[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / media / dvb / frontends / tda1004x.c
blob0beb370792ae30584d42398ccdb98273ecb86f91
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware.
28 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
29 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/device.h>
35 #include "dvb_frontend.h"
36 #include "tda1004x.h"
38 enum tda1004x_demod {
39 TDA1004X_DEMOD_TDA10045,
40 TDA1004X_DEMOD_TDA10046,
43 struct tda1004x_state {
44 struct i2c_adapter* i2c;
45 struct dvb_frontend_ops ops;
46 const struct tda1004x_config* config;
47 struct dvb_frontend frontend;
49 /* private demod data */
50 u8 initialised;
51 enum tda1004x_demod demod_type;
52 u8 fw_version;
56 static int debug;
57 #define dprintk(args...) \
58 do { \
59 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
60 } while (0)
62 #define TDA1004X_CHIPID 0x00
63 #define TDA1004X_AUTO 0x01
64 #define TDA1004X_IN_CONF1 0x02
65 #define TDA1004X_IN_CONF2 0x03
66 #define TDA1004X_OUT_CONF1 0x04
67 #define TDA1004X_OUT_CONF2 0x05
68 #define TDA1004X_STATUS_CD 0x06
69 #define TDA1004X_CONFC4 0x07
70 #define TDA1004X_DSSPARE2 0x0C
71 #define TDA10045H_CODE_IN 0x0D
72 #define TDA10045H_FWPAGE 0x0E
73 #define TDA1004X_SCAN_CPT 0x10
74 #define TDA1004X_DSP_CMD 0x11
75 #define TDA1004X_DSP_ARG 0x12
76 #define TDA1004X_DSP_DATA1 0x13
77 #define TDA1004X_DSP_DATA2 0x14
78 #define TDA1004X_CONFADC1 0x15
79 #define TDA1004X_CONFC1 0x16
80 #define TDA10045H_S_AGC 0x1a
81 #define TDA10046H_AGC_TUN_LEVEL 0x1a
82 #define TDA1004X_SNR 0x1c
83 #define TDA1004X_CONF_TS1 0x1e
84 #define TDA1004X_CONF_TS2 0x1f
85 #define TDA1004X_CBER_RESET 0x20
86 #define TDA1004X_CBER_MSB 0x21
87 #define TDA1004X_CBER_LSB 0x22
88 #define TDA1004X_CVBER_LUT 0x23
89 #define TDA1004X_VBER_MSB 0x24
90 #define TDA1004X_VBER_MID 0x25
91 #define TDA1004X_VBER_LSB 0x26
92 #define TDA1004X_UNCOR 0x27
94 #define TDA10045H_CONFPLL_P 0x2D
95 #define TDA10045H_CONFPLL_M_MSB 0x2E
96 #define TDA10045H_CONFPLL_M_LSB 0x2F
97 #define TDA10045H_CONFPLL_N 0x30
99 #define TDA10046H_CONFPLL1 0x2D
100 #define TDA10046H_CONFPLL2 0x2F
101 #define TDA10046H_CONFPLL3 0x30
102 #define TDA10046H_TIME_WREF1 0x31
103 #define TDA10046H_TIME_WREF2 0x32
104 #define TDA10046H_TIME_WREF3 0x33
105 #define TDA10046H_TIME_WREF4 0x34
106 #define TDA10046H_TIME_WREF5 0x35
108 #define TDA10045H_UNSURW_MSB 0x31
109 #define TDA10045H_UNSURW_LSB 0x32
110 #define TDA10045H_WREF_MSB 0x33
111 #define TDA10045H_WREF_MID 0x34
112 #define TDA10045H_WREF_LSB 0x35
113 #define TDA10045H_MUXOUT 0x36
114 #define TDA1004X_CONFADC2 0x37
116 #define TDA10045H_IOFFSET 0x38
118 #define TDA10046H_CONF_TRISTATE1 0x3B
119 #define TDA10046H_CONF_TRISTATE2 0x3C
120 #define TDA10046H_CONF_POLARITY 0x3D
121 #define TDA10046H_FREQ_OFFSET 0x3E
122 #define TDA10046H_GPIO_OUT_SEL 0x41
123 #define TDA10046H_GPIO_SELECT 0x42
124 #define TDA10046H_AGC_CONF 0x43
125 #define TDA10046H_AGC_GAINS 0x46
126 #define TDA10046H_AGC_TUN_MIN 0x47
127 #define TDA10046H_AGC_TUN_MAX 0x48
128 #define TDA10046H_AGC_IF_MIN 0x49
129 #define TDA10046H_AGC_IF_MAX 0x4A
131 #define TDA10046H_FREQ_PHY2_MSB 0x4D
132 #define TDA10046H_FREQ_PHY2_LSB 0x4E
134 #define TDA10046H_CVBER_CTRL 0x4F
135 #define TDA10046H_AGC_IF_LEVEL 0x52
136 #define TDA10046H_CODE_CPT 0x57
137 #define TDA10046H_CODE_IN 0x58
140 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
142 int ret;
143 u8 buf[] = { reg, data };
144 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
146 dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
148 msg.addr = state->config->demod_address;
149 ret = i2c_transfer(state->i2c, &msg, 1);
151 if (ret != 1)
152 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
153 __FUNCTION__, reg, data, ret);
155 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
156 reg, data, ret);
157 return (ret != 1) ? -1 : 0;
160 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
162 int ret;
163 u8 b0[] = { reg };
164 u8 b1[] = { 0 };
165 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
166 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
168 dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
170 msg[0].addr = state->config->demod_address;
171 msg[1].addr = state->config->demod_address;
172 ret = i2c_transfer(state->i2c, msg, 2);
174 if (ret != 2) {
