_request(request_queue_t * q, struct request * req)
2329 drive_stat_acct(req, req->nr_sectors, 1);
2331 if (q->activity_fn)
2332 q->activity_fn(q->activity_data, rq_data_dir(req));
2335 * elevator indicated where it wants this request to be
2336 * inserted at elevator_merge time
2338 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2342 * disk_round_stats() - Round off the performance stats on a struct
2343 * disk_stats.
2345 * The average IO queue length and utilisation statistics are maintained
2346 * by observing the current state of the queue length and the amount of
2347 * time it has been in this state for.
2349 * Normally, that accounting is done on IO completion, but that can result
2350 * in more than a second's worth of IO being accounted for within any one
2351 * second, leading to >100% utilisation. To deal with that, we call this
2352 * function to do a round-off before returning the results when reading
2353 * /proc/diskstats. This accounts immediately for all queue usage up to
2354 * the current jiffies and restarts the counters again.
2356 void disk_round_stats(struct gendisk *disk)
2358 unsigned long now = jiffies;
2360 __disk_stat_add(disk, time_in_queue,
2361 disk->in_flight * (now - disk->stamp));
2362 disk->stamp = now;
2364 if (disk->in_flight)
2365 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2366 disk->stamp_idle = now;
2370 * queue lock must be held
2372 static void __blk_put_request(request_queue_t *q, struct request *req)
2374 struct request_list *rl = req->rl;
2376 if (unlikely(!q))
2377 return;
2378 if (unlikely(--req->ref_count))
2379 return;
2381 req->rq_status = RQ_INACTIVE;
2382 req->q = NULL;
2383 req->rl = NULL;
2386 * Request may not have originated from ll_rw_blk. if not,
2387 * it didn't come out of our reserved rq pools
2389 if (rl) {
2390 int rw = rq_data_dir(req);
2392 elv_completed_request(q, req);
2394 BUG_ON(!list_empty(&req->queuelist));
2396 blk_free_request(q, req);
2397 freed_request(q, rw);
2401 void blk_put_request(struct request *req)
2404 * if req->rl isn't set, this request didnt originate from the
2405 * block layer, so it's safe to just disregard it
2407 if (req->rl) {
2408 unsigned long flags;
2409 request_queue_t *q = req->q;
2411 spin_lock_irqsave(q->queue_lock, flags);
2412 __blk_put_request(q, req);
2413 spin_unlock_irqrestore(q->queue_lock, flags);
2417 EXPORT_SYMBOL(blk_put_request);
2420 * blk_end_sync_rq - executes a completion event on a request
2421 * @rq: request to complete
2423 void blk_end_sync_rq(struct request *rq)
2425 struct completion *waiting = rq->waiting;
2427 rq->waiting = NULL;
2428 __blk_put_request(rq->q, rq);
2431 * complete last, if this is a stack request the process (and thus
2432 * the rq pointer) could be invalid right after this complete()
2434 complete(waiting);
2436 EXPORT_SYMBOL(blk_end_sync_rq);
2439 * blk_congestion_wait - wait for a queue to become uncongested
2440 * @rw: READ or WRITE
2441 * @timeout: timeout in jiffies
2443 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2444 * If no queues are congested then just wait for the next request to be
2445 * returned.
2447 long blk_congestion_wait(int rw, long timeout)
2449 long ret;
2450 DEFINE_WAIT(wait);
2451 wait_queue_head_t *wqh = &congestion_wqh[rw];
2453 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2454 ret = io_schedule_timeout(timeout);
2455 finish_wait(wqh, &wait);
2456 return ret;
2459 EXPORT_SYMBOL(blk_congestion_wait);
2462 * Has to be called with the request spinlock acquired
2464 static int attempt_merge(request_queue_t *q, struct request *req,
2465 struct request *next)
2467 if (!rq_mergeable(req) || !rq_mergeable(next))
2468 return 0;
2471 * not contigious
2473 if (req->sector + req->nr_sectors != next->sector)
2474 return 0;
2476 if (rq_data_dir(req) != rq_data_dir(next)
2477 || req->rq_disk != next->rq_disk
2478 || next->waiting || next->special)
2479 return 0;
2482 * If we are allowed to merge, then append bio list
2483 * from next to rq and release next. merge_requests_fn
2484 * will have updated segment counts, update sector
2485 * counts here.
2487 if (!q->merge_requests_fn(q, req, next))
2488 return 0;
2491 * At this point we have either done a back merge
2492 * or front merge. We need the smaller start_time of
2493 * the merged requests to be the current request
2494 * for accounting purposes.
