1 /*******************************************************************************
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name
[];
36 extern char e1000_driver_version
[];
38 extern int e1000_up(struct e1000_adapter
*adapter
);
39 extern void e1000_down(struct e1000_adapter
*adapter
);
40 extern void e1000_reset(struct e1000_adapter
*adapter
);
41 extern int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
42 extern int e1000_setup_rx_resources(struct e1000_adapter
*adapter
);
43 extern int e1000_setup_tx_resources(struct e1000_adapter
*adapter
);
44 extern void e1000_free_rx_resources(struct e1000_adapter
*adapter
);
45 extern void e1000_free_tx_resources(struct e1000_adapter
*adapter
);
46 extern void e1000_update_stats(struct e1000_adapter
*adapter
);
49 char stat_string
[ETH_GSTRING_LEN
];
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats
[] = {
57 { "rx_packets", E1000_STAT(net_stats
.rx_packets
) },
58 { "tx_packets", E1000_STAT(net_stats
.tx_packets
) },
59 { "rx_bytes", E1000_STAT(net_stats
.rx_bytes
) },
60 { "tx_bytes", E1000_STAT(net_stats
.tx_bytes
) },
61 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
62 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
63 { "rx_dropped", E1000_STAT(net_stats
.rx_dropped
) },
64 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
65 { "multicast", E1000_STAT(net_stats
.multicast
) },
66 { "collisions", E1000_STAT(net_stats
.collisions
) },
67 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
68 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
69 { "rx_crc_errors", E1000_STAT(net_stats
.rx_crc_errors
) },
70 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
71 { "rx_fifo_errors", E1000_STAT(net_stats
.rx_fifo_errors
) },
72 { "rx_missed_errors", E1000_STAT(net_stats
.rx_missed_errors
) },
73 { "tx_aborted_errors", E1000_STAT(net_stats
.tx_aborted_errors
) },
74 { "tx_carrier_errors", E1000_STAT(net_stats
.tx_carrier_errors
) },
75 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
76 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
77 { "tx_window_errors", E1000_STAT(net_stats
.tx_window_errors
) },
78 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
79 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
80 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
81 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
82 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
83 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
84 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
85 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
86 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
87 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
88 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
89 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
90 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
91 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
92 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
93 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) }
95 #define E1000_STATS_LEN \
96 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
98 "Register test (offline)", "Eeprom test (offline)",
99 "Interrupt test (offline)", "Loopback test (offline)",
100 "Link test (on/offline)"
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
105 e1000_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
107 struct e1000_adapter
*adapter
= netdev
->priv
;
108 struct e1000_hw
*hw
= &adapter
->hw
;
110 if(hw
->media_type
== e1000_media_type_copper
) {
112 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
113 SUPPORTED_10baseT_Full
|
114 SUPPORTED_100baseT_Half
|
115 SUPPORTED_100baseT_Full
|
116 SUPPORTED_1000baseT_Full
|
120 ecmd
->advertising
= ADVERTISED_TP
;
122 if(hw
->autoneg
== 1) {
123 ecmd
->advertising
|= ADVERTISED_Autoneg
;
125 /* the e1000 autoneg seems to match ethtool nicely */
127 ecmd
->advertising
|= hw
->autoneg_advertised
;
130 ecmd
->port
= PORT_TP
;
131 ecmd
->phy_address
= hw
->phy_addr
;
133 if(hw
->mac_type
== e1000_82543
)
134 ecmd
->transceiver
= XCVR_EXTERNAL
;
136 ecmd
->transceiver
= XCVR_INTERNAL
;
139 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
143 ecmd
->advertising
= (SUPPORTED_1000baseT_Full
|
147 ecmd
->port
= PORT_FIBRE
;
149 if(hw
->mac_type
>= e1000_82545
)
150 ecmd
->transceiver
= XCVR_INTERNAL
;
152 ecmd
->transceiver
= XCVR_EXTERNAL
;
155 if(netif_carrier_ok(adapter
->netdev
)) {
157 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
158 &adapter
->link_duplex
);
159 ecmd
->speed
= adapter
->link_speed
;
161 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162 * and HALF_DUPLEX != DUPLEX_HALF */
164 if(adapter
->link_duplex
== FULL_DUPLEX
)
165 ecmd
->duplex
= DUPLEX_FULL
;
167 ecmd
->duplex
= DUPLEX_HALF
;
173 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
174 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
179 e1000_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
181 struct e1000_adapter
*adapter
= netdev
->priv
;
182 struct e1000_hw
*hw
= &adapter
->hw
;
184 if(ecmd
->autoneg
== AUTONEG_ENABLE
) {
186 hw
->autoneg_advertised
= 0x002F;
187 ecmd
->advertising
= 0x002F;
189 if(e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
))
194 if(netif_running(adapter
->netdev
)) {
196 e1000_reset(adapter
);
199 e1000_reset(adapter
);
205 e1000_get_pauseparam(struct net_device
*netdev
,
206 struct ethtool_pauseparam
*pause
)
208 struct e1000_adapter
*adapter
= netdev
->priv
;
209 struct e1000_hw
*hw
= &adapter
->hw
;
212 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
214 if(hw
->fc
== e1000_fc_rx_pause
)
216 else if(hw
->fc
== e1000_fc_tx_pause
)
218 else if(hw
->fc
== e1000_fc_full
) {
225 e1000_set_pauseparam(struct net_device
*netdev
,
226 struct ethtool_pauseparam
*pause
)
228 struct e1000_adapter
*adapter
= netdev
->priv
;
229 struct e1000_hw
*hw
= &adapter
->hw
;
231 adapter
->fc_autoneg
= pause
->autoneg
;
233 if(pause
->rx_pause
&& pause
->tx_pause
)
234 hw
->fc
= e1000_fc_full
;
235 else if(pause
->rx_pause
&& !pause
->tx_pause
)
236 hw
->fc
= e1000_fc_rx_pause
;
237 else if(!pause
->rx_pause
&& pause
->tx_pause
)
238 hw
->fc
= e1000_fc_tx_pause
;
239 else if(!pause
->rx_pause
&& !pause
->tx_pause
)
240 hw
->fc
= e1000_fc_none
;
242 hw
->original_fc
= hw
->fc
;
244 if(adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
245 if(netif_running(adapter
->netdev
)) {
249 e1000_reset(adapter
);
252 return ((hw
->media_type
== e1000_media_type_fiber
) ?
