1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the adapter
36 /* Local function prototypes */
38 static uint32_t ixgb_hash_mc_addr(struct ixgb_hw
*hw
, uint8_t * mc_addr
);
40 static void ixgb_mta_set(struct ixgb_hw
*hw
, uint32_t hash_value
);
42 static void ixgb_get_bus_info(struct ixgb_hw
*hw
);
44 static boolean_t
ixgb_link_reset(struct ixgb_hw
*hw
);
46 static void ixgb_optics_reset(struct ixgb_hw
*hw
);
48 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw
*hw
);
50 uint32_t ixgb_mac_reset(struct ixgb_hw
*hw
);
52 uint32_t ixgb_mac_reset(struct ixgb_hw
*hw
)
56 ctrl_reg
= IXGB_CTRL0_RST
|
57 IXGB_CTRL0_SDP3_DIR
| /* All pins are Output=1 */
61 IXGB_CTRL0_SDP3
| /* Initial value 1101 */
66 /* Workaround for 82597EX reset errata */
67 IXGB_WRITE_REG_IO(hw
, CTRL0
, ctrl_reg
);
69 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
72 /* Delay a few ms just to allow the reset to complete */
73 msec_delay(IXGB_DELAY_AFTER_RESET
);
74 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
76 /* Make sure the self-clearing global reset bit did self clear */
77 ASSERT(!(ctrl_reg
& IXGB_CTRL0_RST
));
80 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
81 ixgb_optics_reset(hw
);
87 /******************************************************************************
88 * Reset the transmit and receive units; mask and clear all interrupts.
90 * hw - Struct containing variables accessed by shared code
91 *****************************************************************************/
93 ixgb_adapter_stop(struct ixgb_hw
*hw
)
98 DEBUGFUNC("ixgb_adapter_stop");
100 /* If we are stopped or resetting exit gracefully and wait to be
101 * started again before accessing the hardware.
103 if(hw
->adapter_stopped
) {
104 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
108 /* Set the Adapter Stopped flag so other driver functions stop
109 * touching the Hardware.
111 hw
->adapter_stopped
= TRUE
;
113 /* Clear interrupt mask to stop board from generating interrupts */
114 DEBUGOUT("Masking off all interrupts\n");
115 IXGB_WRITE_REG(hw
, IMC
, 0xFFFFFFFF);
117 /* Disable the Transmit and Receive units. Then delay to allow
118 * any pending transactions to complete before we hit the MAC with
121 IXGB_WRITE_REG(hw
, RCTL
, IXGB_READ_REG(hw
, RCTL
) & ~IXGB_RCTL_RXEN
);
122 IXGB_WRITE_REG(hw
, TCTL
, IXGB_READ_REG(hw
, TCTL
) & ~IXGB_TCTL_TXEN
);
123 msec_delay(IXGB_DELAY_BEFORE_RESET
);
125 /* Issue a global reset to the MAC. This will reset the chip's
126 * transmit, receive, DMA, and link units. It will not effect
127 * the current PCI configuration. The global reset bit is self-
128 * clearing, and should clear within a microsecond.
130 DEBUGOUT("Issuing a global reset to MAC\n");
132 ctrl_reg
= ixgb_mac_reset(hw
);
134 /* Clear interrupt mask to stop board from generating interrupts */
135 DEBUGOUT("Masking off all interrupts\n");
136 IXGB_WRITE_REG(hw
, IMC
, 0xffffffff);
138 /* Clear any pending interrupt events. */
139 icr_reg
= IXGB_READ_REG(hw
, ICR
);
141 return (ctrl_reg
& IXGB_CTRL0_RST
);
145 /******************************************************************************
146 * Identifies the vendor of the optics module on the adapter. The SR adapters
147 * support two different types of XPAK optics, so it is necessary to determine
148 * which optics are present before applying any optics-specific workarounds.
150 * hw - Struct containing variables accessed by shared code.
152 * Returns: the vendor of the XPAK optics module.