2496 if (time_after(req->start_time, next->start_time))
2497 req->start_time = next->start_time;
2499 req->biotail->bi_next = next->bio;
2500 req->biotail = next->biotail;
2502 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2504 elv_merge_requests(q, req, next);
2506 if (req->rq_disk) {
2507 disk_round_stats(req->rq_disk);
2508 req->rq_disk->in_flight--;
2511 __blk_put_request(q, next);
2512 return 1;
2515 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2517 struct request *next = elv_latter_request(q, rq);
2519 if (next)
2520 return attempt_merge(q, rq, next);
2522 return 0;
2525 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2527 struct request *prev = elv_former_request(q, rq);
2529 if (prev)
2530 return attempt_merge(q, prev, rq);
2532 return 0;
2536 * blk_attempt_remerge - attempt to remerge active head with next request
2537 * @q: The &request_queue_t belonging to the device
2538 * @rq: The head request (usually)
2540 * Description:
2541 * For head-active devices, the queue can easily be unplugged so quickly
2542 * that proper merging is not done on the front request. This may hurt
2543 * performance greatly for some devices. The block layer cannot safely
2544 * do merging on that first request for these queues, but the driver can
2545 * call this function and make it happen any way. Only the driver knows
2546 * when it is safe to do so.
2548 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2550 unsigned long flags;
2552 spin_lock_irqsave(q->queue_lock, flags);
2553 attempt_back_merge(q, rq);
2554 spin_unlock_irqrestore(q->queue_lock, flags);
2557 EXPORT_SYMBOL(blk_attempt_remerge);
2560 * Non-locking blk_attempt_remerge variant.
2562 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2564 attempt_back_merge(q, rq);
2567 EXPORT_SYMBOL(__blk_attempt_remerge);
2569 static int __make_request(request_queue_t *q, struct bio *bio)
2571 struct request *req, *freereq = NULL;
2572 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2573 sector_t sector;
2575 sector = bio->bi_sector;
2576 nr_sectors = bio_sectors(bio);
2577 cur_nr_sectors = bio_cur_sectors(bio);
2579 rw = bio_data_dir(bio);
2580 sync = bio_sync(bio);
2583 * low level driver can indicate that it wants pages above a
2584 * certain limit bounced to low memory (ie for highmem, or even
2585 * ISA dma in theory)
2587 blk_queue_bounce(q, &bio);
2589 spin_lock_prefetch(q->queue_lock);
2591 barrier = bio_barrier(bio);
2592 if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2593 err = -EOPNOTSUPP;
2594 goto end_io;
2597 again:
2598 spin_lock_irq(q->queue_lock);
2600 if (elv_queue_empty(q)) {
2601 blk_plug_device(q);
2602 goto get_rq;
2604 if (barrier)
2605 goto get_rq;
2607 el_ret = elv_merge(q, &req, bio);
2608 switch (el_ret) {
2609 case ELEVATOR_BACK_MERGE:
2610 BUG_ON(!rq_mergeable(req));
2612 if (!q->back_merge_fn(q, req, bio))
2613 break;
2615 req->biotail->bi_next = bio;
2616 req->biotail = bio;
2617 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2618 drive_stat_acct(req, nr_sectors, 0);
2619 if (!attempt_back_merge(q, req))
2620 elv_merged_request(q, req);
2621 goto out;
2623 case ELEVATOR_FRONT_MERGE:
2624 BUG_ON(!rq_mergeable(req));
2626 if (!q->front_merge_fn(q, req, bio))
2627 break;
2629 bio->bi_next = req->bio;
2630 req->bio = bio;
2633 * may not be valid. if the low level driver said
2634 * it didn't need a bounce buffer then it better
2635 * not touch req->buffer either...
2637 req->buffer = bio_data(bio);
2638 req->current_nr_sectors = cur_nr_sectors;
2639 req->hard_cur_sectors = cur_nr_sectors;
2640 req->sector = req->hard_sector = sector;
2641 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2642 drive_stat_acct(req, nr_sectors, 0);
2643 if (!attempt_front_merge(q, req))
2644 elv_merged_request(q, req);
2645 goto out;
2648 * elevator says don't/can't merge. get new request
2650 case ELEVATOR_NO_MERGE:
2651 break;
2653 default:
2654 printk("elevator returned crap (%d)\n", el_ret);
2655 BUG();
2659 * Grab a free request from the freelist - if that is empty, check
2660 * if we are doing read ahead and abort instead of blocking for
2661 * a free slot.