253 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
259 e1000_get_rx_csum(struct net_device
*netdev
)
261 struct e1000_adapter
*adapter
= netdev
->priv
;
262 return adapter
->rx_csum
;
266 e1000_set_rx_csum(struct net_device
*netdev
, uint32_t data
)
268 struct e1000_adapter
*adapter
= netdev
->priv
;
269 adapter
->rx_csum
= data
;
271 if(netif_running(netdev
)) {
275 e1000_reset(adapter
);
280 e1000_get_tx_csum(struct net_device
*netdev
)
282 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
286 e1000_set_tx_csum(struct net_device
*netdev
, uint32_t data
)
288 struct e1000_adapter
*adapter
= netdev
->priv
;
290 if(adapter
->hw
.mac_type
< e1000_82543
) {
297 netdev
->features
|= NETIF_F_HW_CSUM
;
299 netdev
->features
&= ~NETIF_F_HW_CSUM
;
306 e1000_set_tso(struct net_device
*netdev
, uint32_t data
)
308 struct e1000_adapter
*adapter
= netdev
->priv
;
309 if ((adapter
->hw
.mac_type
< e1000_82544
) ||
310 (adapter
->hw
.mac_type
== e1000_82547
))
311 return data
? -EINVAL
: 0;
314 netdev
->features
|= NETIF_F_TSO
;
316 netdev
->features
&= ~NETIF_F_TSO
;
319 #endif /* NETIF_F_TSO */
322 e1000_get_msglevel(struct net_device
*netdev
)
324 struct e1000_adapter
*adapter
= netdev
->priv
;
325 return adapter
->msg_enable
;
329 e1000_set_msglevel(struct net_device
*netdev
, uint32_t data
)
331 struct e1000_adapter
*adapter
= netdev
->priv
;
332 adapter
->msg_enable
= data
;
336 e1000_get_regs_len(struct net_device
*netdev
)
338 #define E1000_REGS_LEN 32
339 return E1000_REGS_LEN
* sizeof(uint32_t);
343 e1000_get_regs(struct net_device
*netdev
,
344 struct ethtool_regs
*regs
, void *p
)
346 struct e1000_adapter
*adapter
= netdev
->priv
;
347 struct e1000_hw
*hw
= &adapter
->hw
;
348 uint32_t *regs_buff
= p
;
351 memset(p
, 0, E1000_REGS_LEN
* sizeof(uint32_t));
353 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
355 regs_buff
[0] = E1000_READ_REG(hw
, CTRL
);
356 regs_buff
[1] = E1000_READ_REG(hw
, STATUS
);
358 regs_buff
[2] = E1000_READ_REG(hw
, RCTL
);
359 regs_buff
[3] = E1000_READ_REG(hw
, RDLEN
);
360 regs_buff
[4] = E1000_READ_REG(hw
, RDH
);
361 regs_buff
[5] = E1000_READ_REG(hw
, RDT
);
362 regs_buff
[6] = E1000_READ_REG(hw
, RDTR
);
364 regs_buff
[7] = E1000_READ_REG(hw
, TCTL
);
365 regs_buff
[8] = E1000_READ_REG(hw
, TDLEN
);
366 regs_buff
[9] = E1000_READ_REG(hw
, TDH
);
367 regs_buff
[10] = E1000_READ_REG(hw
, TDT
);
368 regs_buff
[11] = E1000_READ_REG(hw
, TIDV
);
370 regs_buff
[12] = adapter
->hw
.phy_type
; /* PHY type (IGP=1, M88=0) */
371 if(hw
->phy_type
== e1000_phy_igp
) {
372 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
373 IGP01E1000_PHY_AGC_A
);
374 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
375 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
376 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
377 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
378 IGP01E1000_PHY_AGC_B
);
379 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
380 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
381 regs_buff
[14] = (uint32_t)phy_data
; /* cable length */
382 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
383 IGP01E1000_PHY_AGC_C
);
384 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
385 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
386 regs_buff
[15] = (uint32_t)phy_data
; /* cable length */
387 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
388 IGP01E1000_PHY_AGC_D
);
389 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
390 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
391 regs_buff
[16] = (uint32_t)phy_data
; /* cable length */
392 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
393 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
394 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
395 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
396 regs_buff
[18] = (uint32_t)phy_data
; /* cable polarity */
397 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
398 IGP01E1000_PHY_PCS_INIT_REG
);
399 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
400 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
401 regs_buff
[19] = (uint32_t)phy_data
; /* cable polarity */
402 regs_buff
[20] = 0; /* polarity correction enabled (always) */
403 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
404 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
405 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
407 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
408 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
409 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
410 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
413 regs_buff
[17] = (uint32_t)phy_data
; /* extended 10bt distance */
414 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
415 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
417 /* phy receive errors */
418 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
419 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
421 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
422 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
423 regs_buff
[24] = (uint32_t)phy_data
; /* phy local receiver status */
424 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
425 if(hw
->mac_type
>= e1000_82540
&&
426 hw
->media_type
== e1000_media_type_copper
) {
427 regs_buff
[26] = E1000_READ_REG(hw
, MANC
);
432 e1000_get_eeprom_len(struct net_device
*netdev
)
434 struct e1000_adapter
*adapter
= netdev
->priv
;
435 return adapter
->hw
.eeprom
.word_size
* 2;
439 e1000_get_eeprom(struct net_device
*netdev
,
440 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
442 struct e1000_adapter
*adapter
= netdev
->priv
;
443 struct e1000_hw
*hw
= &adapter
->hw
;
444 uint16_t *eeprom_buff
;
445 int first_word
, last_word
;
452 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
454 first_word
= eeprom
->offset
>> 1;
455 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
457 eeprom_buff
= kmalloc(sizeof(uint16_t) *
458 (last_word
- first_word