153 *****************************************************************************/
154 static ixgb_xpak_vendor
155 ixgb_identify_xpak_vendor(struct ixgb_hw
*hw
)
158 uint16_t vendor_name
[5];
159 ixgb_xpak_vendor xpak_vendor
;
161 DEBUGFUNC("ixgb_identify_xpak_vendor");
163 /* Read the first few bytes of the vendor string from the XPAK NVR
164 * registers. These are standard XENPAK/XPAK registers, so all XPAK
165 * devices should implement them. */
166 for (i
= 0; i
< 5; i
++) {
167 vendor_name
[i
] = ixgb_read_phy_reg(hw
,
168 MDIO_PMA_PMD_XPAK_VENDOR_NAME
169 + i
, IXGB_PHY_ADDRESS
,
173 /* Determine the actual vendor */
174 if (vendor_name
[0] == 'I' &&
175 vendor_name
[1] == 'N' &&
176 vendor_name
[2] == 'T' &&
177 vendor_name
[3] == 'E' && vendor_name
[4] == 'L') {
178 xpak_vendor
= ixgb_xpak_vendor_intel
;
180 xpak_vendor
= ixgb_xpak_vendor_infineon
;
183 return (xpak_vendor
);
186 /******************************************************************************
187 * Determine the physical layer module on the adapter.
189 * hw - Struct containing variables accessed by shared code. The device_id
190 * field must be (correctly) populated before calling this routine.
192 * Returns: the phy type of the adapter.
193 *****************************************************************************/
195 ixgb_identify_phy(struct ixgb_hw
*hw
)
197 ixgb_phy_type phy_type
;
198 ixgb_xpak_vendor xpak_vendor
;
200 DEBUGFUNC("ixgb_identify_phy");
202 /* Infer the transceiver/phy type from the device id */
203 switch (hw
->device_id
) {
204 case IXGB_DEVICE_ID_82597EX
:
205 DEBUGOUT("Identified TXN17401 optics\n");
206 phy_type
= ixgb_phy_type_txn17401
;
209 case IXGB_DEVICE_ID_82597EX_SR
:
210 /* The SR adapters carry two different types of XPAK optics
211 * modules; read the vendor identifier to determine the exact
213 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
214 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
215 DEBUGOUT("Identified TXN17201 optics\n");
216 phy_type
= ixgb_phy_type_txn17201
;
218 DEBUGOUT("Identified G6005 optics\n");
219 phy_type
= ixgb_phy_type_g6005
;
222 case IXGB_DEVICE_ID_82597EX_LR
:
223 DEBUGOUT("Identified G6104 optics\n");
224 phy_type
= ixgb_phy_type_g6104
;
227 DEBUGOUT("Unknown physical layer module\n");
228 phy_type
= ixgb_phy_type_unknown
;
235 /******************************************************************************
236 * Performs basic configuration of the adapter.
238 * hw - Struct containing variables accessed by shared code
240 * Resets the controller.
241 * Reads and validates the EEPROM.
242 * Initializes the receive address registers.
243 * Initializes the multicast table.
244 * Clears all on-chip counters.
245 * Calls routine to setup flow control settings.
246 * Leaves the transmit and receive units disabled and uninitialized.
249 * TRUE if successful,
250 * FALSE if unrecoverable problems were encountered.
251 *****************************************************************************/
253 ixgb_init_hw(struct ixgb_hw
*hw
)
259 DEBUGFUNC("ixgb_init_hw");
261 /* Issue a global reset to the MAC. This will reset the chip's
262 * transmit, receive, DMA, and link units. It will not effect
263 * the current PCI configuration. The global reset bit is self-
264 * clearing, and should clear within a microsecond.
266 DEBUGOUT("Issuing a global reset to MAC\n");
268 ctrl_reg
= ixgb_mac_reset(hw
);
270 DEBUGOUT("Issuing an EE reset to MAC\n");
272 /* Workaround for 82597EX reset errata */
273 IXGB_WRITE_REG_IO(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
275 IXGB_WRITE_REG(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
278 /* Delay a few ms just to allow the reset to complete */
279 msec_delay(IXGB_DELAY_AFTER_EE_RESET
);
281 if (ixgb_get_eeprom_data(hw
) == FALSE
) {
285 /* Use the device id to determine the type of phy/transceiver. */
286 hw
->device_id
= ixgb_get_ee_device_id(hw
);
287 hw
->phy_type
= ixgb_identify_phy(hw
);
289 /* Setup the receive addresses.
290 * Receive Address Registers (RARs 0 - 15).
292 ixgb_init_rx_addrs(hw
);
295 * Check that a valid MAC address has been set.
296 * If it is not valid, we fail hardware init.
298 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
299 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
303 /* tell the routines in this file they can access hardware again */
304 hw
->adapter_stopped
= FALSE
;
306 /* Fill in the bus_info structure */
307 ixgb_get_bus_info(hw
);
309 /* Zero out the Multicast HASH table */
310 DEBUGOUT("Zeroing the MTA\n");
311 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
312 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
314 /* Zero out the VLAN Filter Table Array */
317 /* Zero all of the hardware counters */
318 ixgb_clear_hw_cntrs(hw
);
320 /* Call a subroutine to setup flow control. */
321 status
= ixgb_setup_fc(hw
);
323 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
324 ixgb_check_for_link(hw
);
329 /******************************************************************************
330 * Initializes receive address filters.