2663 get_rq:
2664 if (freereq) {
2665 req = freereq;
2666 freereq = NULL;
2667 } else {
2668 spin_unlock_irq(q->queue_lock);
2669 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2671 * READA bit set
2673 err = -EWOULDBLOCK;
2674 if (bio_rw_ahead(bio))
2675 goto end_io;
2677 freereq = get_request_wait(q, rw);
2679 goto again;
2682 req->flags |= REQ_CMD;
2685 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2687 if (bio_rw_ahead(bio) || bio_failfast(bio))
2688 req->flags |= REQ_FAILFAST;
2691 * REQ_BARRIER implies no merging, but lets make it explicit
2693 if (barrier)
2694 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2696 req->errors = 0;
2697 req->hard_sector = req->sector = sector;
2698 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2699 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2700 req->nr_phys_segments = bio_phys_segments(q, bio);
2701 req->nr_hw_segments = bio_hw_segments(q, bio);
2702 req->buffer = bio_data(bio); /* see ->buffer comment above */
2703 req->waiting = NULL;
2704 req->bio = req->biotail = bio;
2705 req->rq_disk = bio->bi_bdev->bd_disk;
2706 req->start_time = jiffies;
2708 add_request(q, req);
2709 out:
2710 if (freereq)
2711 __blk_put_request(q, freereq);
2712 if (sync)
2713 __generic_unplug_device(q);
2715 spin_unlock_irq(q->queue_lock);
2716 return 0;
2718 end_io:
2719 bio_endio(bio, nr_sectors << 9, err);
2720 return 0;
2724 * If bio->bi_dev is a partition, remap the location
2726 static inline void blk_partition_remap(struct bio *bio)
2728 struct block_device *bdev = bio->bi_bdev;
2730 if (bdev != bdev->bd_contains) {
2731 struct hd_struct *p = bdev->bd_part;
2733 switch (bio->bi_rw) {
2734 case READ:
2735 p->read_sectors += bio_sectors(bio);
2736 p->reads++;
2737 break;
2738 case WRITE:
2739 p->write_sectors += bio_sectors(bio);
2740 p->writes++;
2741 break;
2743 bio->bi_sector += p->start_sect;
2744 bio->bi_bdev = bdev->bd_contains;
2748 void blk_finish_queue_drain(request_queue_t *q)
2750 struct request_list *rl = &q->rq;
2751 struct request *rq;
2753 spin_lock_irq(q->queue_lock);
2754 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2756 while (!list_empty(&q->drain_list)) {
2757 rq = list_entry_rq(q->drain_list.next);
2759 list_del_init(&rq->queuelist);
2760 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2763 spin_unlock_irq(q->queue_lock);
2765 wake_up(&rl->wait[0]);
2766 wake_up(&rl->wait[1]);
2767 wake_up(&rl->drain);
2770 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2772 int wait = rl->count[READ] + rl->count[WRITE];
2774 if (dispatch)
2775 wait += !list_empty(&q->queue_head);
2777 return wait;
2781 * We rely on the fact that only requests allocated through blk_alloc_request()
2782 * have io scheduler private data structures associated with them. Any other
2783 * type of request (allocated on stack or through kmalloc()) should not go
2784 * to the io scheduler core, but be attached to the queue head instead.
2786 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2788 struct request_list *rl = &q->rq;
2789 DEFINE_WAIT(wait);
2791 spin_lock_irq(q->queue_lock);
2792 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2794 while (wait_drain(q, rl, wait_dispatch)) {
2795 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2797 if (wait_drain(q, rl, wait_dispatch)) {
2798 __generic_unplug_device(q);
2799 spin_unlock_irq(q->queue_lock);
2800 io_schedule();
2801 spin_lock_irq(q->queue_lock);
2804 finish_wait(&rl->drain, &wait);
2807 spin_unlock_irq(q->queue_lock);
2811 * block waiting for the io scheduler being started again.
