[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / md / md.c
blobd899204d3743372b68ae04f92f6cefd350db99e5
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 This program is free software; you can redistribute it and/or modify
23 it under the terms of the GNU General Public License as published by
24 the Free Software Foundation; either version 2, or (at your option)
25 any later version.
27 You should have received a copy of the GNU General Public License
28 (for example /usr/src/linux/COPYING); if not, write to the Free
29 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 #include <linux/module.h>
33 #include <linux/config.h>
34 #include <linux/linkage.h>
35 #include <linux/raid/md.h>
36 #include <linux/sysctl.h>
37 #include <linux/devfs_fs_kernel.h>
38 #include <linux/buffer_head.h> /* for invalidate_bdev */
39 #include <linux/suspend.h>
41 #include <linux/init.h>
43 #ifdef CONFIG_KMOD
44 #include <linux/kmod.h>
45 #endif
47 #include <asm/unaligned.h>
49 #define MAJOR_NR MD_MAJOR
50 #define MD_DRIVER
52 /* 63 partitions with the alternate major number (mdp) */
53 #define MdpMinorShift 6
55 #define DEBUG 0
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 #ifndef MODULE
60 static void autostart_arrays (int part);
61 #endif
63 static mdk_personality_t *pers[MAX_PERSONALITY];
64 static DEFINE_SPINLOCK(pers_lock);
67 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
68 * is 1000 KB/sec, so the extra system load does not show up that much.
69 * Increase it if you want to have more _guaranteed_ speed. Note that
70 * the RAID driver will use the maximum available bandwith if the IO
71 * subsystem is idle. There is also an 'absolute maximum' reconstruction
72 * speed limit - in case reconstruction slows down your system despite
73 * idle IO detection.
75 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
78 static int sysctl_speed_limit_min = 1000;
79 static int sysctl_speed_limit_max = 200000;
81 static struct ctl_table_header *raid_table_header;
83 static ctl_table raid_table[] = {
85 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
86 .procname = "speed_limit_min",
87 .data = &sysctl_speed_limit_min,
88 .maxlen = sizeof(int),
89 .mode = 0644,
90 .proc_handler = &proc_dointvec,
93 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
94 .procname = "speed_limit_max",
95 .data = &sysctl_speed_limit_max,
96 .maxlen = sizeof(int),
97 .mode = 0644,
98 .proc_handler = &proc_dointvec,
100 { .ctl_name = 0 }
103 static ctl_table raid_dir_table[] = {
105 .ctl_name = DEV_RAID,
106 .procname = "raid",
107 .maxlen = 0,
108 .mode = 0555,
109 .child = raid_table,
111 { .ctl_name = 0 }
114 static ctl_table raid_root_table[] = {
116 .ctl_name = CTL_DEV,
117 .procname = "dev",
118 .maxlen = 0,
119 .mode = 0555,
120 .child = raid_dir_table,
122 { .ctl_name = 0 }
125 static struct block_device_operations md_fops;
128 * Enables to iterate over all existing md arrays
129 * all_mddevs_lock protects this list.
131 static LIST_HEAD(all_mddevs);
132 static DEFINE_SPINLOCK(all_mddevs_lock);
136 * iterates through all used mddevs in the system.
137 * We take care to grab the all_mddevs_lock whenever navigating
138 * the list, and to always hold a refcount when unlocked.
139 * Any code which breaks out of this loop while own
140 * a reference to the current mddev and must mddev_put it.
142 #define ITERATE_MDDEV(mddev,tmp) \
144 for (({ spin_lock(&all_mddevs_lock); \
145 tmp = all_mddevs.next; \
146 mddev = NULL;}); \
147 ({ if (tmp != &all_mddevs) \
148 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
149 spin_unlock(&all_mddevs_lock); \
150 if (mddev) mddev_put(mddev); \
151 mddev = list_entry(tmp, mddev_t, all_mddevs); \
152 tmp != &all_mddevs;}); \
153 ({ spin_lock(&all_mddevs_lock); \
154 tmp = tmp->next;}) \
158 static int md_fail_request (request_queue_t *q, struct bio *bio)
160 bio_io_error(bio, bio->bi_size);
161 return 0;
164 static inline mddev_t *mddev_get(mddev_t *mddev)
166 atomic_inc(&mddev->active);
167 return mddev;
170 static void mddev_put(mddev_t *mddev)
172 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
173 return;
174 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
175 list_del(&mddev->all_mddevs);
176 blk_put_queue(mddev->queue);
177 kfree(mddev);
179 spin_unlock(&all_mddevs_lock);
182 static mddev_t * mddev_find(dev_t unit)
184 mddev_t *mddev, *new = NULL;
186 retry:
187 spin_lock(&all_mddevs_lock);
188 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
189 if (mddev->unit == unit) {
190 mddev_get(mddev);
191 spin_unlock(&all_mddevs_lock);
192 if (new)
193 kfree(new);
194 return mddev;
197 if (new) {
198 list_add(&new->all_mddevs, &all_mddevs);
199 spin_unlock(&all_mddevs_lock);
200 return new;
202 spin_unlock(&all_mddevs_lock);
204 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
205 if (!new)
206 return NULL;
208 memset(new, 0, sizeof(*new));
210 new->unit = unit;
211 if (MAJOR(unit) == MD_MAJOR)
212 new->md_minor = MINOR(unit);
213 else
214 new->md_minor = MINOR(unit) >> MdpMinorShift;
216 init_MUTEX(&new->reconfig_sem);
217 INIT_LIST_HEAD(&new->disks);
218 INIT_LIST_HEAD(&new->all_mddevs);
219 init_timer(&new->safemode_timer);
220 atomic_set(&new->active, 1);
222 new->queue = blk_alloc_queue(GFP_KERNEL);
223 if (!new->queue) {
224 kfree(new);
225 return NULL;
228 blk_queue_make_request(new->queue, md_fail_request);
230 goto retry;
233 static inline int mddev_lock(mddev_t * mddev)
235 return down_interruptible(&mddev->reconfig_sem);
238 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
240 down(&mddev->reconfig_sem);
243 static inline int mddev_trylock(mddev_t * mddev)
245 return down_trylock(&mddev->reconfig_sem);
248 static inline void mddev_unlock(mddev_t * mddev)
250 up(&mddev->reconfig_sem);
252 if (mddev->thread)
253 md_wakeup_thread(mddev->thread);
256 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
258 mdk_rdev_t * rdev;
259 struct list_head *tmp;
261 ITERATE_RDEV(mddev,rdev,tmp) {
262 if (rdev->desc_nr == nr)
263 return rdev;
265 return NULL;
268 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
270 struct list_head *tmp;
271 mdk_rdev_t *rdev;
273 ITERATE_RDEV(mddev,rdev,tmp) {
274 if (rdev->bdev->bd_dev == dev)
275 return rdev;
277 return NULL;
280 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
282 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
283 return MD_NEW_SIZE_BLOCKS(size);
286 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
288 sector_t size;
290 size = rdev->sb_offset;
292 if (chunk_size)
293 size &= ~((sector_t)chunk_size/1024 - 1);
294 return size;
297 static int alloc_disk_sb(mdk_rdev_t * rdev)
299 if (rdev->sb_page)
300 MD_BUG();
302 rdev->sb_page = alloc_page(GFP_KERNEL);
303 if (!rdev->sb_page) {
304 printk(KERN_ALERT "md: out of memory.\n");
305 return -EINVAL;
308 return 0;
311 static void free_disk_sb(mdk_rdev_t * rdev)
313 if (rdev->sb_page) {
314 page_cache_release(rdev->sb_page);
315 rdev->sb_loaded = 0;
316 rdev->sb_page = NULL;
317 rdev->sb_offset = 0;
318 rdev->size = 0;
323 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
325 if (bio->bi_size)
326 return 1;
328 complete((struct completion*)bio->bi_private);
329 return 0;
332 static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
333 struct page *page, int rw)
335 struct bio *bio = bio_alloc(GFP_NOIO, 1);
336 struct completion event;
337 int ret;
339 rw |= (1 << BIO_RW_SYNC);
341 bio->bi_bdev = bdev;
342 bio->bi_sector = sector;
343 bio_add_page(bio, page, size, 0);
344 init_completion(&event);
345 bio->bi_private = &event;
346 bio->bi_end_io = bi_complete;
347 submit_bio(rw, bio);
348 wait_for_completion(&event);
350 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
351 bio_put(bio);
352 return ret;
355 static int read_disk_sb(mdk_rdev_t * rdev)
357 char b[BDEVNAME_SIZE];
358 if (!rdev->sb_page) {
359 MD_BUG();
360 return -EINVAL;
362 if (rdev->sb_loaded)
363 return 0;
366 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
367 goto fail;
368 rdev->sb_loaded = 1;
369 return 0;
371 fail:
372 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
373 bdevname(rdev->bdev,b));
374 return -EINVAL;
377 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
379 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
380 (sb1->set_uuid1 == sb2->set_uuid1) &&
381 (sb1->set_uuid2 == sb2->set_uuid2) &&
382 (sb1->set_uuid3 == sb2->set_uuid3))
384 return 1;
386 return 0;
390 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
392 int ret;
393 mdp_super_t *tmp1, *tmp2;
395 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
396 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
398 if (!tmp1 || !tmp2) {
399 ret = 0;
400 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
401 goto abort;
404 *tmp1 = *sb1;
405 *tmp2 = *sb2;
408 * nr_disks is not constant
410 tmp1->nr_disks = 0;
411 tmp2->nr_disks = 0;
413 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
414 ret = 0;
415 else
416 ret = 1;
418 abort:
419 if (tmp1)
420 kfree(tmp1);
421 if (tmp2)
422 kfree(tmp2);
424 return ret;
427 static unsigned int calc_sb_csum(mdp_super_t * sb)
429 unsigned int disk_csum, csum;
431 disk_csum = sb->sb_csum;
432 sb->sb_csum = 0;
433 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
434 sb->sb_csum = disk_csum;
435 return csum;
440 * Handle superblock details.
441 * We want to be able to handle multiple superblock formats
442 * so we have a common interface to them all, and an array of
443 * different handlers.
444 * We rely on user-space to write the initial superblock, and support
445 * reading and updating of superblocks.
446 * Interface methods are:
447 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
448 * loads and validates a superblock on dev.
449 * if refdev != NULL, compare superblocks on both devices
450 * Return:
451 * 0 - dev has a superblock that is compatible with refdev
452 * 1 - dev has a superblock that is compatible and newer than refdev
453 * so dev should be used as the refdev in future
454 * -EINVAL superblock incompatible or invalid
455 * -othererror e.g. -EIO
457 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
458 * Verify that dev is acceptable into mddev.
459 * The first time, mddev->raid_disks will be 0, and data from
460 * dev should be merged in. Subsequent calls check that dev
461 * is new enough. Return 0 or -EINVAL
463 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
464 * Update the superblock for rdev with data in mddev
465 * This does not write to disc.
469 struct super_type {
470 char *name;
471 struct module *owner;
472 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
473 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
474 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
478 * load_super for 0.90.0
480 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
482 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
483 mdp_super_t *sb;
484 int ret;
485 sector_t sb_offset;
488 * Calculate the position of the superblock,
489 * it's at the end of the disk.
491 * It also happens to be a multiple of 4Kb.