332 * hw - Struct containing variables accessed by shared code
334 * Places the MAC address in receive address register 0 and clears the rest
335 * of the receive addresss registers. Clears the multicast table. Assumes
336 * the receiver is in reset when the routine is called.
337 *****************************************************************************/
339 ixgb_init_rx_addrs(struct ixgb_hw
*hw
)
343 DEBUGFUNC("ixgb_init_rx_addrs");
346 * If the current mac address is valid, assume it is a software override
347 * to the permanent address.
348 * Otherwise, use the permanent address from the eeprom.
350 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
352 /* Get the MAC address from the eeprom for later reference */
353 ixgb_get_ee_mac_addr(hw
, hw
->curr_mac_addr
);
355 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
356 hw
->curr_mac_addr
[0],
357 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
358 DEBUGOUT3("%.2X %.2X %.2X\n",
359 hw
->curr_mac_addr
[3],
360 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
363 /* Setup the receive address. */
364 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
365 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
366 hw
->curr_mac_addr
[0],
367 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
368 DEBUGOUT3("%.2X %.2X %.2X\n",
369 hw
->curr_mac_addr
[3],
370 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
372 ixgb_rar_set(hw
, hw
->curr_mac_addr
, 0);
375 /* Zero out the other 15 receive addresses. */
376 DEBUGOUT("Clearing RAR[1-15]\n");
377 for(i
= 1; i
< IXGB_RAR_ENTRIES
; i
++) {
378 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
379 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
385 /******************************************************************************
386 * Updates the MAC's list of multicast addresses.
388 * hw - Struct containing variables accessed by shared code
389 * mc_addr_list - the list of new multicast addresses
390 * mc_addr_count - number of addresses
391 * pad - number of bytes between addresses in the list
393 * The given list replaces any existing list. Clears the last 15 receive
394 * address registers and the multicast table. Uses receive address registers
395 * for the first 15 multicast addresses, and hashes the rest into the
397 *****************************************************************************/
399 ixgb_mc_addr_list_update(struct ixgb_hw
*hw
,
400 uint8_t *mc_addr_list
,
401 uint32_t mc_addr_count
,
406 uint32_t rar_used_count
= 1; /* RAR[0] is used for our MAC address */
408 DEBUGFUNC("ixgb_mc_addr_list_update");
410 /* Set the new number of MC addresses that we are being requested to use. */
411 hw
->num_mc_addrs
= mc_addr_count
;
413 /* Clear RAR[1-15] */
414 DEBUGOUT(" Clearing RAR[1-15]\n");
415 for(i
= rar_used_count
; i
< IXGB_RAR_ENTRIES
; i
++) {
416 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
417 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
421 DEBUGOUT(" Clearing MTA\n");
422 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++) {
423 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
426 /* Add the new addresses */
427 for(i
= 0; i
< mc_addr_count
; i
++) {
428 DEBUGOUT(" Adding the multicast addresses:\n");
429 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i
,
430 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)],
431 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
433 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
435 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
437 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
439 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
442 /* Place this multicast address in the RAR if there is room, *
443 * else put it in the MTA
445 if(rar_used_count
< IXGB_RAR_ENTRIES
) {
448 (i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)),
450 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i
);
453 hash_value
= ixgb_hash_mc_addr(hw
,
456 (IXGB_ETH_LENGTH_OF_ADDRESS
459 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value
);
461 ixgb_mta_set(hw
, hash_value
);
465 DEBUGOUT("MC Update Complete\n");
469 /******************************************************************************
470 * Hashes an address to determine its location in the multicast table
472 * hw - Struct containing variables accessed by shared code
473 * mc_addr - the multicast address to hash
477 *****************************************************************************/
479 ixgb_hash_mc_addr(struct ixgb_hw
*hw
,
482 uint32_t hash_value
= 0;
484 DEBUGFUNC("ixgb_hash_mc_addr");
486 /* The portion of the address that is used for the hash table is
487 * determined by the mc_filter_type setting.