2813 static inline void block_wait_queue_running(request_queue_t *q)
2815 DEFINE_WAIT(wait);
2817 while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2818 struct request_list *rl = &q->rq;
2820 prepare_to_wait_exclusive(&rl->drain, &wait,
2821 TASK_UNINTERRUPTIBLE);
2824 * re-check the condition. avoids using prepare_to_wait()
2825 * in the fast path (queue is running)
2827 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2828 io_schedule();
2830 finish_wait(&rl->drain, &wait);
2834 static void handle_bad_sector(struct bio *bio)
2836 char b[BDEVNAME_SIZE];
2838 printk(KERN_INFO "attempt to access beyond end of device\n");
2839 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2840 bdevname(bio->bi_bdev, b),
2841 bio->bi_rw,
2842 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2843 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2845 set_bit(BIO_EOF, &bio->bi_flags);
2849 * generic_make_request: hand a buffer to its device driver for I/O
2850 * @bio: The bio describing the location in memory and on the device.
2852 * generic_make_request() is used to make I/O requests of block
2853 * devices. It is passed a &struct bio, which describes the I/O that needs
2854 * to be done.
2856 * generic_make_request() does not return any status. The
2857 * success/failure status of the request, along with notification of
2858 * completion, is delivered asynchronously through the bio->bi_end_io
2859 * function described (one day) else where.
2861 * The caller of generic_make_request must make sure that bi_io_vec
2862 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2863 * set to describe the device address, and the
2864 * bi_end_io and optionally bi_private are set to describe how
2865 * completion notification should be signaled.
2867 * generic_make_request and the drivers it calls may use bi_next if this
2868 * bio happens to be merged with someone else, and may change bi_dev and
2869 * bi_sector for remaps as it sees fit. So the values of these fields
2870 * should NOT be depended on after the call to generic_make_request.
2872 void generic_make_request(struct bio *bio)
2874 request_queue_t *q;
2875 sector_t maxsector;
2876 int ret, nr_sectors = bio_sectors(bio);
2878 might_sleep();
2879 /* Test device or partition size, when known. */
2880 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2881 if (maxsector) {
2882 sector_t sector = bio->bi_sector;
2884 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2886 * This may well happen - the kernel calls bread()
2887 * without checking the size of the device, e.g., when
2888 * mounting a device.
2890 handle_bad_sector(bio);
2891 goto end_io;
2896 * Resolve the mapping until finished. (drivers are
2897 * still free to implement/resolve their own stacking
2898 * by explicitly returning 0)
2900 * NOTE: we don't repeat the blk_size check for each new device.
2901 * Stacking drivers are expected to know what they are doing.
2903 do {
2904 char b[BDEVNAME_SIZE];
2906 q = bdev_get_queue(bio->bi_bdev);
2907 if (!q) {
2908 printk(KERN_ERR
2909 "generic_make_request: Trying to access "
2910 "nonexistent block-device %s (%Lu)\n",
2911 bdevname(bio->bi_bdev, b),
2912 (long long) bio->bi_sector);
2913 end_io:
2914 bio_endio(bio, bio->bi_size, -EIO);
2915 break;
2918 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2919 printk("bio too big device %s (%u > %u)\n",
2920 bdevname(bio->bi_bdev, b),
2921 bio_sectors(bio),
2922 q->max_hw_sectors);
2923 goto end_io;
2926 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2927 goto end_io;
2929 block_wait_queue_running(q);
2932 * If this device has partitions, remap block n
2933 * of partition p to block n+start(p) of the disk.
2935 blk_partition_remap(bio);
2937 ret = q->make_request_fn(q, bio);
2938 } while (ret);
2941 EXPORT_SYMBOL(generic_make_request);
2944 * submit_bio: submit a bio to the block device layer for I/O
2945 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2946 * @bio: The &struct bio which describes the I/O
2948 * submit_bio() is very similar in purpose to generic_make_request(), and
2949 * uses that function to do most of the work. Both are fairly rough
2950 * interfaces, @bio must be presetup and ready for I/O.