493 sb_offset = calc_dev_sboffset(rdev->bdev);
494 rdev->sb_offset = sb_offset;
496 ret = read_disk_sb(rdev);
497 if (ret) return ret;
499 ret = -EINVAL;
501 bdevname(rdev->bdev, b);
502 sb = (mdp_super_t*)page_address(rdev->sb_page);
504 if (sb->md_magic != MD_SB_MAGIC) {
505 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
507 goto abort;
510 if (sb->major_version != 0 ||
511 sb->minor_version != 90) {
512 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
513 sb->major_version, sb->minor_version,
515 goto abort;
518 if (sb->raid_disks <= 0)
519 goto abort;
521 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
522 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
524 goto abort;
527 rdev->preferred_minor = sb->md_minor;
528 rdev->data_offset = 0;
530 if (sb->level == LEVEL_MULTIPATH)
531 rdev->desc_nr = -1;
532 else
533 rdev->desc_nr = sb->this_disk.number;
535 if (refdev == 0)
536 ret = 1;
537 else {
538 __u64 ev1, ev2;
539 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
540 if (!uuid_equal(refsb, sb)) {
541 printk(KERN_WARNING "md: %s has different UUID to %s\n",
542 b, bdevname(refdev->bdev,b2));
543 goto abort;
545 if (!sb_equal(refsb, sb)) {
546 printk(KERN_WARNING "md: %s has same UUID"
547 " but different superblock to %s\n",
548 b, bdevname(refdev->bdev, b2));
549 goto abort;
551 ev1 = md_event(sb);
552 ev2 = md_event(refsb);
553 if (ev1 > ev2)
554 ret = 1;
555 else
556 ret = 0;
558 rdev->size = calc_dev_size(rdev, sb->chunk_size);
560 abort:
561 return ret;
565 * validate_super for 0.90.0
567 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
569 mdp_disk_t *desc;
570 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
572 if (mddev->raid_disks == 0) {
573 mddev->major_version = 0;
574 mddev->minor_version = sb->minor_version;
575 mddev->patch_version = sb->patch_version;
576 mddev->persistent = ! sb->not_persistent;
577 mddev->chunk_size = sb->chunk_size;
578 mddev->ctime = sb->ctime;
579 mddev->utime = sb->utime;
580 mddev->level = sb->level;
581 mddev->layout = sb->layout;
582 mddev->raid_disks = sb->raid_disks;
583 mddev->size = sb->size;
584 mddev->events = md_event(sb);
586 if (sb->state & (1<<MD_SB_CLEAN))
587 mddev->recovery_cp = MaxSector;
588 else {
589 if (sb->events_hi == sb->cp_events_hi &&
590 sb->events_lo == sb->cp_events_lo) {
591 mddev->recovery_cp = sb->recovery_cp;
592 } else
593 mddev->recovery_cp = 0;
596 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
597 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
598 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
599 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
601 mddev->max_disks = MD_SB_DISKS;
602 } else {
603 __u64 ev1;
604 ev1 = md_event(sb);
605 ++ev1;
606 if (ev1 < mddev->events)
607 return -EINVAL;
609 if (mddev->level != LEVEL_MULTIPATH) {
610 rdev->raid_disk = -1;
611 rdev->in_sync = rdev->faulty = 0;
612 desc = sb->disks + rdev->desc_nr;
614 if (desc->state & (1<<MD_DISK_FAULTY))
615 rdev->faulty = 1;
616 else if (desc->state & (1<<MD_DISK_SYNC) &&
617 desc->raid_disk < mddev->raid_disks) {
618 rdev->in_sync = 1;
619 rdev->raid_disk = desc->raid_disk;
622 return 0;
626 * sync_super for 0.90.0
628 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
630 mdp_super_t *sb;
631 struct list_head *tmp;
632 mdk_rdev_t *rdev2;
633 int next_spare = mddev->raid_disks;
635 /* make rdev->sb match mddev data..
637 * 1/ zero out disks
638 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
639 * 3/ any empty disks < next_spare become removed
641 * disks[0] gets initialised to REMOVED because
642 * we cannot be sure from other fields if it has
643 * been initialised or not.
645 int i;
646 int active=0, working=0,failed=0,spare=0,nr_disks=0;
648 sb = (mdp_super_t*)page_address(rdev->sb_page);
650 memset(sb, 0, sizeof(*sb));
652 sb->md_magic = MD_SB_MAGIC;
653 sb->major_version = mddev->major_version;
654 sb->minor_version = mddev->minor_version;
655 sb->patch_version = mddev->patch_version;
656 sb->gvalid_words = 0; /* ignored */
657 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
658 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
659 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
660 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
662 sb->ctime = mddev->ctime;
663 sb->level = mddev->level;
664 sb->size = mddev->size;
665 sb->raid_disks = mddev->raid_disks;
666 sb->md_minor = mddev->md_minor;
667 sb->not_persistent = !mddev->persistent;
668 sb->utime = mddev->utime;
669 sb->state = 0;
670 sb->events_hi = (mddev->events>>32);
671 sb->events_lo = (u32)mddev->events;
673 if (mddev->in_sync)
675 sb->recovery_cp = mddev->recovery_cp;
676 sb->cp_events_hi = (mddev->events>>32);
677 sb->cp_events_lo = (u32)mddev->events;
678 if (mddev->recovery_cp == MaxSector)
679 sb->state = (1<< MD_SB_CLEAN);
680 } else
681 sb->recovery_cp = 0;
683 sb->layout = mddev->layout;
684 sb->chunk_size = mddev->chunk_size;
686 sb->disks[0].state = (1<<MD_DISK_REMOVED);
687 ITERATE_RDEV(mddev,rdev2,tmp) {
688 mdp_disk_t *d;
689 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
690 rdev2->desc_nr = rdev2->raid_disk;
691 else
692 rdev2->desc_nr = next_spare++;
693 d = &sb->disks[rdev2->desc_nr];
694 nr_disks++;
695 d->number = rdev2->desc_nr;
696 d->major = MAJOR(rdev2->bdev->bd_dev);
697 d->minor = MINOR(rdev2->bdev->bd_dev);
698 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
699 d->raid_disk = rdev2->raid_disk;
700 else
701 d->raid_disk = rdev2->desc_nr; /* compatibility */
702 if (rdev2->faulty) {
703 d->state = (1<<MD_DISK_FAULTY);
704 failed++;
705 } else if (rdev2->in_sync) {
706 d->state = (1<<MD_DISK_ACTIVE);
707 d->state |= (1<<MD_DISK_SYNC);
708 active++;
709 working++;
710 } else {
711 d->state = 0;
712 spare++;
713 working++;
717 /* now set the "removed" and "faulty" bits on any missing devices */
718 for (i=0 ; i < mddev->raid_disks ; i++) {
719 mdp_disk_t *d = &sb->disks[i];
720 if (d->state == 0 && d->number == 0) {
721 d->number = i;
722 d->raid_disk = i;
723 d->state = (1<<MD_DISK_REMOVED);
724 d->state |= (1<<MD_DISK_FAULTY);
725 failed++;
728 sb->nr_disks = nr_disks;
729 sb->active_disks = active;
730 sb->working_disks = working;
731 sb->failed_disks = failed;
732 sb->spare_disks = spare;
734 sb->this_disk = sb->disks[rdev->desc_nr];
735 sb->sb_csum = calc_sb_csum(sb);
739 * version 1 superblock
742 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
744 unsigned int disk_csum, csum;
745 unsigned long long newcsum;
746 int size = 256 + le32_to_cpu(sb->max_dev)*2;
747 unsigned int *isuper = (unsigned int*)sb;
748 int i;
750 disk_csum = sb->sb_csum;
751 sb->sb_csum = 0;
752 newcsum = 0;
753 for (i=0; size>=4; size -= 4 )
754 newcsum += le32_to_cpu(*isuper++);
756 if (size == 2)
757 newcsum += le16_to_cpu(*(unsigned short*) isuper);
759 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
760 sb->sb_csum = disk_csum;
761 return cpu_to_le32(csum);
764 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
766 struct mdp_superblock_1 *sb;
767 int ret;
768 sector_t sb_offset;
769 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
772 * Calculate the position of the superblock.
773 * It is always aligned to a 4K boundary and
774 * depeding on minor_version, it can be:
775 * 0: At least 8K, but less than 12K, from end of device
776 * 1: At start of device
777 * 2: 4K from start of device.
779 switch(minor_version) {
780 case 0:
781 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
782 sb_offset -= 8*2;
783 sb_offset &= ~(4*2-1);
784 /* convert from sectors to K */
785 sb_offset /= 2;
786 break;
787 case 1:
788 sb_offset = 0;
789 break;
790 case 2:
791 sb_offset = 4;
792 break;
793 default:
794 return -EINVAL;
796 rdev->sb_offset = sb_offset;
798 ret = read_disk_sb(rdev);
799 if (ret) return ret;
802 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
804 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
805 sb->major_version != cpu_to_le32(1) ||
806 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
807 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
808 sb->feature_map != 0)
809 return -EINVAL;
811 if (calc_sb_1_csum(sb) != sb->sb_csum) {
812 printk("md: invalid superblock checksum on %s\n",
813 bdevname(rdev->bdev,b));
814 return -EINVAL;
816 if (le64_to_cpu(sb->data_size) < 10) {
817 printk("md: data_size too small on %s\n",
818 bdevname(rdev->bdev,b));
819 return -EINVAL;
821 rdev->preferred_minor = 0xffff;
822 rdev->data_offset = le64_to_cpu(sb->data_offset);
824 if (refdev == 0)
825 return 1;
826 else {
827 __u64 ev1, ev2;
828 struct mdp_superblock_1 *refsb =
829 (struct mdp_superblock_1*)page_address(refdev->sb_page);
831 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
832 sb->level != refsb->level ||
833 sb->layout != refsb->layout ||
834 sb->chunksize != refsb->chunksize) {
835 printk(KERN_WARNING "md: %s has strangely different"
836 " superblock to %s\n",
837 bdevname(rdev->bdev,b),
838 bdevname(refdev->bdev,b2));
839 return -EINVAL;
841 ev1 = le64_to_cpu(sb->events);
842 ev2 = le64_to_cpu(refsb->events);
844 if (ev1 > ev2)
845 return 1;
847 if (minor_version)
848 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
849 else
850 rdev->size = rdev->sb_offset;
851 if (rdev->size < le64_to_cpu(sb->data_size)/2)
852 return -EINVAL;
853 rdev->size = le64_to_cpu(sb->data_size)/2;
854 if (le32_to_cpu(sb->chunksize))
855 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
856 return 0;
859 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
861 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
863 if (mddev->raid_disks == 0) {
864 mddev->major_version = 1;
865 mddev->patch_version = 0;
866 mddev->persistent = 1;
867 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
868 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
869 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
870 mddev->level = le32_to_cpu(sb->level);
871 mddev->layout = le32_to_cpu(sb->layout);
872 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
873 mddev->size = le64_to_cpu(sb->size)/2;
874 mddev->events = le64_to_cpu(sb->events);
876 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
877 memcpy(mddev->uuid, sb->set_uuid, 16);
879 mddev->max_disks = (4096-256)/2;
880 } else {
881 __u64 ev1;
882 ev1 = le64_to_cpu(sb->events);
883 ++ev1;
884 if (ev1 < mddev->events)
885 return -EINVAL;
888 if (mddev->level != LEVEL_MULTIPATH) {
889 int role;
890 rdev->desc_nr = le32_to_cpu(sb->dev_number);
891 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
892 switch(role) {
893 case 0xffff: /* spare */
894 rdev->in_sync = 0;
895 rdev->faulty = 0;
896 rdev->raid_disk = -1;
897 break;
898 case 0xfffe: /* faulty */
899 rdev->in_sync = 0;
900 rdev->faulty = 1;
901 rdev->raid_disk = -1;
902 break;
903 default:
904 rdev->in_sync = 1;
905 rdev->faulty = 0;
906 rdev->raid_disk = role;
907 break;
910 return 0;
913 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
915 struct mdp_superblock_1 *sb;
916 struct list_head *tmp;
917 mdk_rdev_t *rdev2;
918 int max_dev, i;
919 /* make rdev->sb match mddev and rdev data. */
921 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
923 sb->feature_map = 0;
924 sb->pad0 = 0;
925 memset(sb->pad1, 0, sizeof(sb->pad1));
926 memset(sb->pad2, 0, sizeof(sb->pad2));
927 memset(sb->pad3, 0, sizeof(sb->pad3));
929 sb->utime = cpu_to_le64((__u64)mddev->utime);
930 sb->events = cpu_to_le64(mddev->events);
931 if (mddev->in_sync)
932 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
933 else
934 sb->resync_offset = cpu_to_le64(0);
936 max_dev = 0;
937 ITERATE_RDEV(mddev,rdev2,tmp)
938 if (rdev2->desc_nr+1 > max_dev)
939 max_dev = rdev2->desc_nr+1;
941 sb->max_dev = cpu_to_le32(max_dev);
942 for (i=0; i<max_dev;i++)
943 sb->dev_roles[i] = cpu_to_le16(0xfffe);
945 ITERATE_RDEV(mddev,rdev2,tmp) {
946 i = rdev2->desc_nr;
947 if (rdev2->faulty)
948 sb->dev_roles[i] = cpu_to_le16(0xfffe);
949 else if (rdev2->in_sync)
950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
951 else
952 sb->dev_roles[i] = cpu_to_le16(0xffff);
955 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
956 sb->sb_csum = calc_sb_1_csum(sb);
960 static struct super_type super_types[] = {
961 [0] = {
962 .name = "0.90.0",
963 .owner = THIS_MODULE,
964 .load_super = super_90_load,
965 .validate_super = super_90_validate,
966 .sync_super = super_90_sync,
968 [1] = {
969 .name = "md-1",
970 .owner = THIS_MODULE,
971 .load_super = super_1_load,
972 .validate_super = super_1_validate,
973 .sync_super = super_1_sync,
977 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
979 struct list_head *tmp;
980 mdk_rdev_t *rdev;
982 ITERATE_RDEV(mddev,rdev,tmp)
983 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
984 return rdev;
986 return NULL;
989 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
991 struct list_head *tmp;
992 mdk_rdev_t *rdev;
994 ITERATE_RDEV(mddev1,rdev,tmp)
995 if (match_dev_unit(mddev2, rdev))
996 return 1;
998 return 0;
1001 static LIST_HEAD(pending_raid_disks);
1003 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1005 mdk_rdev_t *same_pdev;
1006 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1008 if (rdev->mddev) {
1009 MD_BUG();
1010 return -EINVAL;
1012 same_pdev = match_dev_unit(mddev, rdev);
1013 if (same_pdev)
1014 printk(KERN_WARNING
1015 "%s: WARNING: %s appears to be on the same physical"
1016 " disk as %s. True\n protection against single-disk"
1017 " failure might be compromised.\n",
1018 mdname(mddev), bdevname(rdev->bdev,b),
1019 bdevname(same_pdev->bdev,b2));
1021 /* Verify rdev->desc_nr is unique.