+ 1), GFP_KERNEL
);
462 if(hw
->eeprom
.type
== e1000_eeprom_spi
)
463 ret_val
= e1000_read_eeprom(hw
, first_word
,
464 last_word
- first_word
+ 1,
467 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
468 if((ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
473 /* Device's eeprom is always little-endian, word addressable */
474 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
475 le16_to_cpus(&eeprom_buff
[i
]);
477 memcpy(bytes
, (uint8_t *)eeprom_buff
+ (eeprom
->offset
& 1),
485 e1000_set_eeprom(struct net_device
*netdev
,
486 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
488 struct e1000_adapter
*adapter
= netdev
->priv
;
489 struct e1000_hw
*hw
= &adapter
->hw
;
490 uint16_t *eeprom_buff
;
492 int max_len
, first_word
, last_word
, ret_val
= 0;
498 if(eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
501 max_len
= hw
->eeprom
.word_size
* 2;
503 first_word
= eeprom
->offset
>> 1;
504 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
505 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
509 ptr
= (void *)eeprom_buff
;
511 if(eeprom
->offset
& 1) {
512 /* need read/modify/write of first changed EEPROM word */
513 /* only the second byte of the word is being modified */
514 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
518 if(((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
519 /* need read/modify/write of last changed EEPROM word */
520 /* only the first byte of the word is being modified */
521 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
522 &eeprom_buff
[last_word
- first_word
]);
525 /* Device's eeprom is always little-endian, word addressable */
526 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
527 le16_to_cpus(&eeprom_buff
[i
]);
529 memcpy(ptr
, bytes
, eeprom
->len
);
531 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
532 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
534 ret_val
= e1000_write_eeprom(hw
, first_word
,
535 last_word
- first_word
+ 1, eeprom_buff
);
537 /* Update the checksum over the first part of the EEPROM if needed */
538 if((ret_val
== 0) && first_word
<= EEPROM_CHECKSUM_REG
)
539 e1000_update_eeprom_checksum(hw
);
546 e1000_get_drvinfo(struct net_device
*netdev
,
547 struct ethtool_drvinfo
*drvinfo
)
549 struct e1000_adapter
*adapter
= netdev
->priv
;
551 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
552 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
553 strncpy(drvinfo
->fw_version
, "N/A", 32);
554 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
555 drvinfo
->n_stats
= E1000_STATS_LEN
;
556 drvinfo
->testinfo_len
= E1000_TEST_LEN
;
557 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
558 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
562 e1000_get_ringparam(struct net_device
*netdev
,
563 struct ethtool_ringparam
*ring
)
565 struct e1000_adapter
*adapter
= netdev
->priv
;
566 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
567 struct e1000_desc_ring
*txdr
= &adapter
->tx_ring
;
568 struct e1000_desc_ring
*rxdr
= &adapter
->rx_ring
;
570 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
572 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
574 ring
->rx_mini_max_pending
= 0;
575 ring
->rx_jumbo_max_pending
= 0;
576 ring
->rx_pending
= rxdr
->count
;
577 ring
->tx_pending
= txdr
->count
;
578 ring
->rx_mini_pending
= 0;
579 ring
->rx_jumbo_pending
= 0;
583 e1000_set_ringparam(struct net_device
*netdev
,
584 struct ethtool_ringparam
*ring
)
586 struct e1000_adapter
*adapter
= netdev
->priv
;
587 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
588 struct e1000_desc_ring
*txdr
= &adapter
->tx_ring
;
589 struct e1000_desc_ring
*rxdr
= &adapter
->rx_ring
;
590 struct e1000_desc_ring tx_old
, tx_new
, rx_old
, rx_new
;
593 tx_old
= adapter
->tx_ring
;
594 rx_old
= adapter
->rx_ring
;
596 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
599 if(netif_running(adapter
->netdev
))
602 rxdr
->count
= max(ring
->rx_pending
,(uint32_t)E1000_MIN_RXD
);
603 rxdr
->count
= min(rxdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
604 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
605 E1000_ROUNDUP(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
607 txdr
->count
= max(ring
->tx_pending
,(uint32_t)E1000_MIN_TXD
);
608 txdr
->count
= min(txdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
609 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
610 E1000_ROUNDUP(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
612 if(netif_running(adapter
->netdev
)) {
613 /* Try to get new resources before deleting old */
614 if((err
= e1000_setup_rx_resources(adapter
)))
616 if((err
= e1000_setup_tx_resources(adapter
)))
619 /* save the new, restore the old in order to free it,
620 * then restore the new back again */
622 rx_new
= adapter
->rx_ring
;
623 tx_new
= adapter
->tx_ring
;
624 adapter
->rx_ring
= rx_old
;
625 adapter
->tx_ring
= tx_old
;
626 e1000_free_rx_resources(adapter
);
627 e1000_free_tx_resources(adapter
);
628 adapter
->rx_ring
= rx_new
;
629 adapter
->tx_ring
= tx_new
;
630 if((err
= e1000_up(adapter
)))
636 e1000_free_rx_resources(adapter
);
638 adapter
->rx_ring
= rx_old
;
639 adapter
->tx_ring
= tx_old
;
644 #define REG_PATTERN_TEST(R, M, W) \
646 uint32_t pat, value; \
648 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
649 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
650 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
651 value = E1000_READ_REG(&adapter->hw, R); \
652 if(value != (test[pat] & W & M)) { \
653 *data = (adapter->hw.mac_type < e1000_82543) ? \
654 E1000_82542_##R : E1000_##R; \
660 #define REG_SET_AND_CHECK(R, M, W) \
663 E1000_WRITE_REG(&adapter->hw, R, W & M); \
664 value = E1000_READ_REG(&adapter->hw, R); \
665 if ((W & M) != (value & M)) { \
666 *data = (adapter->hw.mac_type < e1000_82543) ? \
667 E1000_82542_##R : E1000_##R; \
673 e1000_reg_test(struct e1000_adapter
*adapter
, uint64_t *data
)
678 /* The status register is Read Only, so a write should fail.