2953 void submit_bio(int rw, struct bio *bio)
2955 int count = bio_sectors(bio);
2957 BIO_BUG_ON(!bio->bi_size);
2958 BIO_BUG_ON(!bio->bi_io_vec);
2959 bio->bi_rw = rw;
2960 if (rw & WRITE)
2961 mod_page_state(pgpgout, count);
2962 else
2963 mod_page_state(pgpgin, count);
2965 if (unlikely(block_dump)) {
2966 char b[BDEVNAME_SIZE];
2967 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2968 current->comm, current->pid,
2969 (rw & WRITE) ? "WRITE" : "READ",
2970 (unsigned long long)bio->bi_sector,
2971 bdevname(bio->bi_bdev,b));
2974 generic_make_request(bio);
2977 EXPORT_SYMBOL(submit_bio);
2979 void blk_recalc_rq_segments(struct request *rq)
2981 struct bio *bio, *prevbio = NULL;
2982 int nr_phys_segs, nr_hw_segs;
2983 unsigned int phys_size, hw_size;
2984 request_queue_t *q = rq->q;
2986 if (!rq->bio)
2987 return;
2989 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2990 rq_for_each_bio(bio, rq) {
2991 /* Force bio hw/phys segs to be recalculated. */
2992 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2994 nr_phys_segs += bio_phys_segments(q, bio);
2995 nr_hw_segs += bio_hw_segments(q, bio);
2996 if (prevbio) {
2997 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2998 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3000 if (blk_phys_contig_segment(q, prevbio, bio) &&
3001 pseg <= q->max_segment_size) {
3002 nr_phys_segs--;
3003 phys_size += prevbio->bi_size + bio->bi_size;
3004 } else
3005 phys_size = 0;
3007 if (blk_hw_contig_segment(q, prevbio, bio) &&
3008 hseg <= q->max_segment_size) {
3009 nr_hw_segs--;
3010 hw_size += prevbio->bi_size + bio->bi_size;
3011 } else
3012 hw_size = 0;
3014 prevbio = bio;
3017 rq->nr_phys_segments = nr_phys_segs;
3018 rq->nr_hw_segments = nr_hw_segs;
3021 void blk_recalc_rq_sectors(struct request *rq, int nsect)
3023 if (blk_fs_request(rq)) {
3024 rq->hard_sector += nsect;
3025 rq->hard_nr_sectors -= nsect;
3028 * Move the I/O submission pointers ahead if required.
3030 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3031 (rq->sector <= rq->hard_sector)) {
3032 rq->sector = rq->hard_sector;
3033 rq->nr_sectors = rq->hard_nr_sectors;
3034 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3035 rq->current_nr_sectors = rq->hard_cur_sectors;
3036 rq->buffer = bio_data(rq->bio);
3040 * if total number of sectors is less than the first segment
3041 * size, something has gone terribly wrong
3043 if (rq->nr_sectors < rq->current_nr_sectors) {
3044 printk("blk: request botched\n");
3045 rq->nr_sectors = rq->current_nr_sectors;
3050 static int __end_that_request_first(struct request *req, int uptodate,
3051 int nr_bytes)
3053 int total_bytes, bio_nbytes, error, next_idx = 0;
3054 struct bio *bio;
3057 * extend uptodate bool to allow < 0 value to be direct io error
3059 error = 0;
3060 if (end_io_error(uptodate))
3061 error = !uptodate ? -EIO : uptodate;
3064 * for a REQ_BLOCK_PC request, we want to carry any eventual
3065 * sense key with us all the way through
3067 if (!blk_pc_request(req))
3068 req->errors = 0;
3070 if (!uptodate) {
3071 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3072 printk("end_request: I/O error, dev %s, sector %llu\n",
3073 req->rq_disk ? req->rq_disk->disk_name : "?",
3074 (unsigned long long)req->sector);
3077 total_bytes = bio_nbytes = 0;
3078 while ((bio = req->bio) != NULL) {
3079 int nbytes;
3081 if (nr_bytes >= bio->bi_size) {
3082 req->bio = bio->bi_next;
3083 nbytes = bio->bi_size;
3084 bio_endio(bio, nbytes, error);
3085 next_idx = 0;
3086 bio_nbytes = 0;
3087 } else {
3088 int idx = bio->bi_idx + next_idx;
3090 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3091 blk_dump_rq_flags(req, "__end_that");
3092 printk("%s: bio idx %d >= vcnt %d\n",
3093 __FUNCTION__,
3094 bio->bi_idx, bio->bi_vcnt);
3095 break;
3098 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3099 BIO_BUG_ON(nbytes > bio->bi_size);
3102 * not a complete bvec done
3104 if (unlikely(nbytes > nr_bytes)) {
3105 bio_nbytes += nr_bytes;
3106 total_bytes += nr_bytes;
3107 break;
3111 * advance to the next vector
3113 next_idx++;
3114 bio_nbytes += nbytes;
3117 total_bytes += nbytes;
3118 nr_bytes -= nbytes;
3120 if ((bio = req->bio)) {
3122 * end more in this run, or just return 'not-done'
3124 if (unlikely(nr_bytes <= 0))
3125 break;
3130 * completely done
3132 if (!req->bio)
3133 return 0;
3136 * if the request wasn't completed, update state
3138 if (bio_nbytes) {
3139 bio_endio(bio, bio_nbytes, error);
3140 bio->bi_idx += next_idx;
3141 bio_iovec(bio)->bv_offset += nr_bytes;
3142 bio_iovec(bio)->bv_len -= nr_bytes;
3145 blk_recalc_rq_sectors(req, total_bytes >> 9);
3146 blk_recalc_rq_segments(req);
3147 return 1;
3151 * end_that_request_first - end I/O on a request
3152 * @req: the request being processed
3153 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3154 * @nr_sectors: number of sectors to end I/O on
3156 * Description:
3157 * Ends I/O on a number of sectors attached to @req, and sets it up
3158 * for the next range of segments (if any) in the cluster.