175 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
176 ret);
177 return -1;
180 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
181 reg, b1[0], ret);
182 return b1[0];
185 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
187 int val;
188 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
189 mask, data);
191 // read a byte and check
192 val = tda1004x_read_byte(state, reg);
193 if (val < 0)
194 return val;
196 // mask if off
197 val = val & ~mask;
198 val |= data & 0xff;
200 // write it out again
201 return tda1004x_write_byteI(state, reg, val);
204 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
206 int i;
207 int result;
209 dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
211 result = 0;
212 for (i = 0; i < len; i++) {
213 result = tda1004x_write_byteI(state, reg + i, buf[i]);
214 if (result != 0)
215 break;
218 return result;
221 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
223 int result;
224 dprintk("%s\n", __FUNCTION__);
226 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
227 msleep(1);
228 return result;
231 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
233 dprintk("%s\n", __FUNCTION__);
235 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
238 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
239 fe_bandwidth_t bandwidth)
241 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
242 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
243 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
245 switch (bandwidth) {
246 case BANDWIDTH_6_MHZ:
247 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
248 break;
250 case BANDWIDTH_7_MHZ:
251 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
252 break;
254 case BANDWIDTH_8_MHZ:
255 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
256 break;
258 default:
259 return -EINVAL;
262 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
264 return 0;
267 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
268 fe_bandwidth_t bandwidth)
270 static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
271 static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
272 static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
274 switch (bandwidth) {
275 case BANDWIDTH_6_MHZ:
276 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
277 break;
279 case BANDWIDTH_7_MHZ:
280 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
281 break;
283 case BANDWIDTH_8_MHZ:
284 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
285 break;
287 default:
288 return -EINVAL;
291 return 0;
294 static int tda1004x_do_upload(struct tda1004x_state *state,
295 unsigned char *mem, unsigned int len,
296 u8 dspCodeCounterReg, u8 dspCodeInReg)
298 u8 buf[65];
299 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
300 int tx_size;
301 int pos = 0;
303 /* clear code counter */
304 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
305 fw_msg.addr = state->config->demod_address;
307 buf[0] = dspCodeInReg;
308 while (pos != len) {
309 // work out how much to send this time
310 tx_size = len - pos;
311 if (tx_size > 0x10)
312 tx_size = 0x10;
314 // send the chunk
315 memcpy(buf + 1, mem + pos, tx_size);
316 fw_msg.len = tx_size + 1;
317 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
318 printk("tda1004x: Error during firmware upload\n");
319 return -EIO;
321 pos += tx_size;
323 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
326 return 0;
329 static int tda1004x_check_upload_ok(struct tda1004x_state *state, u8 dspVersion)
331 u8 data1, data2;
333 // check upload was OK
334 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
335 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
337 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
338 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
339 if ((data1 != 0x67) || (data2 != dspVersion))
340 return -EIO;
342 return 0;
345 static int tda10045_fwupload(struct dvb_frontend* fe)
347 struct tda1004x_state* state = fe->demodulator_priv;
348 int ret;
349 const struct firmware *fw;
351 /* don't re-upload unless necessary */
352 if (tda1004x_check_upload_ok(state, 0x2c) == 0)
353 return 0;
355 /* request the firmware, this will block until someone uploads it */
356 printk("tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
357 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
358 if (ret) {