1022 * If it is -1, assign a free number, else
1023 * check number is not in use
1025 if (rdev->desc_nr < 0) {
1026 int choice = 0;
1027 if (mddev->pers) choice = mddev->raid_disks;
1028 while (find_rdev_nr(mddev, choice))
1029 choice++;
1030 rdev->desc_nr = choice;
1031 } else {
1032 if (find_rdev_nr(mddev, rdev->desc_nr))
1033 return -EBUSY;
1036 list_add(&rdev->same_set, &mddev->disks);
1037 rdev->mddev = mddev;
1038 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1039 return 0;
1042 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1044 char b[BDEVNAME_SIZE];
1045 if (!rdev->mddev) {
1046 MD_BUG();
1047 return;
1049 list_del_init(&rdev->same_set);
1050 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1051 rdev->mddev = NULL;
1055 * prevent the device from being mounted, repartitioned or
1056 * otherwise reused by a RAID array (or any other kernel
1057 * subsystem), by bd_claiming the device.
1059 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1061 int err = 0;
1062 struct block_device *bdev;
1063 char b[BDEVNAME_SIZE];
1065 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1066 if (IS_ERR(bdev)) {
1067 printk(KERN_ERR "md: could not open %s.\n",
1068 __bdevname(dev, b));
1069 return PTR_ERR(bdev);
1071 err = bd_claim(bdev, rdev);
1072 if (err) {
1073 printk(KERN_ERR "md: could not bd_claim %s.\n",
1074 bdevname(bdev, b));
1075 blkdev_put(bdev);
1076 return err;
1078 rdev->bdev = bdev;
1079 return err;
1082 static void unlock_rdev(mdk_rdev_t *rdev)
1084 struct block_device *bdev = rdev->bdev;
1085 rdev->bdev = NULL;
1086 if (!bdev)
1087 MD_BUG();
1088 bd_release(bdev);
1089 blkdev_put(bdev);
1092 void md_autodetect_dev(dev_t dev);
1094 static void export_rdev(mdk_rdev_t * rdev)
1096 char b[BDEVNAME_SIZE];
1097 printk(KERN_INFO "md: export_rdev(%s)\n",
1098 bdevname(rdev->bdev,b));
1099 if (rdev->mddev)
1100 MD_BUG();
1101 free_disk_sb(rdev);
1102 list_del_init(&rdev->same_set);
1103 #ifndef MODULE
1104 md_autodetect_dev(rdev->bdev->bd_dev);
1105 #endif
1106 unlock_rdev(rdev);
1107 kfree(rdev);
1110 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1112 unbind_rdev_from_array(rdev);
1113 export_rdev(rdev);
1116 static void export_array(mddev_t *mddev)
1118 struct list_head *tmp;
1119 mdk_rdev_t *rdev;
1121 ITERATE_RDEV(mddev,rdev,tmp) {
1122 if (!rdev->mddev) {
1123 MD_BUG();
1124 continue;
1126 kick_rdev_from_array(rdev);
1128 if (!list_empty(&mddev->disks))
1129 MD_BUG();
1130 mddev->raid_disks = 0;
1131 mddev->major_version = 0;
1134 static void print_desc(mdp_disk_t *desc)
1136 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1137 desc->major,desc->minor,desc->raid_disk,desc->state);
1140 static void print_sb(mdp_super_t *sb)
1142 int i;
1144 printk(KERN_INFO
1145 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1146 sb->major_version, sb->minor_version, sb->patch_version,
1147 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1148 sb->ctime);
1149 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1150 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1151 sb->md_minor, sb->layout, sb->chunk_size);
1152 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1153 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1154 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1155 sb->failed_disks, sb->spare_disks,
1156 sb->sb_csum, (unsigned long)sb->events_lo);
1158 printk(KERN_INFO);
1159 for (i = 0; i < MD_SB_DISKS; i++) {
1160 mdp_disk_t *desc;
1162 desc = sb->disks + i;
1163 if (desc->number || desc->major || desc->minor ||
1164 desc->raid_disk || (desc->state && (desc->state != 4))) {
1165 printk(" D %2d: ", i);
1166 print_desc(desc);
1169 printk(KERN_INFO "md: THIS: ");
1170 print_desc(&sb->this_disk);
1174 static void print_rdev(mdk_rdev_t *rdev)
1176 char b[BDEVNAME_SIZE];
1177 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1178 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1179 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1180 if (rdev->sb_loaded) {
1181 printk(KERN_INFO "md: rdev superblock:\n");
1182 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1183 } else
1184 printk(KERN_INFO "md: no rdev superblock!\n");
1187 void md_print_devices(void)
1189 struct list_head *tmp, *tmp2;
1190 mdk_rdev_t *rdev;
1191 mddev_t *mddev;
1192 char b[BDEVNAME_SIZE];
1194 printk("\n");
1195 printk("md: **********************************\n");
1196 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1197 printk("md: **********************************\n");
1198 ITERATE_MDDEV(mddev,tmp) {
1199 printk("%s: ", mdname(mddev));
1201 ITERATE_RDEV(mddev,rdev,tmp2)
1202 printk("<%s>", bdevname(rdev->bdev,b));
1203 printk("\n");
1205 ITERATE_RDEV(mddev,rdev,tmp2)
1206 print_rdev(rdev);
1208 printk("md: **********************************\n");
1209 printk("\n");
1213 static int write_disk_sb(mdk_rdev_t * rdev)
1215 char b[BDEVNAME_SIZE];
1216 if (!rdev->sb_loaded) {
1217 MD_BUG();
1218 return 1;
1220 if (rdev->faulty) {
1221 MD_BUG();
1222 return 1;
1225 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1226 bdevname(rdev->bdev,b),
1227 (unsigned long long)rdev->sb_offset);
1229 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1230 return 0;
1232 printk("md: write_disk_sb failed for device %s\n",
1233 bdevname(rdev->bdev,b));
1234 return 1;
1237 static void sync_sbs(mddev_t * mddev)
1239 mdk_rdev_t *rdev;
1240 struct list_head *tmp;
1242 ITERATE_RDEV(mddev,rdev,tmp) {
1243 super_types[mddev->major_version].
1244 sync_super(mddev, rdev);
1245 rdev->sb_loaded = 1;
1249 static void md_update_sb(mddev_t * mddev)
1251 int err, count = 100;
1252 struct list_head *tmp;
1253 mdk_rdev_t *rdev;
1255 mddev->sb_dirty = 0;
1256 repeat:
1257 mddev->utime = get_seconds();
1258 mddev->events ++;
1260 if (!mddev->events) {
1262 * oops, this 64-bit counter should never wrap.
1263 * Either we are in around ~1 trillion A.C., assuming
1264 * 1 reboot per second, or we have a bug:
1266 MD_BUG();
1267 mddev->events --;
1269 sync_sbs(mddev);
1272 * do not write anything to disk if using
1273 * nonpersistent superblocks
1275 if (!mddev->persistent)
1276 return;
1278 dprintk(KERN_INFO
1279 "md: updating %s RAID superblock on device (in sync %d)\n",
1280 mdname(mddev),mddev->in_sync);
1282 err = 0;
1283 ITERATE_RDEV(mddev,rdev,tmp) {
1284 char b[BDEVNAME_SIZE];
1285 dprintk(KERN_INFO "md: ");
1286 if (rdev->faulty)
1287 dprintk("(skipping faulty ");
1289 dprintk("%s ", bdevname(rdev->bdev,b));
1290 if (!rdev->faulty) {
1291 err += write_disk_sb(rdev);
1292 } else
1293 dprintk(")\n");
1294 if (!err && mddev->level == LEVEL_MULTIPATH)
1295 /* only need to write one superblock... */
1296 break;
1298 if (err) {
1299 if (--count) {
1300 printk(KERN_ERR "md: errors occurred during superblock"
1301 " update, repeating\n");
1302 goto repeat;
1304 printk(KERN_ERR \
1305 "md: excessive errors occurred during superblock update, exiting\n");
1310 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1312 * mark the device faulty if:
1314 * - the device is nonexistent (zero size)
1315 * - the device has no valid superblock
1317 * a faulty rdev _never_ has rdev->sb set.
1319 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1321 char b[BDEVNAME_SIZE];
1322 int err;
1323 mdk_rdev_t *rdev;
1324 sector_t size;
1326 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1327 if (!rdev) {
1328 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1329 return ERR_PTR(-ENOMEM);
1331 memset(rdev, 0, sizeof(*rdev));
1333 if ((err = alloc_disk_sb(rdev)))
1334 goto abort_free;
1336 err = lock_rdev(rdev, newdev);
1337 if (err)
1338 goto abort_free;
1340 rdev->desc_nr = -1;
1341 rdev->faulty = 0;
1342 rdev->in_sync = 0;
1343 rdev->data_offset = 0;
1344 atomic_set(&rdev->nr_pending, 0);
1346 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1347 if (!size) {
1348 printk(KERN_WARNING
1349 "md: %s has zero or unknown size, marking faulty!\n",
1350 bdevname(rdev->bdev,b));
1351 err = -EINVAL;
1352 goto abort_free;
1355 if (super_format >= 0) {
1356 err = super_types[super_format].
1357 load_super(rdev, NULL, super_minor);
1358 if (err == -EINVAL) {
1359 printk(KERN_WARNING
1360 "md: %s has invalid sb, not importing!\n",
1361 bdevname(rdev->bdev,b));
1362 goto abort_free;
1364 if (err < 0) {
1365 printk(KERN_WARNING
1366 "md: could not read %s's sb, not importing!\n",
1367 bdevname(rdev->bdev,b));
1368 goto abort_free;
1371 INIT_LIST_HEAD(&rdev->same_set);
1373 return rdev;
1375 abort_free:
1376 if (rdev->sb_page) {
1377 if (rdev->bdev)
1378 unlock_rdev(rdev);
1379 free_disk_sb(rdev);
1381 kfree(rdev);
1382 return ERR_PTR(err);
1386 * Check a full RAID array for plausibility
1390 static void analyze_sbs(mddev_t * mddev)
1392 int i;
1393 struct list_head *tmp;
1394 mdk_rdev_t *rdev, *freshest;
1395 char b[BDEVNAME_SIZE];
1397 freshest = NULL;
1398 ITERATE_RDEV(mddev,rdev,tmp)
1399 switch (super_types[mddev->major_version].
1400 load_super(rdev, freshest, mddev->minor_version)) {
1401 case 1:
1402 freshest = rdev;
1403 break;
1404 case 0:
1405 break;
1406 default:
1407 printk( KERN_ERR \
1408 "md: fatal superblock inconsistency in %s"
1409 " -- removing from array\n",
1410 bdevname(rdev->bdev,b));
1411 kick_rdev_from_array(rdev);
1415 super_types[mddev->major_version].
1416 validate_super(mddev, freshest);
1418 i = 0;
1419 ITERATE_RDEV(mddev,rdev,tmp) {
1420 if (rdev != freshest)
1421 if (super_types[mddev->major_version].