679 * Some bits that get toggled are ignored.
681 value
= (E1000_READ_REG(&adapter
->hw
, STATUS
) & (0xFFFFF833));
682 E1000_WRITE_REG(&adapter
->hw
, STATUS
, (0xFFFFFFFF));
683 if(value
!= (E1000_READ_REG(&adapter
->hw
, STATUS
) & (0xFFFFF833))) {
688 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
689 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
690 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
691 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
692 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
693 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
694 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
695 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
696 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
697 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
698 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
699 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
700 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
701 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
703 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
704 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0x003FFFFB);
705 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
707 if(adapter
->hw
.mac_type
>= e1000_82543
) {
709 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0xFFFFFFFF);
710 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
711 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
712 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
713 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
715 for(i
= 0; i
< E1000_RAR_ENTRIES
; i
++) {
716 REG_PATTERN_TEST(RA
+ ((i
<< 1) << 2), 0xFFFFFFFF,
718 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
724 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
725 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
726 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
727 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
731 for(i
= 0; i
< E1000_MC_TBL_SIZE
; i
++)
732 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
739 e1000_eeprom_test(struct e1000_adapter
*adapter
, uint64_t *data
)
742 uint16_t checksum
= 0;
746 /* Read and add up the contents of the EEPROM */
747 for(i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
748 if((e1000_read_eeprom(&adapter
->hw
, i
, 1, &temp
)) < 0) {
755 /* If Checksum is not Correct return error else test passed */
756 if((checksum
!= (uint16_t) EEPROM_SUM
) && !(*data
))
763 e1000_test_intr(int irq
,
765 struct pt_regs
*regs
)
767 struct net_device
*netdev
= (struct net_device
*) data
;
768 struct e1000_adapter
*adapter
= netdev
->priv
;
770 adapter
->test_icr
|= E1000_READ_REG(&adapter
->hw
, ICR
);
776 e1000_intr_test(struct e1000_adapter
*adapter
, uint64_t *data
)
778 struct net_device
*netdev
= adapter
->netdev
;
779 uint32_t mask
, i
=0, shared_int
= TRUE
;
780 uint32_t irq
= adapter
->pdev
->irq
;
784 /* Hook up test interrupt handler just for this test */
785 if(!request_irq(irq
, &e1000_test_intr
, 0, netdev
->name
, netdev
)) {
787 } else if(request_irq(irq
, &e1000_test_intr
, SA_SHIRQ
,
788 netdev
->name
, netdev
)){
793 /* Disable all the interrupts */
794 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
797 /* Test each interrupt */
800 /* Interrupt to test */
804 /* Disable the interrupt to be reported in
805 * the cause register and then force the same
806 * interrupt and see if one gets posted. If
807 * an interrupt was posted to the bus, the
810 adapter
->test_icr
= 0;
811 E1000_WRITE_REG(&adapter
->hw
, IMC
, mask
);
812 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
815 if(adapter
->test_icr
& mask
) {
821 /* Enable the interrupt to be reported in
822 * the cause register and then force the same
823 * interrupt and see if one gets posted. If
824 * an interrupt was not posted to the bus, the
827 adapter
->test_icr
= 0;
828 E1000_WRITE_REG(&adapter
->hw
, IMS
, mask
);
829 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
832 if(!(adapter
->test_icr
& mask
)) {
838 /* Disable the other interrupts to be reported in
839 * the cause register and then force the other
840 * interrupts and see if any get posted. If
841 * an interrupt was posted to the bus, the
844 adapter
->test_icr
= 0;
845 E1000_WRITE_REG(&adapter
->hw
, IMC
,
846 (~mask
& 0x00007FFF));
847 E1000_WRITE_REG(&adapter
->hw
, ICS
,
848 (~mask
& 0x00007FFF));
851 if(adapter
->test_icr
) {
858 /* Disable all the interrupts */
859 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
862 /* Unhook test interrupt handler */
863 free_irq(irq
, netdev
);
869 e1000_free_desc_rings(struct e1000_adapter
*adapter
)
871 struct e1000_desc_ring
*txdr
= &adapter
->test_tx_ring
;
872 struct e1000_desc_ring
*rxdr
= &adapter
->test_rx_ring
;
873 struct pci_dev
*pdev
= adapter
->pdev
;
876 if(txdr
->desc
&& txdr
->buffer_info
) {
877 for(i
= 0; i
< txdr
->count
; i
++) {
878 if(txdr
->buffer_info