359 printk("tda1004x: no firmware upload (timeout or file not found?)\n");
360 return ret;
363 /* reset chip */
364 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
365 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
366 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
367 msleep(10);
369 /* set parameters */
370 tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
372 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
373 if (ret)
374 return ret;
375 printk("tda1004x: firmware upload complete\n");
377 /* wait for DSP to initialise */
378 /* DSPREADY doesn't seem to work on the TDA10045H */
379 msleep(100);
381 return tda1004x_check_upload_ok(state, 0x2c);
384 static int tda10046_get_fw_version(struct tda1004x_state *state,
385 const struct firmware *fw)
387 const unsigned char pattern[] = { 0x67, 0x00, 0x50, 0x62, 0x5e, 0x18, 0x67 };
388 unsigned int i;
390 /* area guessed from firmware v20, v21 and v25 */
391 for (i = 0x660; i < 0x700; i++) {
392 if (!memcmp(&fw->data[i], pattern, sizeof(pattern))) {
393 state->fw_version = fw->data[i + sizeof(pattern)];
394 printk(KERN_INFO "tda1004x: using firmware v%02x\n",
395 state->fw_version);
396 return 0;
400 return -EINVAL;
403 static int tda10046_fwupload(struct dvb_frontend* fe)
405 struct tda1004x_state* state = fe->demodulator_priv;
406 unsigned long timeout;
407 int ret;
408 const struct firmware *fw;
410 /* reset + wake up chip */
411 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 0);
412 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
413 msleep(100);
415 /* don't re-upload unless necessary */
416 if (tda1004x_check_upload_ok(state, state->fw_version) == 0)
417 return 0;
419 /* request the firmware, this will block until someone uploads it */
420 printk("tda1004x: waiting for firmware upload (%s)...\n", TDA10046_DEFAULT_FIRMWARE);
421 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
422 if (ret) {
423 printk("tda1004x: no firmware upload (timeout or file not found?)\n");
424 return ret;
427 if (fw->size < 24478) { /* size of firmware v20, which is the smallest of v20, v21 and v25 */
428 printk("tda1004x: firmware file seems to be too small (%d bytes)\n", fw->size);
429 return -EINVAL;
432 ret = tda10046_get_fw_version(state, fw);
433 if (ret < 0) {
434 printk("tda1004x: unable to find firmware version\n");
435 return ret;
438 /* set parameters */
439 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 10);
440 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, state->config->n_i2c);
441 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 99);
442 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
443 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x2c);
444 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
446 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
447 if (ret)
448 return ret;
449 printk("tda1004x: firmware upload complete\n");
451 /* wait for DSP to initialise */
452 timeout = jiffies + HZ;
453 while (!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
454 if (time_after(jiffies, timeout)) {
455 printk("tda1004x: DSP failed to initialised.\n");
456 return -EIO;
458 msleep(1);
461 return tda1004x_check_upload_ok(state, state->fw_version);
464 static int tda1004x_encode_fec(int fec)
466 // convert known FEC values
467 switch (fec) {
468 case FEC_1_2:
469 return 0;
470 case FEC_2_3:
471 return 1;
472 case FEC_3_4:
473 return 2;
474 case FEC_5_6:
475 return 3;
476 case FEC_7_8:
477 return 4;
480 // unsupported
481 return -EINVAL;
484 static int tda1004x_decode_fec(int tdafec)
486 // convert known FEC values
487 switch (tdafec) {
488 case 0:
489 return FEC_1_2;
490 case 1:
491 return FEC_2_3;
492 case 2:
493 return FEC_3_4;
494 case 3:
495 return FEC_5_6;
496 case 4:
497 return FEC_7_8;
500 // unsupported
501 return -1;
504 int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
506 struct tda1004x_state* state = fe->demodulator_priv;
508 return tda1004x_write_byteI(state, reg, data);
511 static int tda10045_init(struct dvb_frontend* fe)
513 struct tda1004x_state* state = fe->demodulator_priv;
515 dprintk("%s\n", __FUNCTION__);
517 if (state->initialised)
518 return 0;
520 if (tda10045_fwupload(fe)) {
521 printk("tda1004x: firmware upload failed\n");
522 return -EIO;
525 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