489 switch (hw
->mc_filter_type
) {
490 /* [0] [1] [2] [3] [4] [5]
492 * LSB MSB - According to H/W docs */
494 /* [47:36] i.e. 0x563 for above example address */
496 ((mc_addr
[4] >> 4) | (((uint16_t) mc_addr
[5]) << 4));
498 case 1: /* [46:35] i.e. 0xAC6 for above example address */
500 ((mc_addr
[4] >> 3) | (((uint16_t) mc_addr
[5]) << 5));
502 case 2: /* [45:34] i.e. 0x5D8 for above example address */
504 ((mc_addr
[4] >> 2) | (((uint16_t) mc_addr
[5]) << 6));
506 case 3: /* [43:32] i.e. 0x634 for above example address */
507 hash_value
= ((mc_addr
[4]) | (((uint16_t) mc_addr
[5]) << 8));
510 /* Invalid mc_filter_type, what should we do? */
511 DEBUGOUT("MC filter type param set incorrectly\n");
520 /******************************************************************************
521 * Sets the bit in the multicast table corresponding to the hash value.
523 * hw - Struct containing variables accessed by shared code
524 * hash_value - Multicast address hash value
525 *****************************************************************************/
527 ixgb_mta_set(struct ixgb_hw
*hw
,
530 uint32_t hash_bit
, hash_reg
;
533 /* The MTA is a register array of 128 32-bit registers.
534 * It is treated like an array of 4096 bits. We want to set
535 * bit BitArray[hash_value]. So we figure out what register
536 * the bit is in, read it, OR in the new bit, then write
537 * back the new value. The register is determined by the
538 * upper 7 bits of the hash value and the bit within that
539 * register are determined by the lower 5 bits of the value.
541 hash_reg
= (hash_value
>> 5) & 0x7F;
542 hash_bit
= hash_value
& 0x1F;
544 mta_reg
= IXGB_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
546 mta_reg
|= (1 << hash_bit
);
548 IXGB_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta_reg
);
553 /******************************************************************************
554 * Puts an ethernet address into a receive address register.
556 * hw - Struct containing variables accessed by shared code
557 * addr - Address to put into receive address register
558 * index - Receive address register to write
559 *****************************************************************************/
561 ixgb_rar_set(struct ixgb_hw
*hw
,
565 uint32_t rar_low
, rar_high
;
567 DEBUGFUNC("ixgb_rar_set");
569 /* HW expects these in little endian so we reverse the byte order
570 * from network order (big endian) to little endian
572 rar_low
= ((uint32_t) addr
[0] |
573 ((uint32_t)addr
[1] << 8) |
574 ((uint32_t)addr
[2] << 16) |
575 ((uint32_t)addr
[3] << 24));
577 rar_high
= ((uint32_t) addr
[4] |
578 ((uint32_t)addr
[5] << 8) |
581 IXGB_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
582 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
586 /******************************************************************************
587 * Writes a value to the specified offset in the VLAN filter table.
589 * hw - Struct containing variables accessed by shared code
590 * offset - Offset in VLAN filer table to write
591 * value - Value to write into VLAN filter table
592 *****************************************************************************/
594 ixgb_write_vfta(struct ixgb_hw
*hw
,
598 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
602 /******************************************************************************
603 * Clears the VLAN filer table
605 * hw - Struct containing variables accessed by shared code
606 *****************************************************************************/
608 ixgb_clear_vfta(struct ixgb_hw
*hw
)
612 for(offset
= 0; offset
< IXGB_VLAN_FILTER_TBL_SIZE
; offset
++)
613 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, 0);
617 /******************************************************************************
618 * Configures the flow control settings based on SW configuration.
620 * hw - Struct containing variables accessed by shared code
621 *****************************************************************************/
624 ixgb_setup_fc(struct ixgb_hw
*hw
)
627 uint32_t pap_reg
= 0; /* by default, assume no pause time */
628 boolean_t status
= TRUE
;
630 DEBUGFUNC("ixgb_setup_fc");
632 /* Get the current control reg 0 settings */
633 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
635 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
636 ctrl_reg
&= ~(IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
638 /* The possible values of the "flow_control" parameter are:
639 * 0: Flow control is completely disabled
640 * 1: Rx flow control is enabled (we can receive pause frames
641 * but not send pause frames).
642 * 2: Tx flow control is enabled (we can send pause frames
643 * but we do not support receiving pause frames).
644 * 3: Both Rx and TX flow control (symmetric) are enabled.
647 switch (hw
->fc
.type
) {
648 case ixgb_fc_none
: /* 0 */
649 /* Set CMDC bit to disable Rx Flow control */
650 ctrl_reg
|= (IXGB_CTRL0_CMDC
);
652 case ixgb_fc_rx_pause
: /* 1 */
653 /* RX Flow control is enabled, and TX Flow control is
656 ctrl_reg
|= (IXGB_CTRL0_RPE
);
658 case ixgb_fc_tx_pause
: /* 2 */
659 /* TX Flow control is enabled, and RX Flow control is
660 * disabled, by a software over-ride.