[i
].dma
)
879 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
880 txdr
->buffer_info
[i
].length
,
882 if(txdr
->buffer_info
[i
].skb
)
883 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
887 if(rxdr
->desc
&& rxdr
->buffer_info
) {
888 for(i
= 0; i
< rxdr
->count
; i
++) {
889 if(rxdr
->buffer_info
[i
].dma
)
890 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
891 rxdr
->buffer_info
[i
].length
,
893 if(rxdr
->buffer_info
[i
].skb
)
894 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
899 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
901 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
903 if(txdr
->buffer_info
)
904 kfree(txdr
->buffer_info
);
905 if(rxdr
->buffer_info
)
906 kfree(rxdr
->buffer_info
);
912 e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
914 struct e1000_desc_ring
*txdr
= &adapter
->test_tx_ring
;
915 struct e1000_desc_ring
*rxdr
= &adapter
->test_rx_ring
;
916 struct pci_dev
*pdev
= adapter
->pdev
;
918 int size
, i
, ret_val
;
920 /* Setup Tx descriptor ring and Tx buffers */
924 size
= txdr
->count
* sizeof(struct e1000_buffer
);
925 if(!(txdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
929 memset(txdr
->buffer_info
, 0, size
);
931 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
932 E1000_ROUNDUP(txdr
->size
, 4096);
933 if(!(txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
))) {
937 memset(txdr
->desc
, 0, txdr
->size
);
938 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
940 E1000_WRITE_REG(&adapter
->hw
, TDBAL
,
941 ((uint64_t) txdr
->dma
& 0x00000000FFFFFFFF));
942 E1000_WRITE_REG(&adapter
->hw
, TDBAH
, ((uint64_t) txdr
->dma
>> 32));
943 E1000_WRITE_REG(&adapter
->hw
, TDLEN
,
944 txdr
->count
* sizeof(struct e1000_tx_desc
));
945 E1000_WRITE_REG(&adapter
->hw
, TDH
, 0);
946 E1000_WRITE_REG(&adapter
->hw
, TDT
, 0);
947 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
948 E1000_TCTL_PSP
| E1000_TCTL_EN
|
949 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
950 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
952 for(i
= 0; i
< txdr
->count
; i
++) {
953 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
955 unsigned int size
= 1024;
957 if(!(skb
= alloc_skb(size
, GFP_KERNEL
))) {
962 txdr
->buffer_info
[i
].skb
= skb
;
963 txdr
->buffer_info
[i
].length
= skb
->len
;
964 txdr
->buffer_info
[i
].dma
=
965 pci_map_single(pdev
, skb
->data
, skb
->len
,
967 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
968 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
969 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
972 tx_desc
->upper
.data
= 0;
975 /* Setup Rx descriptor ring and Rx buffers */
979 size
= rxdr
->count
* sizeof(struct e1000_buffer
);
980 if(!(rxdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
984 memset(rxdr
->buffer_info
, 0, size
);
986 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
987 if(!(rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
))) {
991 memset(rxdr
->desc
, 0, rxdr
->size
);
992 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
994 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
995 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
996 E1000_WRITE_REG(&adapter
->hw
, RDBAL
,
997 ((uint64_t) rxdr
->dma
& 0xFFFFFFFF));
998 E1000_WRITE_REG(&adapter
->hw
, RDBAH
, ((uint64_t) rxdr
->dma
>> 32));
999 E1000_WRITE_REG(&adapter
->hw
, RDLEN
, rxdr
->size
);
1000 E1000_WRITE_REG(&adapter
->hw
, RDH
, 0);
1001 E1000_WRITE_REG(&adapter
->hw
, RDT
, 0);
1002 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1003 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1004 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1005 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1007 for(i
= 0; i
< rxdr
->count
; i
++) {
1008 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1009 struct sk_buff
*skb
;
1011 if(!(skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
,
1016 skb_reserve(skb
, NET_IP_ALIGN
);
1017 rxdr
->buffer_info
[i
].skb
= skb
;
1018 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1019 rxdr
->buffer_info
[i
].dma
=
1020 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1021 PCI_DMA_FROMDEVICE
);
1022 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1023 memset(skb
->data
, 0x00, skb
->len
);
1029 e1000_free_desc_rings(adapter
);
1034 e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1036 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1037 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001F);
1038 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FFC);
1039 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001A);
1040 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FF0);
1044 e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1048 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1049 * Extended PHY Specific Control Register to 25MHz clock. This
1050 * value defaults back to a 2.5MHz clock when the PHY is reset.