527 // Init the PLL
528 if (state->config->pll_init) {
529 tda1004x_enable_tuner_i2c(state);
530 state->config->pll_init(fe);
531 tda1004x_disable_tuner_i2c(state);
534 // tda setup
535 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
536 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
537 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
538 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
539 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
540 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
541 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
542 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
543 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
544 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
545 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
547 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
549 state->initialised = 1;
550 return 0;
553 static int tda10046_init(struct dvb_frontend* fe)
555 struct tda1004x_state* state = fe->demodulator_priv;
556 dprintk("%s\n", __FUNCTION__);
558 if (state->initialised)
559 return 0;
561 if (tda10046_fwupload(fe)) {
562 printk("tda1004x: firmware upload failed\n");
563 return -EIO;
566 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 0); // wake up the chip
568 // Init the PLL
569 if (state->config->pll_init) {
570 tda1004x_enable_tuner_i2c(state);
571 state->config->pll_init(fe);
572 tda1004x_disable_tuner_i2c(state);
575 // tda setup
576 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
577 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0x40);
578 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
579 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0); // disable pulse killer
580 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 10); // PLL M = 10
581 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, state->config->n_i2c); // PLL P = N = 0
582 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 99); // FREQOFFS = 99
583 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4); // } PHY2 = -11221
584 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x2c); // }
585 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0); // AGC setup
586 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x60, 0x60); // set AGC polarities
587 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
588 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
589 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
590 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
591 tda1004x_write_mask(state, TDA10046H_CVBER_CTRL, 0x30, 0x10); // 10^6 VBER measurement bits
592 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1
593 tda1004x_write_mask(state, TDA1004X_AUTO, 0x80, 0); // crystal is 50ppm
594 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
595 tda1004x_write_mask(state, TDA1004X_CONF_TS2, 0x31, 0); // MPEG2 interface config
596 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0x9e, 0); // disable AGC_TUN
597 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup
598 tda1004x_write_byteI(state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config
599 tda1004x_write_mask(state, TDA10046H_GPIO_SELECT, 8, 8); // GPIO select
600 tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
602 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
604 state->initialised = 1;
605 return 0;
608 static int tda1004x_set_fe(struct dvb_frontend* fe,
609 struct dvb_frontend_parameters *fe_params)
611 struct tda1004x_state* state = fe->demodulator_priv;
612 int tmp;
613 int inversion;
615 dprintk("%s\n", __FUNCTION__);
617 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
618 // setup auto offset
619 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
620 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
621 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
623 // disable agc_conf[2]
624 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
627 // set frequency
628 tda1004x_enable_tuner_i2c(state);
629 state->config->pll_set(fe, fe_params);
630 tda1004x_disable_tuner_i2c(state);
632 if (state->demod_type == TDA1004X_DEMOD_TDA10046)
633 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 4);
635 // Hardcoded to use auto as much as possible on the TDA10045 as it
636 // is very unreliable if AUTO mode is _not_ used.