1422 validate_super(mddev, rdev)) {
1423 printk(KERN_WARNING "md: kicking non-fresh %s"
1424 " from array!\n",
1425 bdevname(rdev->bdev,b));
1426 kick_rdev_from_array(rdev);
1427 continue;
1429 if (mddev->level == LEVEL_MULTIPATH) {
1430 rdev->desc_nr = i++;
1431 rdev->raid_disk = rdev->desc_nr;
1432 rdev->in_sync = 1;
1438 if (mddev->recovery_cp != MaxSector &&
1439 mddev->level >= 1)
1440 printk(KERN_ERR "md: %s: raid array is not clean"
1441 " -- starting background reconstruction\n",
1442 mdname(mddev));
1446 int mdp_major = 0;
1448 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1450 static DECLARE_MUTEX(disks_sem);
1451 mddev_t *mddev = mddev_find(dev);
1452 struct gendisk *disk;
1453 int partitioned = (MAJOR(dev) != MD_MAJOR);
1454 int shift = partitioned ? MdpMinorShift : 0;
1455 int unit = MINOR(dev) >> shift;
1457 if (!mddev)
1458 return NULL;
1460 down(&disks_sem);
1461 if (mddev->gendisk) {
1462 up(&disks_sem);
1463 mddev_put(mddev);
1464 return NULL;
1466 disk = alloc_disk(1 << shift);
1467 if (!disk) {
1468 up(&disks_sem);
1469 mddev_put(mddev);
1470 return NULL;
1472 disk->major = MAJOR(dev);
1473 disk->first_minor = unit << shift;
1474 if (partitioned) {
1475 sprintf(disk->disk_name, "md_d%d", unit);
1476 sprintf(disk->devfs_name, "md/d%d", unit);
1477 } else {
1478 sprintf(disk->disk_name, "md%d", unit);
1479 sprintf(disk->devfs_name, "md/%d", unit);
1481 disk->fops = &md_fops;
1482 disk->private_data = mddev;
1483 disk->queue = mddev->queue;
1484 add_disk(disk);
1485 mddev->gendisk = disk;
1486 up(&disks_sem);
1487 return NULL;
1490 void md_wakeup_thread(mdk_thread_t *thread);
1492 static void md_safemode_timeout(unsigned long data)
1494 mddev_t *mddev = (mddev_t *) data;
1496 mddev->safemode = 1;
1497 md_wakeup_thread(mddev->thread);
1501 static int do_md_run(mddev_t * mddev)
1503 int pnum, err;
1504 int chunk_size;
1505 struct list_head *tmp;
1506 mdk_rdev_t *rdev;
1507 struct gendisk *disk;
1508 char b[BDEVNAME_SIZE];
1510 if (list_empty(&mddev->disks))
1511 /* cannot run an array with no devices.. */
1512 return -EINVAL;
1514 if (mddev->pers)
1515 return -EBUSY;
1518 * Analyze all RAID superblock(s)
1520 if (!mddev->raid_disks)
1521 analyze_sbs(mddev);
1523 chunk_size = mddev->chunk_size;
1524 pnum = level_to_pers(mddev->level);
1526 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1527 if (!chunk_size) {
1529 * 'default chunksize' in the old md code used to
1530 * be PAGE_SIZE, baaad.
1531 * we abort here to be on the safe side. We don't
1532 * want to continue the bad practice.
1534 printk(KERN_ERR
1535 "no chunksize specified, see 'man raidtab'\n");
1536 return -EINVAL;
1538 if (chunk_size > MAX_CHUNK_SIZE) {
1539 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1540 chunk_size, MAX_CHUNK_SIZE);
1541 return -EINVAL;
1544 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1546 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1547 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1548 return -EINVAL;
1550 if (chunk_size < PAGE_SIZE) {
1551 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1552 chunk_size, PAGE_SIZE);
1553 return -EINVAL;
1556 /* devices must have minimum size of one chunk */
1557 ITERATE_RDEV(mddev,rdev,tmp) {
1558 if (rdev->faulty)
1559 continue;
1560 if (rdev->size < chunk_size / 1024) {
1561 printk(KERN_WARNING
1562 "md: Dev %s smaller than chunk_size:"
1563 " %lluk < %dk\n",
1564 bdevname(rdev->bdev,b),
1565 (unsigned long long)rdev->size,
1566 chunk_size / 1024);
1567 return -EINVAL;
1572 #ifdef CONFIG_KMOD
1573 if (!pers[pnum])
1575 request_module("md-personality-%d", pnum);
1577 #endif
1580 * Drop all container device buffers, from now on
1581 * the only valid external interface is through the md
1582 * device.
1583 * Also find largest hardsector size
1585 ITERATE_RDEV(mddev,rdev,tmp) {
1586 if (rdev->faulty)
1587 continue;
1588 sync_blockdev(rdev->bdev);
1589 invalidate_bdev(rdev->bdev, 0);
1592 md_probe(mddev->unit, NULL, NULL);
1593 disk = mddev->gendisk;
1594 if (!disk)
1595 return -ENOMEM;
1597 spin_lock(&pers_lock);
1598 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1599 spin_unlock(&pers_lock);
1600 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1601 pnum);
1602 return -EINVAL;
1605 mddev->pers = pers[pnum];
1606 spin_unlock(&pers_lock);
1608 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1610 err = mddev->pers->run(mddev);
1611 if (err) {
1612 printk(KERN_ERR "md: pers->run() failed ...\n");
1613 module_put(mddev->pers->owner);
1614 mddev->pers = NULL;
1615 return -EINVAL;
1617 atomic_set(&mddev->writes_pending,0);
1618 mddev->safemode = 0;
1619 mddev->safemode_timer.function = md_safemode_timeout;
1620 mddev->safemode_timer.data = (unsigned long) mddev;
1621 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1622 mddev->in_sync = 1;
1624 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1626 if (mddev->sb_dirty)
1627 md_update_sb(mddev);
1629 set_capacity(disk, mddev->array_size<<1);
1631 /* If we call blk_queue_make_request here, it will
1632 * re-initialise max_sectors etc which may have been
1633 * refined inside -> run. So just set the bits we need to set.
1634 * Most initialisation happended when we called
1635 * blk_queue_make_request(..., md_fail_request)
1636 * earlier.
1638 mddev->queue->queuedata = mddev;
1639 mddev->queue->make_request_fn = mddev->pers->make_request;
1641 mddev->changed = 1;
1642 return 0;
1645 static int restart_array(mddev_t *mddev)
1647 struct gendisk *disk = mddev->gendisk;
1648 int err;
1651 * Complain if it has no devices
1653 err = -ENXIO;
1654 if (list_empty(&mddev->disks))
1655 goto out;
1657 if (mddev->pers) {
1658 err = -EBUSY;
1659 if (!mddev->ro)
1660 goto out;
1662 mddev->safemode = 0;
1663 mddev->ro = 0;
1664 set_disk_ro(disk, 0);
1666 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1667 mdname(mddev));
1669 * Kick recovery or resync if necessary
1671 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1672 md_wakeup_thread(mddev->thread);
1673 err = 0;
1674 } else {
1675 printk(KERN_ERR "md: %s has no personality assigned.\n",
1676 mdname(mddev));
1677 err = -EINVAL;
1680 out:
1681 return err;
1684 static int do_md_stop(mddev_t * mddev, int ro)
1686 int err = 0;
1687 struct gendisk *disk = mddev->gendisk;
1689 if (mddev->pers) {
1690 if (atomic_read(&mddev->active)>2) {
1691 printk("md: %s still in use.\n",mdname(mddev));
1692 return -EBUSY;
1695 if (mddev->sync_thread) {
1696 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1697 md_unregister_thread(mddev->sync_thread);
1698 mddev->sync_thread = NULL;
1701 del_timer_sync(&mddev->safemode_timer);
1703 invalidate_partition(disk, 0);
1705 if (ro) {
1706 err = -ENXIO;
1707 if (mddev->ro)
1708 goto out;
1709 mddev->ro = 1;
1710 } else {
1711 if (mddev->ro)
1712 set_disk_ro(disk, 0);
1713 blk_queue_make_request(mddev->queue, md_fail_request);
1714 mddev->pers->stop(mddev);
1715 module_put(mddev->pers->owner);
1716 mddev->pers = NULL;
1717 if (mddev->ro)
1718 mddev->ro = 0;
1720 if (!mddev->in_sync) {
1721 /* mark array as shutdown cleanly */
1722 mddev->in_sync = 1;
1723 md_update_sb(mddev);
1725 if (ro)
1726 set_disk_ro(disk, 1);
1729 * Free resources if final stop
1731 if (!ro) {
1732 struct gendisk *disk;
1733 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1735 export_array(mddev);
1737 mddev->array_size = 0;
1738 disk = mddev->gendisk;
1739 if (disk)
1740 set_capacity(disk, 0);
1741 mddev->changed = 1;
1742 } else
1743 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1744 mdname(mddev));
1745 err = 0;
1746 out:
1747 return err;
1750 static void autorun_array(mddev_t *mddev)
1752 mdk_rdev_t *rdev;
1753 struct list_head *tmp;
1754 int err;
1756 if (list_empty(&mddev->disks))
1757 return;
1759 printk(KERN_INFO "md: running: ");
1761 ITERATE_RDEV(mddev,rdev,tmp) {
1762 char b[BDEVNAME_SIZE];
1763 printk("<%s>", bdevname(rdev->bdev,b));
1765 printk("\n");
1767 err = do_md_run (mddev);
1768 if (err) {
1769 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1770 do_md_stop (mddev, 0);
1775 * lets try to run arrays based on all disks that have arrived
1776 * until now. (those are in pending_raid_disks)
1778 * the method: pick the first pending disk, collect all disks with
1779 * the same UUID, remove all from the pending list and put them into
1780 * the 'same_array' list. Then order this list based on superblock
1781 * update time (freshest comes first), kick out 'old' disks and
1782 * compare superblocks. If everything's fine then run it.
1784 * If "unit" is allocated, then bump its reference count
1786 static void autorun_devices(int part)
1788 struct list_head candidates;
1789 struct list_head *tmp;
1790 mdk_rdev_t *rdev0, *rdev;
1791 mddev_t *mddev;
1792 char b[BDEVNAME_SIZE];
1794 printk(KERN_INFO "md: autorun ...\n");
1795 while (!list_empty(&pending_raid_disks)) {
1796 dev_t dev;
1797 rdev0 = list_entry(pending_raid_disks.next,
1798 mdk_rdev_t, same_set);
1800 printk(KERN_INFO "md: considering %s ...\n",
1801 bdevname(rdev0->bdev,b));
1802 INIT_LIST_HEAD(&candidates);
1803 ITERATE_RDEV_PENDING(rdev,tmp)
1804 if (super_90_load(rdev, rdev0, 0) >= 0) {
1805 printk(KERN_INFO "md: adding %s ...\n",
1806 bdevname(rdev->bdev,b));
1807 list_move(&rdev->same_set, &candidates);
1810 * now we have a set of devices, with all of them having
1811 * mostly sane superblocks. It's time to allocate the
1812 * mddev.
1814 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1815 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1816 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1817 break;
1819 if (part)
1820 dev = MKDEV(mdp_major,
1821 rdev0->preferred_minor << MdpMinorShift);
1822 else
1823 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1825 md_probe(dev, NULL, NULL);
1826 mddev = mddev_find(dev);
1827 if (!mddev) {
1828 printk(KERN_ERR
1829 "md: cannot allocate memory for md drive.\n");
1830 break;
1832 if (mddev_lock(mddev))
1833 printk(KERN_WARNING "md: %s locked, cannot run\n",
1834 mdname(mddev));
1835 else if (mddev->raid_disks || mddev->major_version
1836 || !list_empty(&mddev->disks)) {
1837 printk(KERN_WARNING
1838 "md: %s already running, cannot run %s\n",
1839 mdname(mddev), bdevname(rdev0->bdev,b));
1840 mddev_unlock(mddev);
1841 } else {
1842 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1843 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1844 list_del_init(&rdev->same_set);
1845 if (bind_rdev_to_array(rdev, mddev))
1846 export_rdev(rdev);
1848 autorun_array(mddev);
1849 mddev_unlock(mddev);
1851 /* on success, candidates will be empty, on error
1852 * it won't...
1854 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1855 export_rdev(rdev);
1856 mddev_put(mddev);
1858 printk(KERN_INFO "md: ... autorun DONE.\n");
1862 * import RAID devices based on one partition
1863 * if possible, the array gets run as well.