1052 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1053 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1054 e1000_write_phy_reg(&adapter
->hw
,
1055 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1057 /* In addition, because of the s/w reset above, we need to enable
1058 * CRS on TX. This must be set for both full and half duplex
1061 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1062 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1063 e1000_write_phy_reg(&adapter
->hw
,
1064 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1068 e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1073 /* Setup the Device Control Register for PHY loopback test. */
1075 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1076 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1077 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1078 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1079 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1080 E1000_CTRL_FD
); /* Force Duplex to FULL */
1082 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1084 /* Read the PHY Specific Control Register (0x10) */
1085 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1087 /* Clear Auto-Crossover bits in PHY Specific Control Register
1090 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1091 e1000_write_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1093 /* Perform software reset on the PHY */
1094 e1000_phy_reset(&adapter
->hw
);
1096 /* Have to setup TX_CLK and TX_CRS after software reset */
1097 e1000_phy_reset_clk_and_crs(adapter
);
1099 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8100);
1101 /* Wait for reset to complete. */
1104 /* Have to setup TX_CLK and TX_CRS after software reset */
1105 e1000_phy_reset_clk_and_crs(adapter
);
1107 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1108 e1000_phy_disable_receiver(adapter
);
1110 /* Set the loopback bit in the PHY control register. */
1111 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1112 phy_reg
|= MII_CR_LOOPBACK
;
1113 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1115 /* Setup TX_CLK and TX_CRS one more time. */
1116 e1000_phy_reset_clk_and_crs(adapter
);
1118 /* Check Phy Configuration */
1119 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1120 if(phy_reg
!= 0x4100)
1123 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1124 if(phy_reg
!= 0x0070)
1127 e1000_read_phy_reg(&adapter
->hw
, 29, &phy_reg
);
1128 if(phy_reg
!= 0x001A)
1135 e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1137 uint32_t ctrl_reg
= 0;
1138 uint32_t stat_reg
= 0;
1140 adapter
->hw
.autoneg
= FALSE
;
1142 if(adapter
->hw
.phy_type
== e1000_phy_m88
) {
1143 /* Auto-MDI/MDIX Off */
1144 e1000_write_phy_reg(&adapter
->hw
,
1145 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1146 /* reset to update Auto-MDI/MDIX */
1147 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x9140);
1149 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8140);
1151 /* force 1000, set loopback */
1152 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x4140);
1154 /* Now set up the MAC to the same speed/duplex as the PHY. */
1155 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1156 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1157 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1158 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1159 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1160 E1000_CTRL_FD
); /* Force Duplex to FULL */
1162 if(adapter
->hw
.media_type
== e1000_media_type_copper
&&
1163 adapter
->hw
.phy_type
== e1000_phy_m88
) {
1164 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1166 /* Set the ILOS bit on the fiber Nic is half
1167 * duplex link is detected. */
1168 stat_reg
= E1000_READ_REG(&adapter
->hw
, STATUS
);
1169 if((stat_reg
& E1000_STATUS_FD
) == 0)
1170 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1173 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1175 /* Disable the receiver on the PHY so when a cable is plugged in, the
1176 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1178 if(adapter
->hw
.phy_type
== e1000_phy_m88
)
1179 e1000_phy_disable_receiver(adapter
);
1187 e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1189 uint16_t phy_reg
= 0;
1192 switch (adapter
->hw
.mac_type
) {
1194 if(adapter
->hw
.media_type
== e1000_media_type_copper
) {
1195 /* Attempt to setup Loopback mode on Non-integrated PHY.
1196 * Some PHY registers get corrupted at random, so
1197 * attempt this 10 times.
1199 while(e1000_nonintegrated_phy_loopback(adapter
) &&
1209 case e1000_82545_rev_3
:
1211 case e1000_82546_rev_3
:
1213 case e1000_82541_rev_2
:
1215 case e1000_82547_rev_2
:
1216 return e1000_integrated_phy_loopback(adapter
);
1220 /* Default PHY loopback work is to read the MII
1221 * control register and assert bit 14 (loopback mode).
1223 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1224 phy_reg
|= MII_CR_LOOPBACK
;
1225 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1234 e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1238 if(adapter
->hw
.media_type
== e1000_media_type_fiber
||
1239 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1240 if(adapter
->hw
.mac_type
== e1000_82545
||
1241 adapter
->hw
.mac_type
== e1000_82546
||
1242 adapter
->hw
.mac_type
== e1000_82545_rev_3
||
1243 adapter
->hw
.mac_type
== e1000_82546_rev_3
)
1244 return e1000_set_phy_loopback(adapter
);
1246 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1247 rctl