637 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
638 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
639 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
640 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
643 // Set standard params.. or put them to auto
644 if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
645 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
646 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
647 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
648 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
649 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
650 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
651 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
652 } else {
653 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
655 // set HP FEC
656 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
657 if (tmp < 0)
658 return tmp;
659 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
661 // set LP FEC
662 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
663 if (tmp < 0)
664 return tmp;
665 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
667 // set constellation
668 switch (fe_params->u.ofdm.constellation) {
669 case QPSK:
670 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
671 break;
673 case QAM_16:
674 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
675 break;
677 case QAM_64:
678 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
679 break;
681 default:
682 return -EINVAL;
685 // set hierarchy
686 switch (fe_params->u.ofdm.hierarchy_information) {
687 case HIERARCHY_NONE:
688 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
689 break;
691 case HIERARCHY_1:
692 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
693 break;
695 case HIERARCHY_2:
696 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
697 break;
699 case HIERARCHY_4:
700 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
701 break;
703 default:
704 return -EINVAL;
708 // set bandwidth
709 switch (state->demod_type) {
710 case TDA1004X_DEMOD_TDA10045:
711 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
712 break;
714 case TDA1004X_DEMOD_TDA10046:
715 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
716 break;
719 // set inversion
720 inversion = fe_params->inversion;
721 if (state->config->invert)
722 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
723 switch (inversion) {
724 case INVERSION_OFF:
725 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
726 break;
728 case INVERSION_ON:
729 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
730 break;
732 default:
733 return -EINVAL;
736 // set guard interval
737 switch (fe_params->u.ofdm.guard_interval) {
738 case GUARD_INTERVAL_1_32:
739 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
740 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
741 break;
743 case GUARD_INTERVAL_1_16:
744 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
745 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
746 break;
748 case GUARD_INTERVAL_1_8:
749 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
750 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
751 break;
753 case GUARD_INTERVAL_1_4:
754 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
755 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
756 break;
758 case GUARD_INTERVAL_AUTO:
759 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
760 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
761 break;
763 default:
764 return -EINVAL;
767 // set transmission mode
768 switch (fe_params->u.ofdm.transmission_mode) {
769 case TRANSMISSION_MODE_2K:
770 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
771 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
772 break;
774 case TRANSMISSION_MODE_8K:
775 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
776 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
777 break;
779 case TRANSMISSION_MODE_AUTO:
780 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
781 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
782 break;
784 default:
785 return -EINVAL;
788 // start the lock
789 switch (state->demod_type) {
790 case TDA1004X_DEMOD_TDA10045:
791 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
792 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
793 break;
795 case TDA1004X_DEMOD_TDA10046:
796 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
797 break;
800 msleep(10);
802 return 0;
805 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
807 struct tda1004x_state* state = fe->demodulator_priv;
808 dprintk("%s\n", __FUNCTION__);
810 // inversion status
811 fe_params->inversion = INVERSION_OFF;
812 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
813 fe_params->inversion = INVERSION_ON;
814 if (state->config->invert)
815 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
817 // bandwidth
818 switch (state->demod_type) {
819 case TDA1004X_DEMOD_TDA10045:
820 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
821 case 0x14:
822 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
823 break;
824 case 0xdb:
825 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
826 break;
827 case 0x4f:
828 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
829 break;
831 break;
833 case TDA1004X_DEMOD_TDA10046:
834 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
835 case 0x60:
836 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
837 break;
838 case 0x6e:
839 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
840 break;
841 case 0x80:
842 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
843 break;
845 break;
848 // FEC
849 fe_params->u.ofdm.code_rate_HP =
850 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
851 fe_params->u.ofdm.code_rate_LP =
852 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
854 // constellation
855 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
856 case 0:
857 fe_params->u.ofdm.constellation = QPSK;
858 break;
859 case 1:
860 fe_params->u.ofdm.constellation = QAM_16;
861 break;
862 case 2:
863 fe_params->u.ofdm.constellation = QAM_64;
864 break;
867 // transmission mode
868 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
869 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
870 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
872 // guard interval
873 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
874 case 0:
875 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
876 break;
877 case 1:
878 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
879 break;
880 case 2:
881 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
882 break;
883 case 3:
884 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
885 break;
888 // hierarchy
889 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
890 case 0:
891 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
892 break;
893 case 1:
894 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
895 break;
896 case 2:
897 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
898 break;
899 case 3:
900 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
901 break;
904 return 0;
907 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
909 struct tda1004x_state* state = fe->demodulator_priv;
910 int status;
911 int cber;
912 int vber;
914 dprintk("%s\n", __FUNCTION__);
916 // read status
917 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
918 if (status == -1)
919 return -EIO;
921 // decode
922 *fe_status = 0;
923 if (status & 4)
924 *fe_status |= FE_HAS_SIGNAL;
925 if (status & 2)
926 *fe_status |= FE_HAS_CARRIER;
927 if (status & 8)
928 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
930 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
931 // is getting anything valid
932 if (!(*fe_status & FE_HAS_VITERBI)) {
933 // read the CBER
934 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
935 if (cber == -1)
936 return -EIO;
937 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
938 if (status == -1)
939 return -EIO;
940 cber |= (status << 8);
941 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
943 if (cber != 65535)
944 *fe_status |= FE_HAS_VITERBI;
947 // if we DO have some valid VITERBI output, but don't already have SYNC
948 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
949 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
950 // read the VBER
951 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
952 if (vber == -1)
953 return -EIO;
954 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
955 if (status == -1)
956 return -EIO;
957 vber |= (status << 8);
958 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
959 if (status == -1)
960 return -EIO;
961 vber |= ((status << 16) & 0x0f);
962 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
964 // if RS has passed some valid TS packets, then we must be
965 // getting some SYNC bytes
966 if (vber < 16632)
967 *fe_status |= FE_HAS_SYNC;
970 // success
971 dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
972 return 0;
975 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
977 struct tda1004x_state* state = fe->demodulator_priv;
978 int tmp;
979 int reg = 0;
981 dprintk("%s\n", __FUNCTION__);
983 // determine the register to use
984 switch (state->demod_type) {
985 case TDA1004X_DEMOD_TDA10045:
986 reg = TDA10045H_S_AGC;
987 break;
989 case TDA1004X_DEMOD_TDA10046:
990 reg = TDA10046H_AGC_IF_LEVEL;
991 break;
994 // read it
995 tmp = tda1004x_read_byte(state, reg);
996 if (tmp < 0)
997 return -EIO;
999 *signal = (tmp << 8) | tmp;
1000 dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1001 return 0;
1004 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1006 struct tda1004x_state* state = fe->demodulator_priv;
1007 int tmp;
1009 dprintk("%s\n", __FUNCTION__);
1011 // read it
1012 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1013 if (tmp < 0)
1014 return -EIO;
1015 if (tmp)
1016 tmp = 255 - tmp;
1018 *snr = ((tmp << 8) | tmp);
1019 dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1020 return 0;
1023 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1025 struct tda1004x_state* state = fe->demodulator_priv;
1026 int tmp;
1027 int tmp2;
1028 int counter;
1030 dprintk("%s\n", __FUNCTION__);
1032 // read the UCBLOCKS and reset
1033 counter = 0;
1034 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1035 if (tmp < 0)
1036 return -EIO;
1037 tmp &= 0x7f;
1038 while (counter++ < 5) {
1039 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1040 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1041 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1043 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1044 if (tmp2 < 0)