3160 * Return:
3161 * 0 - we are done with this request, call end_that_request_last()
3162 * 1 - still buffers pending for this request
3164 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3166 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3169 EXPORT_SYMBOL(end_that_request_first);
3172 * end_that_request_chunk - end I/O on a request
3173 * @req: the request being processed
3174 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3175 * @nr_bytes: number of bytes to complete
3177 * Description:
3178 * Ends I/O on a number of bytes attached to @req, and sets it up
3179 * for the next range of segments (if any). Like end_that_request_first(),
3180 * but deals with bytes instead of sectors.
3182 * Return:
3183 * 0 - we are done with this request, call end_that_request_last()
3184 * 1 - still buffers pending for this request
3186 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3188 return __end_that_request_first(req, uptodate, nr_bytes);
3191 EXPORT_SYMBOL(end_that_request_chunk);
3194 * queue lock must be held
3196 void end_that_request_last(struct request *req)
3198 struct gendisk *disk = req->rq_disk;
3200 if (unlikely(laptop_mode) && blk_fs_request(req))
3201 laptop_io_completion();
3203 if (disk && blk_fs_request(req)) {
3204 unsigned long duration = jiffies - req->start_time;
3205 switch (rq_data_dir(req)) {
3206 case WRITE:
3207 __disk_stat_inc(disk, writes);
3208 __disk_stat_add(disk, write_ticks, duration);
3209 break;
3210 case READ:
3211 __disk_stat_inc(disk, reads);
3212 __disk_stat_add(disk, read_ticks, duration);
3213 break;
3215 disk_round_stats(disk);
3216 disk->in_flight--;
3218 if (req->end_io)
3219 req->end_io(req);
3220 else
3221 __blk_put_request(req->q, req);
3224 EXPORT_SYMBOL(end_that_request_last);
3226 void end_request(struct request *req, int uptodate)
3228 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3229 add_disk_randomness(req->rq_disk);
3230 blkdev_dequeue_request(req);
3231 end_that_request_last(req);
3235 EXPORT_SYMBOL(end_request);
3237 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3239 /* first three bits are identical in rq->flags and bio->bi_rw */
3240 rq->flags |= (bio->bi_rw & 7);
3242 rq->nr_phys_segments = bio_phys_segments(q, bio);
3243 rq->nr_hw_segments = bio_hw_segments(q, bio);
3244 rq->current_nr_sectors = bio_cur_sectors(bio);
3245 rq->hard_cur_sectors = rq->current_nr_sectors;
3246 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3247 rq->buffer = bio_data(bio);
3249 rq->bio = rq->biotail = bio;
3252 EXPORT_SYMBOL(blk_rq_bio_prep);
3254 int kblockd_schedule_work(struct work_struct *work)
3256 return queue_work(kblockd_workqueue, work);
3259 EXPORT_SYMBOL(kblockd_schedule_work);
3261 void kblockd_flush(void)
3263 flush_workqueue(kblockd_workqueue);
3265 EXPORT_SYMBOL(kblockd_flush);
3267 int __init blk_dev_init(void)
3269 kblockd_workqueue = create_workqueue("kblockd");
3270 if (!kblockd_workqueue)
3271 panic("Failed to create kblockd\n");
3273 request_cachep = kmem_cache_create("blkdev_requests",
3274 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3276 requestq_cachep = kmem_cache_create("blkdev_queue",
3277 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3279 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3280 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3282 blk_max_low_pfn = max_low_pfn;
3283 blk_max_pfn = max_pfn;
3285 return 0;
3289 * IO Context helper functions
3291 void put_io_context(struct io_context *ioc)
3293 if (ioc == NULL)
3294 return;
3296 BUG_ON(atomic_read(&ioc->refcount) == 0);
3298 if (atomic_dec_and_test(&ioc->refcount)) {
3299 if (ioc->aic && ioc->aic->dtor)
3300 ioc->aic->dtor(ioc->aic);
3301 if (ioc->cic && ioc->cic->dtor)
3302 ioc->cic->dtor(ioc->cic);
3304 kmem_cache_free(iocontext_cachep, ioc);
3307 EXPORT_SYMBOL(put_io_context);
3309 /* Called by the exitting task */
3310 void exit_io_context(void)
3312 unsigned long flags;
3313 struct io_context *ioc;
3315 local_irq_save(flags);
3316 ioc = current->io_context;
3317 current->io_context = NULL;
3318 local_irq_restore(flags);
3320 if (ioc->aic && ioc->aic->exit)
3321 ioc->aic->exit(ioc->aic);
3322 if (ioc->cic && ioc->cic->exit)
3323 ioc->cic->exit(ioc->cic);
3325 put_io_context(ioc);
3329 * If the current task has no IO context then create one and initialise it.