|= E1000_RCTL_LBM_TCVR
;
1248 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1251 } else if(adapter
->hw
.media_type
== e1000_media_type_copper
)
1252 return e1000_set_phy_loopback(adapter
);
1258 e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1263 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1264 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1265 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1267 if(adapter
->hw
.media_type
== e1000_media_type_copper
||
1268 ((adapter
->hw
.media_type
== e1000_media_type_fiber
||
1269 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
1270 (adapter
->hw
.mac_type
== e1000_82545
||
1271 adapter
->hw
.mac_type
== e1000_82546
||
1272 adapter
->hw
.mac_type
== e1000_82545_rev_3
||
1273 adapter
->hw
.mac_type
== e1000_82546_rev_3
))) {
1274 adapter
->hw
.autoneg
= TRUE
;
1275 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1276 if(phy_reg
& MII_CR_LOOPBACK
) {
1277 phy_reg
&= ~MII_CR_LOOPBACK
;
1278 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1279 e1000_phy_reset(&adapter
->hw
);
1285 e1000_create_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1287 memset(skb
->data
, 0xFF, frame_size
);
1288 frame_size
= (frame_size
% 2) ? (frame_size
- 1) : frame_size
;
1289 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1290 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1291 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1295 e1000_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1297 frame_size
= (frame_size
% 2) ? (frame_size
- 1) : frame_size
;
1298 if(*(skb
->data
+ 3) == 0xFF) {
1299 if((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1300 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1308 e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1310 struct e1000_desc_ring
*txdr
= &adapter
->test_tx_ring
;
1311 struct e1000_desc_ring
*rxdr
= &adapter
->test_rx_ring
;
1312 struct pci_dev
*pdev
= adapter
->pdev
;
1315 E1000_WRITE_REG(&adapter
->hw
, RDT
, rxdr
->count
- 1);
1317 for(i
= 0; i
< 64; i
++) {
1318 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
, 1024);
1319 pci_dma_sync_single_for_device(pdev
, txdr
->buffer_info
[i
].dma
,
1320 txdr
->buffer_info
[i
].length
,
1323 E1000_WRITE_REG(&adapter
->hw
, TDT
, i
);
1329 pci_dma_sync_single_for_cpu(pdev
, rxdr
->buffer_info
[i
].dma
,
1330 rxdr
->buffer_info
[i
].length
,
1331 PCI_DMA_FROMDEVICE
);
1333 ret_val
= e1000_check_lbtest_frame(rxdr
->buffer_info
[i
].skb
,
1336 } while (ret_val
!= 0 && i
< 64);
1342 e1000_loopback_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1344 if((*data
= e1000_setup_desc_rings(adapter
))) goto err_loopback
;
1345 if((*data
= e1000_setup_loopback_test(adapter
))) goto err_loopback
;
1346 *data
= e1000_run_loopback_test(adapter
);
1347 e1000_loopback_cleanup(adapter
);
1348 e1000_free_desc_rings(adapter
);
1354 e1000_link_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1358 if (adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1360 adapter
->hw
.serdes_link_down
= TRUE
;
1362 /* on some blade server designs link establishment */
1363 /* could take as long as 2-3 minutes. */
1365 e1000_check_for_link(&adapter
->hw
);
1366 if (adapter
->hw
.serdes_link_down
== FALSE
)
1369 } while (i
++ < 3750);
1373 e1000_check_for_link(&adapter
->hw
);
1375 if(!(E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
)) {
1383 e1000_diag_test_count(struct net_device
*netdev
)
1385 return E1000_TEST_LEN
;
1389 e1000_diag_test(struct net_device
*netdev
,
1390 struct ethtool_test
*eth_test
, uint64_t *data
)
1392 struct e1000_adapter
*adapter
= netdev
->priv
;
1393 boolean_t if_running
= netif_running(netdev
);
1395 if(eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1398 /* save speed, duplex, autoneg settings */
1399 uint16_t autoneg_advertised
= adapter
->hw
.autoneg_advertised
;
1400 uint8_t forced_speed_duplex
= adapter
->hw
.forced_speed_duplex
;
1401 uint8_t autoneg
= adapter
->hw
.autoneg
;
1403 /* Link test performed before hardware reset so autoneg doesn't
1404 * interfere with test result */
1405 if(e1000_link_test(adapter
, &data
[4]))
1406 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1409 e1000_down(adapter
);
1411 e1000_reset(adapter
);
1413 if(e1000_reg_test(adapter
, &data
[0]))
1414 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1416 e1000_reset(adapter
);
1417 if(e1000_eeprom_test(adapter
, &data
[1]))
1418 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1420 e1000_reset(adapter
);
1421 if(e1000_intr_test(adapter
, &data
[2]))
1422 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1424 e1000_reset(adapter
);
1425 if(e1000_loopback_test(adapter
, &data
[3]))
1426 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1428 /* restore speed, duplex, autoneg settings */
1429 adapter
->hw
.autoneg_advertised
= autoneg_advertised
;
1430 adapter
->hw
.forced_speed_duplex
= forced_speed_duplex
;
1431 adapter
->hw
.autoneg
= autoneg
;
1433 e1000_reset(adapter
);
1438 if(e1000_link_test(adapter
, &data
[4]))
1439 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1441 /* Offline tests aren't run; pass by default */
1450 e1000_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1452 struct e1000_adapter
*adapter
= netdev
->priv
;
1453 struct e1000_hw
*hw
= &adapter
->hw
;
1455 switch(adapter
->hw
.device_id
) {
1456 case E1000_DEV_ID_82542
:
1457 case E1000_DEV_ID_82543GC_FIBER
:
1458 case E1000_DEV_ID_82543GC_COPPER
:
1459 case E1000_DEV_ID_82544EI_FIBER
:
1460 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1461 case E1000_DEV_ID_82545EM_FIBER
:
1462 case E1000_DEV_ID_82545EM_COPPER
:
1467 case E1000_DEV_ID_82546EB_FIBER
:
1468 case E1000_DEV_ID_82546GB_FIBER
:
1469 /* Wake events only supported on port A for dual fiber */
1470 if(E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
) {
1478 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1479 WAKE_BCAST
| WAKE_MAGIC
;
1482 if(adapter
->wol
& E1000_WUFC_EX
)
1483 wol
->wolopts
|= WAKE_UCAST
;
1484 if(adapter
->wol
& E1000_WUFC_MC
)
1485 wol
->wolopts
|= WAKE_MCAST
;
1486 if(adapter
->wol
& E1000_WUFC_BC
)
1487 wol
->wolopts
|= WAKE_BCAST
;
1488 if(adapter
->wol
& E1000_WUFC_MAG
)
1489 wol
->wolopts
|= WAKE_MAGIC
;
1495 e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1497 struct e1000_adapter
*adapter
= netdev
->priv
;
1498 struct e1000_hw
*hw
= &adapter
->hw
;
1500 switch(adapter
->hw
.device_id
) {
1501 case E1000_DEV_ID_82542
:
1502 case E1000_DEV_ID_82543GC_FIBER
:
1503 case E1000_DEV_ID_82543GC_COPPER
:
1504 case E1000_DEV_ID_82544EI_FIBER
:
1505 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1506 case E1000_DEV_ID_82545EM_FIBER
:
1507 case E1000_DEV_ID_82545EM_COPPER
:
1508 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1510 case E1000_DEV_ID_82546EB_FIBER
:
1511 case E1000_DEV_ID_82546GB_FIBER
:
1512 /* Wake events only supported on port A for dual fiber */
1513 if(E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1514 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1518 if(wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1523 if(wol
->wolopts
& WAKE_UCAST
)
1524 adapter
->wol
|= E1000_WUFC_EX
;
1525 if(wol
->wolopts
& WAKE_MCAST
)
1526 adapter
->wol
|= E1000_WUFC_MC
;
1527 if(wol
->wolopts
& WAKE_BCAST
)
1528 adapter
->wol
|= E1000_WUFC_BC
;
1529 if(wol
->wolopts
& WAKE_MAGIC
)
1530 adapter
->wol
|= E1000_WUFC_MAG
;
1536 /* toggle LED 4 times per second = 2 "blinks" per second */
1537 #define E1000_ID_INTERVAL (HZ/4)
1539 /* bit defines for adapter->led_status */
1540 #define E1000_LED_ON 0
1543 e1000_led_blink_callback(unsigned long data
)
1545 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1547 if(test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1548 e1000_led_off(&adapter
->hw
);
1550 e1000_led_on(&adapter
->hw
);
1552 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1556 e1000_phys_id(struct net_device
*netdev
, uint32_t data
)
1558 struct e1000_adapter
*adapter
= netdev
->priv
;
1560 if(!data
|| data
> (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
1561 data
= (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
1563 if(!adapter
->blink_timer
.function
) {
1564 init_timer(&adapter
->blink_timer
);
1565 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1566 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1569 e1000_setup_led(&adapter
->hw
);
1570 mod_timer(&adapter
->blink_timer
, jiffies
);
1572 msleep_interruptible(data
* 1000);
1573 del_timer_sync(&adapter
->blink_timer
);
1574 e1000_led_off(&adapter
->hw
);
1575 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1576 e1000_cleanup_led(&adapter
->hw
);
1582 e1000_nway_reset(struct net_device
*netdev
)
1584 struct e1000_adapter
*adapter
= netdev
->priv
;
1585 if(netif_running(netdev
)) {
1586 e1000_down(adapter
);
1593 e1000_get_stats_count(struct net_device
*netdev
)
1595 return E1000_STATS_LEN
;
1599 e1000_get_ethtool_stats(struct net_device
*netdev
,
1600 struct ethtool_stats
*stats
, uint64_t *data
)
1602 struct e1000_adapter
*adapter
= netdev
->priv
;
1605 e1000_update_stats(adapter
);
1606 for(i
= 0; i
< E1000_STATS_LEN
; i
++) {
1607 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1608 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1609 sizeof(uint64_t)) ? *(uint64_t *)p
: *(uint32_t *)p
;
1614 e1000_get_strings(struct net_device
*netdev
, uint32_t stringset
, uint8_t *data
)
1620 memcpy(data
, *e1000_gstrings_test
,
1621 E1000_TEST_LEN
*ETH_GSTRING_LEN
);
1624 for (i
=0; i
< E1000_STATS_LEN
; i
++) {
1625 memcpy(data
+ i
* ETH_GSTRING_LEN
,
1626 e1000_gstrings_stats
[i
].stat_string
,
1633 struct ethtool_ops e1000_ethtool_ops
= {
1634 .get_settings
= e1000_get_settings
,
1635 .set_settings
= e1000_set_settings
,
1636 .get_drvinfo
= e1000_get_drvinfo
,
1637 .get_regs_len
= e1000_get_regs_len
,
1638 .get_regs
= e1000_get_regs
,
1639 .get_wol
= e1000_get_wol
,
1640 .set_wol
= e1000_set_wol
,
1641 .get_msglevel
= e1000_get_msglevel
,
1642 .set_msglevel
= e1000_set_msglevel
,
1643 .nway_reset
= e1000_nway_reset
,
1644 .get_link
= ethtool_op_get_link
,
1645 .get_eeprom_len
= e1000_get_eeprom_len
,
1646 .get_eeprom
= e1000_get_eeprom
,
1647 .set_eeprom
= e1000_set_eeprom
,
1648 .get_ringparam
= e1000_get_ringparam
,
1649 .set_ringparam
= e1000_set_ringparam
,
1650 .get_pauseparam
= e1000_get_pauseparam
,
1651 .set_pauseparam
= e1000_set_pauseparam
,
1652 .get_rx_csum
= e1000_get_rx_csum
,
1653 .set_rx_csum
= e1000_set_rx_csum
,
1654 .get_tx_csum
= e1000_get_tx_csum
,
1655 .set_tx_csum
= e1000_set_tx_csum
,
1656 .get_sg
= ethtool_op_get_sg
,
1657 .set_sg
= ethtool_op_set_sg
,
1659 .get_tso
= ethtool_op_get_tso
,
1660 .set_tso
= e1000_set_tso
,
1662 .self_test_count
= e1000_diag_test_count
,
1663 .self_test
= e1000_diag_test
,
1664 .get_strings
= e1000_get_strings
,
1665 .phys_id
= e1000_phys_id
,
1666 .get_stats_count
= e1000_get_stats_count
,
1667 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1670 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1672 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);