1866 static int autostart_array(dev_t startdev)
1868 char b[BDEVNAME_SIZE];
1869 int err = -EINVAL, i;
1870 mdp_super_t *sb = NULL;
1871 mdk_rdev_t *start_rdev = NULL, *rdev;
1873 start_rdev = md_import_device(startdev, 0, 0);
1874 if (IS_ERR(start_rdev))
1875 return err;
1878 /* NOTE: this can only work for 0.90.0 superblocks */
1879 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1880 if (sb->major_version != 0 ||
1881 sb->minor_version != 90 ) {
1882 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1883 export_rdev(start_rdev);
1884 return err;
1887 if (start_rdev->faulty) {
1888 printk(KERN_WARNING
1889 "md: can not autostart based on faulty %s!\n",
1890 bdevname(start_rdev->bdev,b));
1891 export_rdev(start_rdev);
1892 return err;
1894 list_add(&start_rdev->same_set, &pending_raid_disks);
1896 for (i = 0; i < MD_SB_DISKS; i++) {
1897 mdp_disk_t *desc = sb->disks + i;
1898 dev_t dev = MKDEV(desc->major, desc->minor);
1900 if (!dev)
1901 continue;
1902 if (dev == startdev)
1903 continue;
1904 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1905 continue;
1906 rdev = md_import_device(dev, 0, 0);
1907 if (IS_ERR(rdev))
1908 continue;
1910 list_add(&rdev->same_set, &pending_raid_disks);
1914 * possibly return codes
1916 autorun_devices(0);
1917 return 0;
1922 static int get_version(void __user * arg)
1924 mdu_version_t ver;
1926 ver.major = MD_MAJOR_VERSION;
1927 ver.minor = MD_MINOR_VERSION;
1928 ver.patchlevel = MD_PATCHLEVEL_VERSION;
1930 if (copy_to_user(arg, &ver, sizeof(ver)))
1931 return -EFAULT;
1933 return 0;
1936 static int get_array_info(mddev_t * mddev, void __user * arg)
1938 mdu_array_info_t info;
1939 int nr,working,active,failed,spare;
1940 mdk_rdev_t *rdev;
1941 struct list_head *tmp;
1943 nr=working=active=failed=spare=0;
1944 ITERATE_RDEV(mddev,rdev,tmp) {
1945 nr++;
1946 if (rdev->faulty)
1947 failed++;
1948 else {
1949 working++;
1950 if (rdev->in_sync)
1951 active++;
1952 else
1953 spare++;
1957 info.major_version = mddev->major_version;
1958 info.minor_version = mddev->minor_version;
1959 info.patch_version = MD_PATCHLEVEL_VERSION;
1960 info.ctime = mddev->ctime;
1961 info.level = mddev->level;
1962 info.size = mddev->size;
1963 info.nr_disks = nr;
1964 info.raid_disks = mddev->raid_disks;
1965 info.md_minor = mddev->md_minor;
1966 info.not_persistent= !mddev->persistent;
1968 info.utime = mddev->utime;
1969 info.state = 0;
1970 if (mddev->in_sync)
1971 info.state = (1<<MD_SB_CLEAN);
1972 info.active_disks = active;
1973 info.working_disks = working;
1974 info.failed_disks = failed;
1975 info.spare_disks = spare;
1977 info.layout = mddev->layout;
1978 info.chunk_size = mddev->chunk_size;
1980 if (copy_to_user(arg, &info, sizeof(info)))
1981 return -EFAULT;
1983 return 0;
1986 static int get_disk_info(mddev_t * mddev, void __user * arg)
1988 mdu_disk_info_t info;
1989 unsigned int nr;
1990 mdk_rdev_t *rdev;
1992 if (copy_from_user(&info, arg, sizeof(info)))
1993 return -EFAULT;
1995 nr = info.number;
1997 rdev = find_rdev_nr(mddev, nr);
1998 if (rdev) {
1999 info.major = MAJOR(rdev->bdev->bd_dev);
2000 info.minor = MINOR(rdev->bdev->bd_dev);
2001 info.raid_disk = rdev->raid_disk;
2002 info.state = 0;
2003 if (rdev->faulty)
2004 info.state |= (1<<MD_DISK_FAULTY);
2005 else if (rdev->in_sync) {
2006 info.state |= (1<<MD_DISK_ACTIVE);
2007 info.state |= (1<<MD_DISK_SYNC);
2009 } else {
2010 info.major = info.minor = 0;
2011 info.raid_disk = -1;
2012 info.state = (1<<MD_DISK_REMOVED);
2015 if (copy_to_user(arg, &info, sizeof(info)))
2016 return -EFAULT;
2018 return 0;
2021 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2023 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2024 mdk_rdev_t *rdev;
2025 dev_t dev = MKDEV(info->major,info->minor);
2027 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2028 return -EOVERFLOW;
2030 if (!mddev->raid_disks) {
2031 int err;
2032 /* expecting a device which has a superblock */
2033 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2034 if (IS_ERR(rdev)) {
2035 printk(KERN_WARNING
2036 "md: md_import_device returned %ld\n",
2037 PTR_ERR(rdev));
2038 return PTR_ERR(rdev);
2040 if (!list_empty(&mddev->disks)) {
2041 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2042 mdk_rdev_t, same_set);
2043 int err = super_types[mddev->major_version]
2044 .load_super(rdev, rdev0, mddev->minor_version);
2045 if (err < 0) {
2046 printk(KERN_WARNING
2047 "md: %s has different UUID to %s\n",
2048 bdevname(rdev->bdev,b),
2049 bdevname(rdev0->bdev,b2));
2050 export_rdev(rdev);
2051 return -EINVAL;
2054 err = bind_rdev_to_array(rdev, mddev);
2055 if (err)
2056 export_rdev(rdev);
2057 return err;
2061 * add_new_disk can be used once the array is assembled
2062 * to add "hot spares". They must already have a superblock
2063 * written
2065 if (mddev->pers) {
2066 int err;
2067 if (!mddev->pers->hot_add_disk) {
2068 printk(KERN_WARNING
2069 "%s: personality does not support diskops!\n",
2070 mdname(mddev));
2071 return -EINVAL;
2073 rdev = md_import_device(dev, mddev->major_version,
2074 mddev->minor_version);
2075 if (IS_ERR(rdev)) {
2076 printk(KERN_WARNING
2077 "md: md_import_device returned %ld\n",
2078 PTR_ERR(rdev));
2079 return PTR_ERR(rdev);
2081 rdev->in_sync = 0; /* just to be sure */
2082 rdev->raid_disk = -1;
2083 err = bind_rdev_to_array(rdev, mddev);
2084 if (err)
2085 export_rdev(rdev);
2086 if (mddev->thread)
2087 md_wakeup_thread(mddev->thread);
2088 return err;
2091 /* otherwise, add_new_disk is only allowed
2092 * for major_version==0 superblocks
2094 if (mddev->major_version != 0) {
2095 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2096 mdname(mddev));
2097 return -EINVAL;
2100 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2101 int err;
2102 rdev = md_import_device (dev, -1, 0);
2103 if (IS_ERR(rdev)) {
2104 printk(KERN_WARNING
2105 "md: error, md_import_device() returned %ld\n",
2106 PTR_ERR(rdev));
2107 return PTR_ERR(rdev);
2109 rdev->desc_nr = info->number;
2110 if (info->raid_disk < mddev->raid_disks)
2111 rdev->raid_disk = info->raid_disk;
2112 else
2113 rdev->raid_disk = -1;
2115 rdev->faulty = 0;
2116 if (rdev->raid_disk < mddev->raid_disks)
2117 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2118 else
2119 rdev->in_sync = 0;
2121 err = bind_rdev_to_array(rdev, mddev);
2122 if (err) {
2123 export_rdev(rdev);
2124 return err;
2127 if (!mddev->persistent) {
2128 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2129 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2130 } else
2131 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2132 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2134 if (!mddev->size || (mddev->size > rdev->size))
2135 mddev->size = rdev->size;
2138 return 0;
2141 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2143 char b[BDEVNAME_SIZE];
2144 mdk_rdev_t *rdev;
2146 if (!mddev->pers)
2147 return -ENODEV;
2149 rdev = find_rdev(mddev, dev);
2150 if (!rdev)
2151 return -ENXIO;
2153 if (rdev->raid_disk >= 0)
2154 goto busy;
2156 kick_rdev_from_array(rdev);
2157 md_update_sb(mddev);
2159 return 0;
2160 busy:
2161 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2162 bdevname(rdev->bdev,b), mdname(mddev));
2163 return -EBUSY;
2166 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2168 char b[BDEVNAME_SIZE];
2169 int err;
2170 unsigned int size;
2171 mdk_rdev_t *rdev;
2173 if (!mddev->pers)
2174 return -ENODEV;
2176 if (mddev->major_version != 0) {
2177 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2178 " version-0 superblocks.\n",
2179 mdname(mddev));
2180 return -EINVAL;
2182 if (!mddev->pers->hot_add_disk) {
2183 printk(KERN_WARNING
2184 "%s: personality does not support diskops!\n",
2185 mdname(mddev));
2186 return -EINVAL;
2189 rdev = md_import_device (dev, -1, 0);
2190 if (IS_ERR(rdev)) {
2191 printk(KERN_WARNING
2192 "md: error, md_import_device() returned %ld\n",
2193 PTR_ERR(rdev));
2194 return -EINVAL;
2197 if (mddev->persistent)
2198 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2199 else
2200 rdev->sb_offset =
2201 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2203 size = calc_dev_size(rdev, mddev->chunk_size);
2204 rdev->size = size;
2206 if (size < mddev->size) {
2207 printk(KERN_WARNING
2208 "%s: disk size %llu blocks < array size %llu\n",
2209 mdname(mddev), (unsigned long long)size,
2210 (unsigned long long)mddev->size);
2211 err = -ENOSPC;
2212 goto abort_export;
2215 if (rdev->faulty) {
2216 printk(KERN_WARNING
2217 "md: can not hot-add faulty %s disk to %s!\n",
2218 bdevname(rdev->bdev,b), mdname(mddev));
2219 err = -EINVAL;
2220 goto abort_export;
2222 rdev->in_sync = 0;
2223 rdev->desc_nr = -1;
2224 bind_rdev_to_array(rdev, mddev);
2227 * The rest should better be atomic, we can have disk failures
2228 * noticed in interrupt contexts ...
2231 if (rdev->desc_nr == mddev->max_disks) {
2232 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2233 mdname(mddev));
2234 err = -EBUSY;
2235 goto abort_unbind_export;
2238 rdev->raid_disk = -1;
2240 md_update_sb(mddev);
2243 * Kick recovery, maybe this spare has to be added to the
2244 * array immediately.
2246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2247 md_wakeup_thread(mddev->thread);
2249 return 0;
2251 abort_unbind_export:
2252 unbind_rdev_from_array(rdev);
2254 abort_export:
2255 export_rdev(rdev);
2256 return err;
2260 * set_array_info is used two different ways
2261 * The original usage is when creating a new array.
2262 * In this usage, raid_disks is > 0 and it together with
2263 * level, size, not_persistent,layout,chunksize determine the
2264 * shape of the array.
2265 * This will always create an array with a type-0.90.0 superblock.
2266 * The newer usage is when assembling an array.
2267 * In this case raid_disks will be 0, and the major_version field is
2268 * use to determine which style super-blocks are to be found on the devices.
2269 * The minor and patch _version numbers are also kept incase the
2270 * super_block handler wishes to interpret them.
2272 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2275 if (info->raid_disks == 0) {
2276 /* just setting version number for superblock loading */
2277 if (info->major_version < 0 ||
2278 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2279 super_types[info->major_version].name == NULL) {
2280 /* maybe try to auto-load a module? */
2281 printk(KERN_INFO
2282 "md: superblock version %d not known\n",
2283 info->major_version);
2284 return -EINVAL;
2286 mddev->major_version = info->major_version;
2287 mddev->minor_version = info->minor_version;
2288 mddev->patch_version = info->patch_version;
2289 return 0;
2291 mddev->major_version = MD_MAJOR_VERSION;
2292 mddev->minor_version = MD_MINOR_VERSION;
2293 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2294 mddev->ctime = get_seconds();
2296 mddev->level = info->level;
2297 mddev->size = info->size;
2298 mddev->raid_disks = info->raid_disks;
2299 /* don't set md_minor, it is determined by which /dev/md* was
2300 * openned
2302 if (info->state & (1<<MD_SB_CLEAN))
2303 mddev->recovery_cp = MaxSector;
2304 else
2305 mddev->recovery_cp = 0;
2306 mddev->persistent = ! info->not_persistent;
2308 mddev->layout = info->layout;
2309 mddev->chunk_size = info->chunk_size;
2311 mddev->max_disks = MD_SB_DISKS;
2313 mddev->sb_dirty = 1;
2316 * Generate a 128 bit UUID
2318 get_random_bytes(mddev->uuid, 16);
2320 return 0;
2324 * update_array_info is used to change the configuration of an
2325 * on-line array.
2326 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2327 * fields in the info are checked against the array.
2328 * Any differences that cannot be handled will cause an error.
2329 * Normally, only one change can be managed at a time.
2331 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2333 int rv = 0;
2334 int cnt = 0;
2336 if (mddev->major_version != info->major_version ||
2337 mddev->minor_version != info->minor_version ||
2338 /* mddev->patch_version != info->patch_version || */
2339 mddev->ctime != info->ctime ||
2340 mddev->level != info->level ||
2341 /* mddev->layout != info->layout || */
2342 !mddev->persistent != info->not_persistent||
2343 mddev->chunk_size != info->chunk_size )
2344 return -EINVAL;
2345 /* Check there is only one change */
2346 if (mddev->size != info->size) cnt++;
2347 if (mddev->raid_disks != info->raid_disks) cnt++;
2348 if (mddev->layout != info->layout) cnt++;
2349 if (cnt == 0) return 0;
2350 if (cnt > 1) return -EINVAL;
2352 if (mddev->layout != info->layout) {
2353 /* Change layout
2354 * we don't need to do anything at the md level, the
2355 * personality will take care of it all.