3330 * If it does have a context, take a ref on it.
3332 * This is always called in the context of the task which submitted the I/O.
3333 * But weird things happen, so we disable local interrupts to ensure exclusive
3334 * access to *current.
3336 struct io_context *get_io_context(int gfp_flags)
3338 struct task_struct *tsk = current;
3339 unsigned long flags;
3340 struct io_context *ret;
3342 local_irq_save(flags);
3343 ret = tsk->io_context;
3344 if (ret)
3345 goto out;
3347 local_irq_restore(flags);
3349 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3350 if (ret) {
3351 atomic_set(&ret->refcount, 1);
3352 ret->pid = tsk->pid;
3353 ret->last_waited = jiffies; /* doesn't matter... */
3354 ret->nr_batch_requests = 0; /* because this is 0 */
3355 ret->aic = NULL;
3356 ret->cic = NULL;
3357 spin_lock_init(&ret->lock);
3359 local_irq_save(flags);
3362 * very unlikely, someone raced with us in setting up the task
3363 * io context. free new context and just grab a reference.
3365 if (!tsk->io_context)
3366 tsk->io_context = ret;
3367 else {
3368 kmem_cache_free(iocontext_cachep, ret);
3369 ret = tsk->io_context;
3372 out:
3373 atomic_inc(&ret->refcount);
3374 local_irq_restore(flags);
3377 return ret;
3379 EXPORT_SYMBOL(get_io_context);
3381 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3383 struct io_context *src = *psrc;
3384 struct io_context *dst = *pdst;
3386 if (src) {
3387 BUG_ON(atomic_read(&src->refcount) == 0);
3388 atomic_inc(&src->refcount);
3389 put_io_context(dst);
3390 *pdst = src;
3393 EXPORT_SYMBOL(copy_io_context);
3395 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3397 struct io_context *temp;
3398 temp = *ioc1;
3399 *ioc1 = *ioc2;
3400 *ioc2 = temp;
3402 EXPORT_SYMBOL(swap_io_context);
3405 * sysfs parts below
3407 struct queue_sysfs_entry {
3408 struct attribute attr;
3409 ssize_t (*show)(struct request_queue *, char *);
3410 ssize_t (*store)(struct request_queue *, const char *, size_t);
3413 static ssize_t
3414 queue_var_show(unsigned int var, char *page)
3416 return sprintf(page, "%d\n", var);
3419 static ssize_t
3420 queue_var_store(unsigned long *var, const char *page, size_t count)
3422 char *p = (char *) page;
3424 *var = simple_strtoul(p, &p, 10);
3425 return count;
3428 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3430 return queue_var_show(q->nr_requests, (page));
3433 static ssize_t
3434 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3436 struct request_list *rl = &q->rq;
3438 int ret = queue_var_store(&q->nr_requests, page, count);
3439 if (q->nr_requests < BLKDEV_MIN_RQ)
3440 q->nr_requests = BLKDEV_MIN_RQ;
3441 blk_queue_congestion_threshold(q);
3443 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3444 set_queue_congested(q, READ);
3445 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3446 clear_queue_congested(q, READ);
3448 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3449 set_queue_congested(q, WRITE);
3450 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3451 clear_queue_congested(q, WRITE);
3453 if (rl->count[READ] >= q->nr_requests) {
3454 blk_set_queue_full(q, READ);
3455 } else if (rl->count[READ]+1 <= q->nr_requests) {
3456 blk_clear_queue_full(q, READ);
3457 wake_up(&rl->wait[READ]);
3460 if (rl->count[WRITE] >= q->nr_requests) {
3461 blk_set_queue_full(q, WRITE);
3462 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3463 blk_clear_queue_full(q, WRITE);
3464 wake_up(&rl->wait[WRITE]);
3466 return ret;
3469 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3471 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3473 return queue_var_show(ra_kb, (page));
3476 static ssize_t
3477 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3479 unsigned long ra_kb;
3480 ssize_t ret = queue_var_store(&ra_kb, page, count);
3482 spin_lock_irq(q->queue_lock);
3483 if (ra_kb > (q->max_sectors >> 1))
3484 ra_kb = (q->max_sectors >> 1);
3486 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3487 spin_unlock_irq(q->queue_lock);