662 ctrl_reg
|= (IXGB_CTRL0_TPE
);
663 pap_reg
= hw
->fc
.pause_time
;
665 case ixgb_fc_full
: /* 3 */
666 /* Flow control (both RX and TX) is enabled by a software
669 ctrl_reg
|= (IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
670 pap_reg
= hw
->fc
.pause_time
;
673 /* We should never get here. The value should be 0-3. */
674 DEBUGOUT("Flow control param set incorrectly\n");
679 /* Write the new settings */
680 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
683 IXGB_WRITE_REG(hw
, PAP
, pap_reg
);
686 /* Set the flow control receive threshold registers. Normally,
687 * these registers will be set to a default threshold that may be
688 * adjusted later by the driver's runtime code. However, if the
689 * ability to transmit pause frames in not enabled, then these
690 * registers will be set to 0.
692 if(!(hw
->fc
.type
& ixgb_fc_tx_pause
)) {
693 IXGB_WRITE_REG(hw
, FCRTL
, 0);
694 IXGB_WRITE_REG(hw
, FCRTH
, 0);
696 /* We need to set up the Receive Threshold high and low water
697 * marks as well as (optionally) enabling the transmission of XON
699 if(hw
->fc
.send_xon
) {
700 IXGB_WRITE_REG(hw
, FCRTL
,
701 (hw
->fc
.low_water
| IXGB_FCRTL_XONE
));
703 IXGB_WRITE_REG(hw
, FCRTL
, hw
->fc
.low_water
);
705 IXGB_WRITE_REG(hw
, FCRTH
, hw
->fc
.high_water
);
710 /******************************************************************************
711 * Reads a word from a device over the Management Data Interface (MDI) bus.
712 * This interface is used to manage Physical layer devices.
714 * hw - Struct containing variables accessed by hw code
715 * reg_address - Offset of device register being read.
716 * phy_address - Address of device on MDI.
718 * Returns: Data word (16 bits) from MDI device.
720 * The 82597EX has support for several MDI access methods. This routine
721 * uses the new protocol MDI Single Command and Address Operation.
722 * This requires that first an address cycle command is sent, followed by a
724 *****************************************************************************/
726 ixgb_read_phy_reg(struct ixgb_hw
*hw
,
727 uint32_t reg_address
,
728 uint32_t phy_address
,
729 uint32_t device_type
)
733 uint32_t command
= 0;
735 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
736 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
737 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
739 /* Setup and write the address cycle command */
740 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
741 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
742 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
743 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
745 IXGB_WRITE_REG(hw
, MSCA
, command
);
747 /**************************************************************
748 ** Check every 10 usec to see if the address cycle completed
749 ** The COMMAND bit will clear when the operation is complete.
750 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
751 ** from the CPU Write to the Ready bit assertion.
752 **************************************************************/
754 for(i
= 0; i
< 10; i
++)
758 command
= IXGB_READ_REG(hw
, MSCA
);
760 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
764 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
766 /* Address cycle complete, setup and write the read command */
767 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
768 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
769 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
770 (IXGB_MSCA_READ
| IXGB_MSCA_MDI_COMMAND
));
772 IXGB_WRITE_REG(hw
, MSCA
, command
);
774 /**************************************************************
775 ** Check every 10 usec to see if the read command completed
776 ** The COMMAND bit will clear when the operation is complete.
777 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
778 ** from the CPU Write to the Ready bit assertion.
779 **************************************************************/
781 for(i
= 0; i
< 10; i
++)
785 command
= IXGB_READ_REG(hw
, MSCA
);
787 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
791 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
793 /* Operation is complete, get the data from the MDIO Read/Write Data
794 * register and return.
796 data
= IXGB_READ_REG(hw
, MSRWD
);
797 data
>>= IXGB_MSRWD_READ_DATA_SHIFT
;
798 return((uint16_t) data
);
801 /******************************************************************************
802 * Writes a word to a device over the Management Data Interface (MDI) bus.
803 * This interface is used to manage Physical layer devices.
805 * hw - Struct containing variables accessed by hw code
806 * reg_address - Offset of device register being read.
807 * phy_address - Address of device on MDI.
808 * device_type - Also known as the Device ID or DID.
809 * data - 16-bit value to be written
813 * The 82597EX has support for several MDI access methods. This routine
814 * uses the new protocol MDI Single Command and Address Operation.