2357 if (mddev->pers->reconfig == NULL)
2358 return -EINVAL;
2359 else
2360 return mddev->pers->reconfig(mddev, info->layout, -1);
2362 if (mddev->size != info->size) {
2363 mdk_rdev_t * rdev;
2364 struct list_head *tmp;
2365 if (mddev->pers->resize == NULL)
2366 return -EINVAL;
2367 /* The "size" is the amount of each device that is used.
2368 * This can only make sense for arrays with redundancy.
2369 * linear and raid0 always use whatever space is available
2370 * We can only consider changing the size if no resync
2371 * or reconstruction is happening, and if the new size
2372 * is acceptable. It must fit before the sb_offset or,
2373 * if that is <data_offset, it must fit before the
2374 * size of each device.
2375 * If size is zero, we find the largest size that fits.
2377 if (mddev->sync_thread)
2378 return -EBUSY;
2379 ITERATE_RDEV(mddev,rdev,tmp) {
2380 sector_t avail;
2381 int fit = (info->size == 0);
2382 if (rdev->sb_offset > rdev->data_offset)
2383 avail = (rdev->sb_offset*2) - rdev->data_offset;
2384 else
2385 avail = get_capacity(rdev->bdev->bd_disk)
2386 - rdev->data_offset;
2387 if (fit && (info->size == 0 || info->size > avail/2))
2388 info->size = avail/2;
2389 if (avail < ((sector_t)info->size << 1))
2390 return -ENOSPC;
2392 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2393 if (!rv) {
2394 struct block_device *bdev;
2396 bdev = bdget_disk(mddev->gendisk, 0);
2397 if (bdev) {
2398 down(&bdev->bd_inode->i_sem);
2399 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2400 up(&bdev->bd_inode->i_sem);
2401 bdput(bdev);
2405 if (mddev->raid_disks != info->raid_disks) {
2406 /* change the number of raid disks */
2407 if (mddev->pers->reshape == NULL)
2408 return -EINVAL;
2409 if (info->raid_disks <= 0 ||
2410 info->raid_disks >= mddev->max_disks)
2411 return -EINVAL;
2412 if (mddev->sync_thread)
2413 return -EBUSY;
2414 rv = mddev->pers->reshape(mddev, info->raid_disks);
2415 if (!rv) {
2416 struct block_device *bdev;
2418 bdev = bdget_disk(mddev->gendisk, 0);
2419 if (bdev) {
2420 down(&bdev->bd_inode->i_sem);
2421 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2422 up(&bdev->bd_inode->i_sem);
2423 bdput(bdev);
2427 md_update_sb(mddev);
2428 return rv;
2431 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2433 mdk_rdev_t *rdev;
2435 if (mddev->pers == NULL)
2436 return -ENODEV;
2438 rdev = find_rdev(mddev, dev);
2439 if (!rdev)
2440 return -ENODEV;
2442 md_error(mddev, rdev);
2443 return 0;
2446 static int md_ioctl(struct inode *inode, struct file *file,
2447 unsigned int cmd, unsigned long arg)
2449 int err = 0;
2450 void __user *argp = (void __user *)arg;
2451 struct hd_geometry __user *loc = argp;
2452 mddev_t *mddev = NULL;
2454 if (!capable(CAP_SYS_ADMIN))
2455 return -EACCES;
2458 * Commands dealing with the RAID driver but not any
2459 * particular array:
2461 switch (cmd)
2463 case RAID_VERSION:
2464 err = get_version(argp);
2465 goto done;
2467 case PRINT_RAID_DEBUG:
2468 err = 0;
2469 md_print_devices();
2470 goto done;
2472 #ifndef MODULE
2473 case RAID_AUTORUN:
2474 err = 0;
2475 autostart_arrays(arg);
2476 goto done;
2477 #endif
2478 default:;
2482 * Commands creating/starting a new array:
2485 mddev = inode->i_bdev->bd_disk->private_data;
2487 if (!mddev) {
2488 BUG();
2489 goto abort;
2493 if (cmd == START_ARRAY) {
2494 /* START_ARRAY doesn't need to lock the array as autostart_array
2495 * does the locking, and it could even be a different array
2497 static int cnt = 3;
2498 if (cnt > 0 ) {
2499 printk(KERN_WARNING
2500 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2501 "This will not be supported beyond 2.6\n",
2502 current->comm, current->pid);
2503 cnt--;
2505 err = autostart_array(new_decode_dev(arg));
2506 if (err) {
2507 printk(KERN_WARNING "md: autostart failed!\n");
2508 goto abort;
2510 goto done;
2513 err = mddev_lock(mddev);
2514 if (err) {
2515 printk(KERN_INFO
2516 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2517 err, cmd);
2518 goto abort;
2521 switch (cmd)
2523 case SET_ARRAY_INFO:
2525 mdu_array_info_t info;
2526 if (!arg)
2527 memset(&info, 0, sizeof(info));
2528 else if (copy_from_user(&info, argp, sizeof(info))) {
2529 err = -EFAULT;
2530 goto abort_unlock;
2532 if (mddev->pers) {
2533 err = update_array_info(mddev, &info);
2534 if (err) {
2535 printk(KERN_WARNING "md: couldn't update"
2536 " array info. %d\n", err);
2537 goto abort_unlock;
2539 goto done_unlock;
2541 if (!list_empty(&mddev->disks)) {
2542 printk(KERN_WARNING
2543 "md: array %s already has disks!\n",
2544 mdname(mddev));
2545 err = -EBUSY;
2546 goto abort_unlock;
2548 if (mddev->raid_disks) {
2549 printk(KERN_WARNING
2550 "md: array %s already initialised!\n",
2551 mdname(mddev));
2552 err = -EBUSY;
2553 goto abort_unlock;
2555 err = set_array_info(mddev, &info);
2556 if (err) {
2557 printk(KERN_WARNING "md: couldn't set"
2558 " array info. %d\n", err);
2559 goto abort_unlock;
2562 goto done_unlock;
2564 default:;
2568 * Commands querying/configuring an existing array:
2570 /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2571 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
2572 err = -ENODEV;
2573 goto abort_unlock;
2577 * Commands even a read-only array can execute:
2579 switch (cmd)
2581 case GET_ARRAY_INFO:
2582 err = get_array_info(mddev, argp);
2583 goto done_unlock;
2585 case GET_DISK_INFO:
2586 err = get_disk_info(mddev, argp);
2587 goto done_unlock;
2589 case RESTART_ARRAY_RW:
2590 err = restart_array(mddev);
2591 goto done_unlock;
2593 case STOP_ARRAY:
2594 err = do_md_stop (mddev, 0);
2595 goto done_unlock;
2597 case STOP_ARRAY_RO:
2598 err = do_md_stop (mddev, 1);
2599 goto done_unlock;
2602 * We have a problem here : there is no easy way to give a CHS
2603 * virtual geometry. We currently pretend that we have a 2 heads
2604 * 4 sectors (with a BIG number of cylinders...). This drives
2605 * dosfs just mad... ;-)
2607 case HDIO_GETGEO:
2608 if (!loc) {
2609 err = -EINVAL;
2610 goto abort_unlock;
2612 err = put_user (2, (char __user *) &loc->heads);
2613 if (err)
2614 goto abort_unlock;
2615 err = put_user (4, (char __user *) &loc->sectors);
2616 if (err)
2617 goto abort_unlock;
2618 err = put_user(get_capacity(mddev->gendisk)/8,
2619 (short __user *) &loc->cylinders);
2620 if (err)
2621 goto abort_unlock;
2622 err = put_user (get_start_sect(inode->i_bdev),
2623 (long __user *) &loc->start);
2624 goto done_unlock;
2628 * The remaining ioctls are changing the state of the
2629 * superblock, so we do not allow read-only arrays
2630 * here:
2632 if (mddev->ro) {
2633 err = -EROFS;
2634 goto abort_unlock;
2637 switch (cmd)
2639 case ADD_NEW_DISK:
2641 mdu_disk_info_t info;
2642 if (copy_from_user(&info, argp, sizeof(info)))
2643 err = -EFAULT;
2644 else
2645 err = add_new_disk(mddev, &info);
2646 goto done_unlock;
2649 case HOT_REMOVE_DISK:
2650 err = hot_remove_disk(mddev, new_decode_dev(arg));
2651 goto done_unlock;
2653 case HOT_ADD_DISK:
2654 err = hot_add_disk(mddev, new_decode_dev(arg));
2655 goto done_unlock;
2657 case SET_DISK_FAULTY:
2658 err = set_disk_faulty(mddev, new_decode_dev(arg));
2659 goto done_unlock;
2661 case RUN_ARRAY:
2662 err = do_md_run (mddev);
2663 goto done_unlock;
2665 default:
2666 if (_IOC_TYPE(cmd) == MD_MAJOR)
2667 printk(KERN_WARNING "md: %s(pid %d) used"
2668 " obsolete MD ioctl, upgrade your"
2669 " software to use new ictls.\n",
2670 current->comm, current->pid);
2671 err = -EINVAL;
2672 goto abort_unlock;
2675 done_unlock:
2676 abort_unlock:
2677 mddev_unlock(mddev);
2679 return err;
2680 done:
2681 if (err)
2682 MD_BUG();
2683 abort:
2684 return err;
2687 static int md_open(struct inode *inode, struct file *file)
2690 * Succeed if we can lock the mddev, which confirms that
2691 * it isn't being stopped right now.
2693 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2694 int err;
2696 if ((err = mddev_lock(mddev)))
2697 goto out;
2699 err = 0;
2700 mddev_get(mddev);
2701 mddev_unlock(mddev);
2703 check_disk_change(inode->i_bdev);
2704 out:
2705 return err;
2708 static int md_release(struct inode *inode, struct file * file)
2710 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2712 if (!mddev)
2713 BUG();
2714 mddev_put(mddev);
2716 return 0;
2719 static int md_media_changed(struct gendisk *disk)
2721 mddev_t *mddev = disk->private_data;
2723 return mddev->changed;
2726 static int md_revalidate(struct gendisk *disk)
2728 mddev_t *mddev = disk->private_data;
2730 mddev->changed = 0;
2731 return 0;
2733 static struct block_device_operations md_fops =
2735 .owner = THIS_MODULE,
2736 .open = md_open,
2737 .release = md_release,
2738 .ioctl = md_ioctl,
2739 .media_changed = md_media_changed,
2740 .revalidate_disk= md_revalidate,
2743 static int md_thread(void * arg)
2745 mdk_thread_t *thread = arg;
2747 lock_kernel();
2750 * Detach thread
2753 daemonize(thread->name, mdname(thread->mddev));
2755 current->exit_signal = SIGCHLD;
2756 allow_signal(SIGKILL);
2757 thread->tsk = current;
2760 * md_thread is a 'system-thread', it's priority should be very
2761 * high. We avoid resource deadlocks individually in each
2762 * raid personality. (RAID5 does preallocation) We also use RR and
2763 * the very same RT priority as kswapd, thus we will never get
2764 * into a priority inversion deadlock.
2766 * we definitely have to have equal or higher priority than
2767 * bdflush, otherwise bdflush will deadlock if there are too
2768 * many dirty RAID5 blocks.