1045 return -EIO;
1046 tmp2 &= 0x7f;
1047 if ((tmp2 < tmp) || (tmp2 == 0))
1048 break;
1051 if (tmp != 0x7f)
1052 *ucblocks = tmp;
1053 else
1054 *ucblocks = 0xffffffff;
1056 dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1057 return 0;
1060 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1062 struct tda1004x_state* state = fe->demodulator_priv;
1063 int tmp;
1065 dprintk("%s\n", __FUNCTION__);
1067 // read it in
1068 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1069 if (tmp < 0)
1070 return -EIO;
1071 *ber = tmp << 1;
1072 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1073 if (tmp < 0)
1074 return -EIO;
1075 *ber |= (tmp << 9);
1076 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1078 dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1079 return 0;
1082 static int tda1004x_sleep(struct dvb_frontend* fe)
1084 struct tda1004x_state* state = fe->demodulator_priv;
1086 switch (state->demod_type) {
1087 case TDA1004X_DEMOD_TDA10045:
1088 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1089 break;
1091 case TDA1004X_DEMOD_TDA10046:
1092 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1093 break;
1095 state->initialised = 0;
1097 return 0;
1100 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1102 fesettings->min_delay_ms = 800;
1103 fesettings->step_size = 166667;
1104 fesettings->max_drift = 166667*2;
1105 return 0;
1108 static void tda1004x_release(struct dvb_frontend* fe)
1110 struct tda1004x_state *state = fe->demodulator_priv;
1111 kfree(state);
1114 static struct dvb_frontend_ops tda10045_ops = {
1115 .info = {
1116 .name = "Philips TDA10045H DVB-T",
1117 .type = FE_OFDM,
1118 .frequency_min = 51000000,
1119 .frequency_max = 858000000,
1120 .frequency_stepsize = 166667,
1121 .caps =
1122 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1123 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1124 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1125 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1128 .release = tda1004x_release,
1130 .init = tda10045_init,
1131 .sleep = tda1004x_sleep,
1133 .set_frontend = tda1004x_set_fe,
1134 .get_frontend = tda1004x_get_fe,
1135 .get_tune_settings = tda1004x_get_tune_settings,
1137 .read_status = tda1004x_read_status,
1138 .read_ber = tda1004x_read_ber,
1139 .read_signal_strength = tda1004x_read_signal_strength,
1140 .read_snr = tda1004x_read_snr,
1141 .read_ucblocks = tda1004x_read_ucblocks,
1144 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1145 struct i2c_adapter* i2c)
1147 struct tda1004x_state *state;
1149 /* allocate memory for the internal state */
1150 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1151 if (!state)
1152 return NULL;
1154 /* setup the state */
1155 state->config = config;
1156 state->i2c = i2c;
1157 memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1158 state->initialised = 0;
1159 state->demod_type = TDA1004X_DEMOD_TDA10045;
1161 /* check if the demod is there */
1162 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1163 kfree(state);
1164 return NULL;
1167 /* create dvb_frontend */
1168 state->frontend.ops = &state->ops;
1169 state->frontend.demodulator_priv = state;
1170 return &state->frontend;
1173 static struct dvb_frontend_ops tda10046_ops = {
1174 .info = {
1175 .name = "Philips TDA10046H DVB-T",
1176 .type = FE_OFDM,
1177 .frequency_min = 51000000,
1178 .frequency_max = 858000000,
1179 .frequency_stepsize = 166667,
1180 .caps =
1181 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1182 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1183 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1184 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1187 .release = tda1004x_release,
1189 .init = tda10046_init,
1190 .sleep = tda1004x_sleep,
1192 .set_frontend = tda1004x_set_fe,
1193 .get_frontend = tda1004x_get_fe,
1194 .get_tune_settings = tda1004x_get_tune_settings,
1196 .read_status = tda1004x_read_status,
1197 .read_ber = tda1004x_read_ber,
1198 .read_signal_strength = tda1004x_read_signal_strength,
1199 .read_snr = tda1004x_read_snr,
1200 .read_ucblocks = tda1004x_read_ucblocks,
1203 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1204 struct i2c_adapter* i2c)
1206 struct tda1004x_state *state;
1208 /* allocate memory for the internal state */
1209 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1210 if (!state)
1211 return NULL;
1213 /* setup the state */
1214 state->config = config;
1215 state->i2c = i2c;
1216 memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1217 state->initialised = 0;
1218 state->demod_type = TDA1004X_DEMOD_TDA10046;
1219 state->fw_version = 0x20; /* dummy default value */
1221 /* check if the demod is there */
1222 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1223 kfree(state);
1224 return NULL;
1227 /* create dvb_frontend */
1228 state->frontend.ops = &state->ops;
1229 state->frontend.demodulator_priv = state;
1230 return &state->frontend;
1233 module_param(debug, int, 0644);
1234 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1236 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1237 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1238 MODULE_LICENSE("GPL");
1240 EXPORT_SYMBOL(tda10045_attach);
1241 EXPORT_SYMBOL(tda10046_attach);
1242 EXPORT_SYMBOL(tda1004x_write_byte);