815 * This requires that first an address cycle command is sent, followed by a
817 *****************************************************************************/
819 ixgb_write_phy_reg(struct ixgb_hw
*hw
,
820 uint32_t reg_address
,
821 uint32_t phy_address
,
822 uint32_t device_type
,
826 uint32_t command
= 0;
828 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
829 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
830 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
832 /* Put the data in the MDIO Read/Write Data register */
833 IXGB_WRITE_REG(hw
, MSRWD
, (uint32_t)data
);
835 /* Setup and write the address cycle command */
836 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
837 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
838 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
839 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
841 IXGB_WRITE_REG(hw
, MSCA
, command
);
843 /**************************************************************
844 ** Check every 10 usec to see if the address cycle completed
845 ** The COMMAND bit will clear when the operation is complete.
846 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
847 ** from the CPU Write to the Ready bit assertion.
848 **************************************************************/
850 for(i
= 0; i
< 10; i
++)
854 command
= IXGB_READ_REG(hw
, MSCA
);
856 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
860 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
862 /* Address cycle complete, setup and write the write command */
863 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
864 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
865 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
866 (IXGB_MSCA_WRITE
| IXGB_MSCA_MDI_COMMAND
));
868 IXGB_WRITE_REG(hw
, MSCA
, command
);
870 /**************************************************************
871 ** Check every 10 usec to see if the read command completed
872 ** The COMMAND bit will clear when the operation is complete.
873 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
874 ** from the CPU Write to the Ready bit assertion.
875 **************************************************************/
877 for(i
= 0; i
< 10; i
++)
881 command
= IXGB_READ_REG(hw
, MSCA
);
883 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
887 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
889 /* Operation is complete, return. */
892 /******************************************************************************
893 * Checks to see if the link status of the hardware has changed.
895 * hw - Struct containing variables accessed by hw code
897 * Called by any function that needs to check the link status of the adapter.
898 *****************************************************************************/
900 ixgb_check_for_link(struct ixgb_hw
*hw
)
905 DEBUGFUNC("ixgb_check_for_link");
907 xpcss_reg
= IXGB_READ_REG(hw
, XPCSS
);
908 status_reg
= IXGB_READ_REG(hw
, STATUS
);
910 if ((xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
911 (status_reg
& IXGB_STATUS_LU
)) {
913 } else if (!(xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
914 (status_reg
& IXGB_STATUS_LU
)) {
915 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
916 hw
->link_up
= ixgb_link_reset(hw
);
919 * 82597EX errata. Since the lane deskew problem may prevent
920 * link, reset the link before reporting link down.
922 hw
->link_up
= ixgb_link_reset(hw
);
924 /* Anything else for 10 Gig?? */
927 /******************************************************************************
928 * Check for a bad link condition that may have occured.
929 * The indication is that the RFC / LFC registers may be incrementing
930 * continually. A full adapter reset is required to recover.
932 * hw - Struct containing variables accessed by hw code
934 * Called by any function that needs to check the link status of the adapter.
935 *****************************************************************************/
936 boolean_t
ixgb_check_for_bad_link(struct ixgb_hw
*hw
)
938 uint32_t newLFC
, newRFC
;
939 boolean_t bad_link_returncode
= FALSE
;
941 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
942 newLFC
= IXGB_READ_REG(hw
, LFC
);
943 newRFC
= IXGB_READ_REG(hw
, RFC
);
944 if ((hw
->lastLFC
+ 250 < newLFC
)
945 || (hw
->lastRFC
+ 250 < newRFC
)) {
947 ("BAD LINK! too many LFC/RFC since last check\n");
948 bad_link_returncode
= TRUE
;
950 hw
->lastLFC
= newLFC
;
951 hw
->lastRFC
= newRFC
;
954 return bad_link_returncode
;
957 /******************************************************************************
958 * Clears all hardware statistics counters.