2770 unlock_kernel();
2772 complete(thread->event);
2773 while (thread->run) {
2774 void (*run)(mddev_t *);
2776 wait_event_interruptible(thread->wqueue,
2777 test_bit(THREAD_WAKEUP, &thread->flags));
2778 if (current->flags & PF_FREEZE)
2779 refrigerator(PF_FREEZE);
2781 clear_bit(THREAD_WAKEUP, &thread->flags);
2783 run = thread->run;
2784 if (run)
2785 run(thread->mddev);
2787 if (signal_pending(current))
2788 flush_signals(current);
2790 complete(thread->event);
2791 return 0;
2794 void md_wakeup_thread(mdk_thread_t *thread)
2796 if (thread) {
2797 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2798 set_bit(THREAD_WAKEUP, &thread->flags);
2799 wake_up(&thread->wqueue);
2803 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2804 const char *name)
2806 mdk_thread_t *thread;
2807 int ret;
2808 struct completion event;
2810 thread = (mdk_thread_t *) kmalloc
2811 (sizeof(mdk_thread_t), GFP_KERNEL);
2812 if (!thread)
2813 return NULL;
2815 memset(thread, 0, sizeof(mdk_thread_t));
2816 init_waitqueue_head(&thread->wqueue);
2818 init_completion(&event);
2819 thread->event = &event;
2820 thread->run = run;
2821 thread->mddev = mddev;
2822 thread->name = name;
2823 ret = kernel_thread(md_thread, thread, 0);
2824 if (ret < 0) {
2825 kfree(thread);
2826 return NULL;
2828 wait_for_completion(&event);
2829 return thread;
2832 void md_unregister_thread(mdk_thread_t *thread)
2834 struct completion event;
2836 init_completion(&event);
2838 thread->event = &event;
2840 /* As soon as ->run is set to NULL, the task could disappear,
2841 * so we need to hold tasklist_lock until we have sent the signal
2843 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2844 read_lock(&tasklist_lock);
2845 thread->run = NULL;
2846 send_sig(SIGKILL, thread->tsk, 1);
2847 read_unlock(&tasklist_lock);
2848 wait_for_completion(&event);
2849 kfree(thread);
2852 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2854 if (!mddev) {
2855 MD_BUG();
2856 return;
2859 if (!rdev || rdev->faulty)
2860 return;
2862 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2863 mdname(mddev),
2864 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2865 __builtin_return_address(0),__builtin_return_address(1),
2866 __builtin_return_address(2),__builtin_return_address(3));
2868 if (!mddev->pers->error_handler)
2869 return;
2870 mddev->pers->error_handler(mddev,rdev);
2871 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2872 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2873 md_wakeup_thread(mddev->thread);
2876 /* seq_file implementation /proc/mdstat */
2878 static void status_unused(struct seq_file *seq)
2880 int i = 0;
2881 mdk_rdev_t *rdev;
2882 struct list_head *tmp;
2884 seq_printf(seq, "unused devices: ");
2886 ITERATE_RDEV_PENDING(rdev,tmp) {
2887 char b[BDEVNAME_SIZE];
2888 i++;
2889 seq_printf(seq, "%s ",
2890 bdevname(rdev->bdev,b));
2892 if (!i)
2893 seq_printf(seq, "<none>");
2895 seq_printf(seq, "\n");
2899 static void status_resync(struct seq_file *seq, mddev_t * mddev)
2901 unsigned long max_blocks, resync, res, dt, db, rt;
2903 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
2905 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2906 max_blocks = mddev->resync_max_sectors >> 1;
2907 else
2908 max_blocks = mddev->size;
2911 * Should not happen.
2913 if (!max_blocks) {
2914 MD_BUG();
2915 return;
2917 res = (resync/1024)*1000/(max_blocks/1024 + 1);
2919 int i, x = res/50, y = 20-x;
2920 seq_printf(seq, "[");
2921 for (i = 0; i < x; i++)
2922 seq_printf(seq, "=");
2923 seq_printf(seq, ">");
2924 for (i = 0; i < y; i++)
2925 seq_printf(seq, ".");
2926 seq_printf(seq, "] ");
2928 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
2929 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
2930 "resync" : "recovery"),
2931 res/10, res % 10, resync, max_blocks);
2934 * We do not want to overflow, so the order of operands and
2935 * the * 100 / 100 trick are important. We do a +1 to be
2936 * safe against division by zero. We only estimate anyway.
2938 * dt: time from mark until now
2939 * db: blocks written from mark until now
2940 * rt: remaining time
2942 dt = ((jiffies - mddev->resync_mark) / HZ);
2943 if (!dt) dt++;
2944 db = resync - (mddev->resync_mark_cnt/2);
2945 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
2947 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
2949 seq_printf(seq, " speed=%ldK/sec", db/dt);
2952 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
2954 struct list_head *tmp;
2955 loff_t l = *pos;
2956 mddev_t *mddev;
2958 if (l >= 0x10000)
2959 return NULL;
2960 if (!l--)
2961 /* header */
2962 return (void*)1;
2964 spin_lock(&all_mddevs_lock);
2965 list_for_each(tmp,&all_mddevs)
2966 if (!l--) {
2967 mddev = list_entry(tmp, mddev_t, all_mddevs);
2968 mddev_get(mddev);
2969 spin_unlock(&all_mddevs_lock);
2970 return mddev;
2972 spin_unlock(&all_mddevs_lock);
2973 if (!l--)
2974 return (void*)2;/* tail */
2975 return NULL;
2978 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2980 struct list_head *tmp;
2981 mddev_t *next_mddev, *mddev = v;
2983 ++*pos;
2984 if (v == (void*)2)
2985 return NULL;
2987 spin_lock(&all_mddevs_lock);
2988 if (v == (void*)1)
2989 tmp = all_mddevs.next;
2990 else
2991 tmp = mddev->all_mddevs.next;
2992 if (tmp != &all_mddevs)
2993 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
2994 else {
2995 next_mddev = (void*)2;
2996 *pos = 0x10000;
2998 spin_unlock(&all_mddevs_lock);
3000 if (v != (void*)1)
3001 mddev_put(mddev);
3002 return next_mddev;
3006 static void md_seq_stop(struct seq_file *seq, void *v)
3008 mddev_t *mddev = v;
3010 if (mddev && v != (void*)1 && v != (void*)2)
3011 mddev_put(mddev);
3014 static int md_seq_show(struct seq_file *seq, void *v)
3016 mddev_t *mddev = v;
3017 sector_t size;
3018 struct list_head *tmp2;
3019 mdk_rdev_t *rdev;
3020 int i;
3022 if (v == (void*)1) {
3023 seq_printf(seq, "Personalities : ");
3024 spin_lock(&pers_lock);
3025 for (i = 0; i < MAX_PERSONALITY; i++)
3026 if (pers[i])
3027 seq_printf(seq, "[%s] ", pers[i]->name);
3029 spin_unlock(&pers_lock);
3030 seq_printf(seq, "\n");
3031 return 0;
3033 if (v == (void*)2) {
3034 status_unused(seq);
3035 return 0;
3038 if (mddev_lock(mddev)!=0)
3039 return -EINTR;
3040 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3041 seq_printf(seq, "%s : %sactive", mdname(mddev),
3042 mddev->pers ? "" : "in");
3043 if (mddev->pers) {
3044 if (mddev->ro)
3045 seq_printf(seq, " (read-only)");
3046 seq_printf(seq, " %s", mddev->pers->name);
3049 size = 0;
3050 ITERATE_RDEV(mddev,rdev,tmp2) {
3051 char b[BDEVNAME_SIZE];
3052 seq_printf(seq, " %s[%d]",
3053 bdevname(rdev->bdev,b), rdev->desc_nr);
3054 if (rdev->faulty) {
3055 seq_printf(seq, "(F)");
3056 continue;
3058 size += rdev->size;
3061 if (!list_empty(&mddev->disks)) {
3062 if (mddev->pers)
3063 seq_printf(seq, "\n %llu blocks",
3064 (unsigned long long)mddev->array_size);
3065 else
3066 seq_printf(seq, "\n %llu blocks",
3067 (unsigned long long)size);
3070 if (mddev->pers) {
3071 mddev->pers->status (seq, mddev);
3072 seq_printf(seq, "\n ");
3073 if (mddev->curr_resync > 2)
3074 status_resync (seq, mddev);
3075 else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3076 seq_printf(seq, " resync=DELAYED");
3079 seq_printf(seq, "\n");
3081 mddev_unlock(mddev);
3083 return 0;
3086 static struct seq_operations md_seq_ops = {
3087 .start = md_seq_start,
3088 .next = md_seq_next,
3089 .stop = md_seq_stop,
3090 .show = md_seq_show,
3093 static int md_seq_open(struct inode *inode, struct file *file)
3095 int error;
3097 error = seq_open(file, &md_seq_ops);
3098 return error;
3101 static struct file_operations md_seq_fops = {
3102 .open = md_seq_open,
3103 .read = seq_read,
3104 .llseek = seq_lseek,
3105 .release = seq_release,
3108 int register_md_personality(int pnum, mdk_personality_t *p)
3110 if (pnum >= MAX_PERSONALITY) {
3111 printk(KERN_ERR
3112 "md: tried to install personality %s as nr %d, but max is %lu\n",
3113 p->name, pnum, MAX_PERSONALITY-1);
3114 return -EINVAL;
3117 spin_lock(&pers_lock);
3118 if (pers[pnum]) {
3119 spin_unlock(&pers_lock);
3120 return -EBUSY;
3123 pers[pnum] = p;
3124 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3125 spin_unlock(&pers_lock);
3126 return 0;
3129 int unregister_md_personality(int pnum)
3131 if (pnum >= MAX_PERSONALITY)
3132 return -EINVAL;
3134 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3135 spin_lock(&pers_lock);
3136 pers[pnum] = NULL;
3137 spin_unlock(&pers_lock);
3138 return 0;
3141 static int is_mddev_idle(mddev_t *mddev)
3143 mdk_rdev_t * rdev;
3144 struct list_head *tmp;
3145 int idle;
3146 unsigned long curr_events;
3148 idle = 1;
3149 ITERATE_RDEV(mddev,rdev,tmp) {
3150 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3151 curr_events = disk_stat_read(disk, read_sectors) +
3152 disk_stat_read(disk, write_sectors) -
3153 atomic_read(&disk->sync_io);
3154 /* Allow some slack between valud of curr_events and last_events,
3155 * as there are some uninteresting races.
3156 * Note: the following is an unsigned comparison.
3158 if ((curr_events - rdev->last_events + 32) > 64) {
3159 rdev->last_events = curr_events;
3160 idle = 0;
3163 return idle;
3166 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3168 /* another "blocks" (512byte) blocks have been synced */
3169 atomic_sub(blocks, &mddev->recovery_active);
3170 wake_up(&mddev->recovery_wait);
3171 if (!ok) {
3172 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3173 md_wakeup_thread(mddev->thread);
3174 // stop recovery, signal do_sync ....
3179 void md_write_start(mddev_t *mddev)
3181 if (!atomic_read(&mddev->writes_pending)) {
3182 mddev_lock_uninterruptible(mddev);
3183 if (mddev->in_sync) {
3184 mddev->in_sync = 0;
3185 del_timer(&mddev->safemode_timer);
3186 md_update_sb(mddev);
3188 atomic_inc(&mddev->writes_pending);
3189 mddev_unlock(mddev);
3190 } else
3191 atomic_inc(&mddev->writes_pending);
3194 void md_write_end(mddev_t *mddev)
3196 if (atomic_dec_and_test(&mddev->writes_pending)) {
3197 if (mddev->safemode == 2)
3198 md_wakeup_thread(mddev->thread);
3199 else
3200 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3204 static inline void md_enter_safemode(mddev_t *mddev)
3206 if (!mddev->safemode) return;
3207 if (mddev->safemode == 2 &&
3208 (atomic_read(&mddev->writes_pending) || mddev->in_sync ||
3209 mddev->recovery_cp != MaxSector))
3210 return; /* avoid the lock */
3211 mddev_lock_uninterruptible(mddev);
3212 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3213 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3214 mddev->in_sync = 1;
3215 md_update_sb(mddev);
3217 mddev_unlock(mddev);
3219 if (mddev->safemode == 1)
3220 mddev->safemode = 0;
3223 void md_handle_safemode(mddev_t *mddev)
3225 if (signal_pending(current)) {
3226 printk(KERN_INFO "md: %s in immediate safe mode\n",
3227 mdname(mddev));
3228 mddev->safemode = 2;
3229 flush_signals(current);
3231 md_enter_safemode(mddev);
3235 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3237 #define SYNC_MARKS 10
3238 #define SYNC_MARK_STEP (3*HZ)
3239 static void md_do_sync(mddev_t *mddev)
3241 mddev_t *mddev2;
3242 unsigned int currspeed = 0,
3243 window;
3244 sector_t max_sectors,j;
3245 unsigned long mark[SYNC_MARKS];
3246 sector_t mark_cnt[SYNC_MARKS];
3247 int last_mark,m;
3248 struct list_head *tmp;
3249 sector_t last_check;
3251 /* just incase thread restarts... */
3252 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3253 return;
3255 /* we overload curr_resync somewhat here.
3256 * 0 == not engaged in resync at all
3257 * 2 == checking that there is no conflict with another sync
3258 * 1 == like 2, but have yielded to allow conflicting resync to
3259 * commense
3260 * other == active in resync - this many blocks
3262 * Before starting a resync we must have set curr_resync to
3263 * 2, and then checked that every "conflicting" array has curr_resync
3264 * less than ours. When we find one that is the same or higher
3265 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3266 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3267 * This will mean we have to start checking from the beginning again.