3489 return ret;
3492 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3494 int max_sectors_kb = q->max_sectors >> 1;
3496 return queue_var_show(max_sectors_kb, (page));
3499 static ssize_t
3500 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3502 unsigned long max_sectors_kb,
3503 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3504 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3505 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3506 int ra_kb;
3508 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3509 return -EINVAL;
3511 * Take the queue lock to update the readahead and max_sectors
3512 * values synchronously:
3514 spin_lock_irq(q->queue_lock);
3516 * Trim readahead window as well, if necessary:
3518 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3519 if (ra_kb > max_sectors_kb)
3520 q->backing_dev_info.ra_pages =
3521 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3523 q->max_sectors = max_sectors_kb << 1;
3524 spin_unlock_irq(q->queue_lock);
3526 return ret;
3529 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3531 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3533 return queue_var_show(max_hw_sectors_kb, (page));
3537 static struct queue_sysfs_entry queue_requests_entry = {
3538 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3539 .show = queue_requests_show,
3540 .store = queue_requests_store,
3543 static struct queue_sysfs_entry queue_ra_entry = {
3544 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3545 .show = queue_ra_show,
3546 .store = queue_ra_store,
3549 static struct queue_sysfs_entry queue_max_sectors_entry = {
3550 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3551 .show = queue_max_sectors_show,
3552 .store = queue_max_sectors_store,
3555 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3556 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3557 .show = queue_max_hw_sectors_show,
3560 static struct queue_sysfs_entry queue_iosched_entry = {
3561 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3562 .show = elv_iosched_show,
3563 .store = elv_iosched_store,
3566 static struct attribute *default_attrs[] = {
3567 &queue_requests_entry.attr,
3568 &queue_ra_entry.attr,
3569 &queue_max_hw_sectors_entry.attr,
3570 &queue_max_sectors_entry.attr,
3571 &queue_iosched_entry.attr,
3572 NULL,
3575 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3577 static ssize_t
3578 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3580 struct queue_sysfs_entry *entry = to_queue(attr);
3581 struct request_queue *q;
3583 q = container_of(kobj, struct request_queue, kobj);
3584 if (!entry->show)
3585 return 0;
3587 return entry->show(q, page);
3590 static ssize_t
3591 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3592 const char *page, size_t length)
3594 struct queue_sysfs_entry *entry = to_queue(attr);
3595 struct request_queue *q;
3597 q = container_of(kobj, struct request_queue, kobj);
3598 if (!entry->store)
3599 return -EINVAL;
3601 return entry->store(q, page, length);
3604 static struct sysfs_ops queue_sysfs_ops = {
3605 .show = queue_attr_show,
3606 .store = queue_attr_store,
3609 struct kobj_type queue_ktype = {
3610 .sysfs_ops = &queue_sysfs_ops,
3611 .default_attrs = default_attrs,
3614 int blk_register_queue(struct gendisk *disk)
3616 int ret;
3618 request_queue_t *q = disk->queue;
3620 if (!q || !q->request_fn)
3621 return -ENXIO;
3623 q->kobj.parent = kobject_get(&disk->kobj);
3624 if (!q->kobj.parent)
3625 return -EBUSY;
3627 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3628 q->kobj.ktype = &queue_ktype;
3630 ret = kobject_register(&q->kobj);
3631 if (ret < 0)
3632 return ret;
3634 ret = elv_register_queue(q);
3635 if (ret) {
3636 kobject_unregister(&q->kobj);
3637 return ret;
3640 return 0;
3643 void blk_unregister_queue(struct gendisk *disk)
3645 request_queue_t *q = disk->queue;
3647 if (q && q->request_fn) {
3648 elv_unregister_queue(q);
3650 kobject_unregister(&q->kobj);
3651 kobject_put(&disk->kobj);