960 * hw - Struct containing variables accessed by shared code
961 *****************************************************************************/
963 ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
)
965 volatile uint32_t temp_reg
;
967 DEBUGFUNC("ixgb_clear_hw_cntrs");
969 /* if we are stopped or resetting exit gracefully */
970 if(hw
->adapter_stopped
) {
971 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
975 temp_reg
= IXGB_READ_REG(hw
, TPRL
);
976 temp_reg
= IXGB_READ_REG(hw
, TPRH
);
977 temp_reg
= IXGB_READ_REG(hw
, GPRCL
);
978 temp_reg
= IXGB_READ_REG(hw
, GPRCH
);
979 temp_reg
= IXGB_READ_REG(hw
, BPRCL
);
980 temp_reg
= IXGB_READ_REG(hw
, BPRCH
);
981 temp_reg
= IXGB_READ_REG(hw
, MPRCL
);
982 temp_reg
= IXGB_READ_REG(hw
, MPRCH
);
983 temp_reg
= IXGB_READ_REG(hw
, UPRCL
);
984 temp_reg
= IXGB_READ_REG(hw
, UPRCH
);
985 temp_reg
= IXGB_READ_REG(hw
, VPRCL
);
986 temp_reg
= IXGB_READ_REG(hw
, VPRCH
);
987 temp_reg
= IXGB_READ_REG(hw
, JPRCL
);
988 temp_reg
= IXGB_READ_REG(hw
, JPRCH
);
989 temp_reg
= IXGB_READ_REG(hw
, GORCL
);
990 temp_reg
= IXGB_READ_REG(hw
, GORCH
);
991 temp_reg
= IXGB_READ_REG(hw
, TORL
);
992 temp_reg
= IXGB_READ_REG(hw
, TORH
);
993 temp_reg
= IXGB_READ_REG(hw
, RNBC
);
994 temp_reg
= IXGB_READ_REG(hw
, RUC
);
995 temp_reg
= IXGB_READ_REG(hw
, ROC
);
996 temp_reg
= IXGB_READ_REG(hw
, RLEC
);
997 temp_reg
= IXGB_READ_REG(hw
, CRCERRS
);
998 temp_reg
= IXGB_READ_REG(hw
, ICBC
);
999 temp_reg
= IXGB_READ_REG(hw
, ECBC
);
1000 temp_reg
= IXGB_READ_REG(hw
, MPC
);
1001 temp_reg
= IXGB_READ_REG(hw
, TPTL
);
1002 temp_reg
= IXGB_READ_REG(hw
, TPTH
);
1003 temp_reg
= IXGB_READ_REG(hw
, GPTCL
);
1004 temp_reg
= IXGB_READ_REG(hw
, GPTCH
);
1005 temp_reg
= IXGB_READ_REG(hw
, BPTCL
);
1006 temp_reg
= IXGB_READ_REG(hw
, BPTCH
);
1007 temp_reg
= IXGB_READ_REG(hw
, MPTCL
);
1008 temp_reg
= IXGB_READ_REG(hw
, MPTCH
);
1009 temp_reg
= IXGB_READ_REG(hw
, UPTCL
);
1010 temp_reg
= IXGB_READ_REG(hw
, UPTCH
);
1011 temp_reg
= IXGB_READ_REG(hw
, VPTCL
);
1012 temp_reg
= IXGB_READ_REG(hw
, VPTCH
);
1013 temp_reg
= IXGB_READ_REG(hw
, JPTCL
);
1014 temp_reg
= IXGB_READ_REG(hw
, JPTCH
);
1015 temp_reg
= IXGB_READ_REG(hw
, GOTCL
);
1016 temp_reg
= IXGB_READ_REG(hw
, GOTCH
);
1017 temp_reg
= IXGB_READ_REG(hw
, TOTL
);
1018 temp_reg
= IXGB_READ_REG(hw
, TOTH
);
1019 temp_reg
= IXGB_READ_REG(hw
, DC
);
1020 temp_reg
= IXGB_READ_REG(hw
, PLT64C
);
1021 temp_reg
= IXGB_READ_REG(hw
, TSCTC
);
1022 temp_reg
= IXGB_READ_REG(hw
, TSCTFC
);
1023 temp_reg
= IXGB_READ_REG(hw
, IBIC
);
1024 temp_reg
= IXGB_READ_REG(hw
, RFC
);
1025 temp_reg
= IXGB_READ_REG(hw
, LFC
);
1026 temp_reg
= IXGB_READ_REG(hw
, PFRC
);
1027 temp_reg
= IXGB_READ_REG(hw
, PFTC
);
1028 temp_reg
= IXGB_READ_REG(hw
, MCFRC
);
1029 temp_reg
= IXGB_READ_REG(hw
, MCFTC
);
1030 temp_reg
= IXGB_READ_REG(hw
, XONRXC
);
1031 temp_reg
= IXGB_READ_REG(hw
, XONTXC
);
1032 temp_reg
= IXGB_READ_REG(hw
, XOFFRXC
);
1033 temp_reg
= IXGB_READ_REG(hw
, XOFFTXC
);
1034 temp_reg
= IXGB_READ_REG(hw
, RJC
);
1038 /******************************************************************************
1039 * Turns on the software controllable LED
1041 * hw - Struct containing variables accessed by shared code
1042 *****************************************************************************/
1044 ixgb_led_on(struct ixgb_hw
*hw
)
1046 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1048 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1049 ctrl0_reg
&= ~IXGB_CTRL0_SDP0
;
1050 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1054 /******************************************************************************
1055 * Turns off the software controllable LED
1057 * hw - Struct containing variables accessed by shared code
1058 *****************************************************************************/
1060 ixgb_led_off(struct ixgb_hw
*hw
)
1062 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1064 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1065 ctrl0_reg
|= IXGB_CTRL0_SDP0
;
1066 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1070 /******************************************************************************
1071 * Gets the current PCI bus type, speed, and width of the hardware
1073 * hw - Struct containing variables accessed by shared code
1074 *****************************************************************************/
1076 ixgb_get_bus_info(struct ixgb_hw
*hw
)
1078 uint32_t status_reg
;
1080 status_reg
= IXGB_READ_REG(hw
, STATUS
);
1082 hw
->bus
.type
= (status_reg
& IXGB_STATUS_PCIX_MODE
) ?