3271 do {
3272 mddev->curr_resync = 2;
3274 try_again:
3275 if (signal_pending(current)) {
3276 flush_signals(current);
3277 goto skip;
3279 ITERATE_MDDEV(mddev2,tmp) {
3280 printk(".");
3281 if (mddev2 == mddev)
3282 continue;
3283 if (mddev2->curr_resync &&
3284 match_mddev_units(mddev,mddev2)) {
3285 DEFINE_WAIT(wq);
3286 if (mddev < mddev2 && mddev->curr_resync == 2) {
3287 /* arbitrarily yield */
3288 mddev->curr_resync = 1;
3289 wake_up(&resync_wait);
3291 if (mddev > mddev2 && mddev->curr_resync == 1)
3292 /* no need to wait here, we can wait the next
3293 * time 'round when curr_resync == 2
3295 continue;
3296 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3297 if (!signal_pending(current)
3298 && mddev2->curr_resync >= mddev->curr_resync) {
3299 printk(KERN_INFO "md: delaying resync of %s"
3300 " until %s has finished resync (they"
3301 " share one or more physical units)\n",
3302 mdname(mddev), mdname(mddev2));
3303 mddev_put(mddev2);
3304 schedule();
3305 finish_wait(&resync_wait, &wq);
3306 goto try_again;
3308 finish_wait(&resync_wait, &wq);
3311 } while (mddev->curr_resync < 2);
3313 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3314 /* resync follows the size requested by the personality,
3315 * which default to physical size, but can be virtual size
3317 max_sectors = mddev->resync_max_sectors;
3318 else
3319 /* recovery follows the physical size of devices */
3320 max_sectors = mddev->size << 1;
3322 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3323 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3324 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3325 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3326 "(but not more than %d KB/sec) for reconstruction.\n",
3327 sysctl_speed_limit_max);
3329 is_mddev_idle(mddev); /* this also initializes IO event counters */
3330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3331 j = mddev->recovery_cp;
3332 else
3333 j = 0;
3334 for (m = 0; m < SYNC_MARKS; m++) {
3335 mark[m] = jiffies;
3336 mark_cnt[m] = j;
3338 last_mark = 0;
3339 mddev->resync_mark = mark[last_mark];
3340 mddev->resync_mark_cnt = mark_cnt[last_mark];
3343 * Tune reconstruction:
3345 window = 32*(PAGE_SIZE/512);
3346 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3347 window/2,(unsigned long long) max_sectors/2);
3349 atomic_set(&mddev->recovery_active, 0);
3350 init_waitqueue_head(&mddev->recovery_wait);
3351 last_check = 0;
3353 if (j>2) {
3354 printk(KERN_INFO
3355 "md: resuming recovery of %s from checkpoint.\n",
3356 mdname(mddev));
3357 mddev->curr_resync = j;
3360 while (j < max_sectors) {
3361 int sectors;
3363 sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
3364 if (sectors < 0) {
3365 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3366 goto out;
3368 atomic_add(sectors, &mddev->recovery_active);
3369 j += sectors;
3370 if (j>1) mddev->curr_resync = j;
3372 if (last_check + window > j || j == max_sectors)
3373 continue;
3375 last_check = j;
3377 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3378 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3379 break;
3381 repeat:
3382 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3383 /* step marks */
3384 int next = (last_mark+1) % SYNC_MARKS;
3386 mddev->resync_mark = mark[next];
3387 mddev->resync_mark_cnt = mark_cnt[next];
3388 mark[next] = jiffies;
3389 mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
3390 last_mark = next;
3394 if (signal_pending(current)) {
3396 * got a signal, exit.
3398 printk(KERN_INFO
3399 "md: md_do_sync() got signal ... exiting\n");
3400 flush_signals(current);
3401 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3402 goto out;
3406 * this loop exits only if either when we are slower than
3407 * the 'hard' speed limit, or the system was IO-idle for
3408 * a jiffy.
3409 * the system might be non-idle CPU-wise, but we only care
3410 * about not overloading the IO subsystem. (things like an
3411 * e2fsck being done on the RAID array should execute fast)
3413 mddev->queue->unplug_fn(mddev->queue);
3414 cond_resched();
3416 currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
3418 if (currspeed > sysctl_speed_limit_min) {
3419 if ((currspeed > sysctl_speed_limit_max) ||
3420 !is_mddev_idle(mddev)) {
3421 msleep_interruptible(250);
3422 goto repeat;
3426 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3428 * this also signals 'finished resyncing' to md_stop
3430 out:
3431 mddev->queue->unplug_fn(mddev->queue);
3433 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3435 /* tell personality that we are finished */
3436 mddev->pers->sync_request(mddev, max_sectors, 1);
3438 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3439 mddev->curr_resync > 2 &&
3440 mddev->curr_resync >= mddev->recovery_cp) {
3441 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3442 printk(KERN_INFO
3443 "md: checkpointing recovery of %s.\n",
3444 mdname(mddev));
3445 mddev->recovery_cp = mddev->curr_resync;
3446 } else
3447 mddev->recovery_cp = MaxSector;
3450 md_enter_safemode(mddev);
3451 skip:
3452 mddev->curr_resync = 0;
3453 wake_up(&resync_wait);
3454 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3455 md_wakeup_thread(mddev->thread);
3460 * This routine is regularly called by all per-raid-array threads to
3461 * deal with generic issues like resync and super-block update.
3462 * Raid personalities that don't have a thread (linear/raid0) do not
3463 * need this as they never do any recovery or update the superblock.
3465 * It does not do any resync itself, but rather "forks" off other threads
3466 * to do that as needed.
3467 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3468 * "->recovery" and create a thread at ->sync_thread.
3469 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3470 * and wakeups up this thread which will reap the thread and finish up.
3471 * This thread also removes any faulty devices (with nr_pending == 0).
3473 * The overall approach is:
3474 * 1/ if the superblock needs updating, update it.
3475 * 2/ If a recovery thread is running, don't do anything else.
3476 * 3/ If recovery has finished, clean up, possibly marking spares active.
3477 * 4/ If there are any faulty devices, remove them.
3478 * 5/ If array is degraded, try to add spares devices
3479 * 6/ If array has spares or is not in-sync, start a resync thread.
3481 void md_check_recovery(mddev_t *mddev)
3483 mdk_rdev_t *rdev;
3484 struct list_head *rtmp;
3487 dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
3489 if (mddev->ro)
3490 return;
3491 if ( ! (
3492 mddev->sb_dirty ||
3493 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3494 test_bit(MD_RECOVERY_DONE, &mddev->recovery)
3496 return;
3497 if (mddev_trylock(mddev)==0) {
3498 int spares =0;
3499 if (mddev->sb_dirty)
3500 md_update_sb(mddev);
3501 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3502 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3503 /* resync/recovery still happening */
3504 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 goto unlock;
3507 if (mddev->sync_thread) {
3508 /* resync has finished, collect result */
3509 md_unregister_thread(mddev->sync_thread);
3510 mddev->sync_thread = NULL;
3511 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3512 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3513 /* success...*/
3514 /* activate any spares */
3515 mddev->pers->spare_active(mddev);
3517 md_update_sb(mddev);
3518 mddev->recovery = 0;
3519 /* flag recovery needed just to double check */
3520 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3521 goto unlock;
3523 if (mddev->recovery)
3524 /* probably just the RECOVERY_NEEDED flag */
3525 mddev->recovery = 0;
3527 /* no recovery is running.
3528 * remove any failed drives, then
3529 * add spares if possible.
3530 * Spare are also removed and re-added, to allow
3531 * the personality to fail the re-add.
3533 ITERATE_RDEV(mddev,rdev,rtmp)
3534 if (rdev->raid_disk >= 0 &&
3535 (rdev->faulty || ! rdev->in_sync) &&
3536 atomic_read(&rdev->nr_pending)==0) {
3537 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3538 rdev->raid_disk = -1;
3541 if (mddev->degraded) {
3542 ITERATE_RDEV(mddev,rdev,rtmp)
3543 if (rdev->raid_disk < 0
3544 && !rdev->faulty) {
3545 if (mddev->pers->hot_add_disk(mddev,rdev))
3546 spares++;
3547 else
3548 break;
3552 if (!spares && (mddev->recovery_cp == MaxSector )) {
3553 /* nothing we can do ... */
3554 goto unlock;
3556 if (mddev->pers->sync_request) {
3557 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3558 if (!spares)
3559 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3560 mddev->sync_thread = md_register_thread(md_do_sync,
3561 mddev,
3562 "%s_resync");
3563 if (!mddev->sync_thread) {
3564 printk(KERN_ERR "%s: could not start resync"
3565 " thread...\n",
3566 mdname(mddev));
3567 /* leave the spares where they are, it shouldn't hurt */
3568 mddev->recovery = 0;
3569 } else {
3570 md_wakeup_thread(mddev->sync_thread);
3573 unlock:
3574 mddev_unlock(mddev);
3578 static int md_notify_reboot(struct notifier_block *this,
3579 unsigned long code, void *x)
3581 struct list_head *tmp;
3582 mddev_t *mddev;
3584 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3586 printk(KERN_INFO "md: stopping all md devices.\n");
3588 ITERATE_MDDEV(mddev,tmp)
3589 if (mddev_trylock(mddev)==0)
3590 do_md_stop (mddev, 1);
3592 * certain more exotic SCSI devices are known to be
3593 * volatile wrt too early system reboots. While the
3594 * right place to handle this issue is the given
3595 * driver, we do want to have a safe RAID driver ...
3597 mdelay(1000*1);
3599 return NOTIFY_DONE;
3602 static struct notifier_block md_notifier = {
3603 .notifier_call = md_notify_reboot,
3604 .next = NULL,
3605 .priority = INT_MAX, /* before any real devices */
3608 static void md_geninit(void)
3610 struct proc_dir_entry *p;
3612 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3614 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3615 if (p)
3616 p->proc_fops = &md_seq_fops;
3619 static int __init md_init(void)
3621 int minor;
3623 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3624 " MD_SB_DISKS=%d\n",
3625 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3626 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3628 if (register_blkdev(MAJOR_NR, "md"))
3629 return -1;
3630 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3631 unregister_blkdev(MAJOR_NR, "md");
3632 return -1;
3634 devfs_mk_dir("md");
3635 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3636 md_probe, NULL, NULL);
3637 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3638 md_probe, NULL, NULL);
3640 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3641 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3642 S_IFBLK|S_IRUSR|S_IWUSR,
3643 "md/%d", minor);
3645 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3646 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3647 S_IFBLK|S_IRUSR|S_IWUSR,
3648 "md/mdp%d", minor);
3651 register_reboot_notifier(&md_notifier);
3652 raid_table_header = register_sysctl_table(raid_root_table, 1);
3654 md_geninit();
3655 return (0);
3659 #ifndef MODULE
3662 * Searches all registered partitions for autorun RAID arrays
3663 * at boot time.
3665 static dev_t detected_devices[128];
3666 static int dev_cnt;
3668 void md_autodetect_dev(dev_t dev)
3670 if (dev_cnt >= 0 && dev_cnt < 127)
3671 detected_devices[dev_cnt++] = dev;
3675 static void autostart_arrays(int part)
3677 mdk_rdev_t *rdev;
3678 int i;
3680 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3682 for (i = 0; i < dev_cnt; i++) {
3683 dev_t dev = detected_devices[i];
3685 rdev = md_import_device(dev,0, 0);
3686 if (IS_ERR(rdev))
3687 continue;
3689 if (rdev->faulty) {
3690 MD_BUG();
3691 continue;
3693 list_add(&rdev->same_set, &pending_raid_disks);
3695 dev_cnt = 0;
3697 autorun_devices(part);
3700 #endif
3702 static __exit void md_exit(void)
3704 mddev_t *mddev;
3705 struct list_head *tmp;
3706 int i;
3707 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3708 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3709 for (i=0; i < MAX_MD_DEVS; i++)
3710 devfs_remove("md/%d", i);
3711 for (i=0; i < MAX_MD_DEVS; i++)
3712 devfs_remove("md/d%d", i);
3714 devfs_remove("md");
3716 unregister_blkdev(MAJOR_NR,"md");
3717 unregister_blkdev(mdp_major, "mdp");
3718 unregister_reboot_notifier(&md_notifier);
3719 unregister_sysctl_table(raid_table_header);
3720 remove_proc_entry("mdstat", NULL);
3721 ITERATE_MDDEV(mddev,tmp) {
3722 struct gendisk *disk = mddev->gendisk;
3723 if (!disk)
3724 continue;
3725 export_array(mddev);
3726 del_gendisk(disk);
3727 put_disk(disk);
3728 mddev->gendisk = NULL;
3729 mddev_put(mddev);
3733 module_init(md_init)
3734 module_exit(md_exit)
3736 EXPORT_SYMBOL(register_md_personality);
3737 EXPORT_SYMBOL(unregister_md_personality);
3738 EXPORT_SYMBOL(md_error);
3739 EXPORT_SYMBOL(md_done_sync);
3740 EXPORT_SYMBOL(md_write_start);
3741 EXPORT_SYMBOL(md_write_end);
3742 EXPORT_SYMBOL(md_handle_safemode);
3743 EXPORT_SYMBOL(md_register_thread);
3744 EXPORT_SYMBOL(md_unregister_thread);
3745 EXPORT_SYMBOL(md_wakeup_thread);
3746 EXPORT_SYMBOL(md_print_devices);
3747 EXPORT_SYMBOL(md_check_recovery);
3748 MODULE_LICENSE("GPL");