1083 ixgb_bus_type_pcix
: ixgb_bus_type_pci
;
1085 if (hw
->bus
.type
== ixgb_bus_type_pci
) {
1086 hw
->bus
.speed
= (status_reg
& IXGB_STATUS_PCI_SPD
) ?
1087 ixgb_bus_speed_66
: ixgb_bus_speed_33
;
1089 switch (status_reg
& IXGB_STATUS_PCIX_SPD_MASK
) {
1090 case IXGB_STATUS_PCIX_SPD_66
:
1091 hw
->bus
.speed
= ixgb_bus_speed_66
;
1093 case IXGB_STATUS_PCIX_SPD_100
:
1094 hw
->bus
.speed
= ixgb_bus_speed_100
;
1096 case IXGB_STATUS_PCIX_SPD_133
:
1097 hw
->bus
.speed
= ixgb_bus_speed_133
;
1100 hw
->bus
.speed
= ixgb_bus_speed_reserved
;
1105 hw
->bus
.width
= (status_reg
& IXGB_STATUS_BUS64
) ?
1106 ixgb_bus_width_64
: ixgb_bus_width_32
;
1111 /******************************************************************************
1112 * Tests a MAC address to ensure it is a valid Individual Address
1114 * mac_addr - pointer to MAC address.
1116 *****************************************************************************/
1118 mac_addr_valid(uint8_t *mac_addr
)
1120 boolean_t is_valid
= TRUE
;
1121 DEBUGFUNC("mac_addr_valid");
1123 /* Make sure it is not a multicast address */
1124 if (IS_MULTICAST(mac_addr
)) {
1125 DEBUGOUT("MAC address is multicast\n");
1128 /* Not a broadcast address */
1129 else if (IS_BROADCAST(mac_addr
)) {
1130 DEBUGOUT("MAC address is broadcast\n");
1133 /* Reject the zero address */
1134 else if (mac_addr
[0] == 0 &&
1140 DEBUGOUT("MAC address is all zeros\n");
1146 /******************************************************************************
1147 * Resets the 10GbE link. Waits the settle time and returns the state of
1150 * hw - Struct containing variables accessed by shared code
1151 *****************************************************************************/
1153 ixgb_link_reset(struct ixgb_hw
*hw
)
1155 boolean_t link_status
= FALSE
;
1156 uint8_t wait_retries
= MAX_RESET_ITERATIONS
;
1157 uint8_t lrst_retries
= MAX_RESET_ITERATIONS
;
1160 /* Reset the link */
1161 IXGB_WRITE_REG(hw
, CTRL0
,
1162 IXGB_READ_REG(hw
, CTRL0
) | IXGB_CTRL0_LRST
);
1164 /* Wait for link-up and lane re-alignment */
1166 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET
);
1168 ((IXGB_READ_REG(hw
, STATUS
) & IXGB_STATUS_LU
)
1169 && (IXGB_READ_REG(hw
, XPCSS
) &
1170 IXGB_XPCSS_ALIGN_STATUS
)) ? TRUE
: FALSE
;
1171 } while (!link_status
&& --wait_retries
);
1173 } while (!link_status
&& --lrst_retries
);
1178 /******************************************************************************
1179 * Resets the 10GbE optics module.
1181 * hw - Struct containing variables accessed by shared code
1182 *****************************************************************************/
1184 ixgb_optics_reset(struct ixgb_hw
*hw
)
1186 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
1189 ixgb_write_phy_reg(hw
,
1193 MDIO_PMA_PMD_CR1_RESET
);
1195 mdio_reg
= ixgb_read_phy_reg( hw
,