[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / net / rrunner.c
blob12a86f96d973d42af9c52a0916a90cfbc86d84d3
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/config.h>
32 #include <linux/module.h>
33 #include <linux/types.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/netdevice.h>
39 #include <linux/hippidevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/init.h>
42 #include <linux/delay.h>
43 #include <linux/mm.h>
44 #include <net/sock.h>
46 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/byteorder.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/uaccess.h>
53 #define rr_if_busy(dev) netif_queue_stopped(dev)
54 #define rr_if_running(dev) netif_running(dev)
56 #include "rrunner.h"
58 #define RUN_AT(x) (jiffies + (x))
61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
63 MODULE_LICENSE("GPL");
65 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
68 * Implementation notes:
70 * The DMA engine only allows for DMA within physical 64KB chunks of
71 * memory. The current approach of the driver (and stack) is to use
72 * linear blocks of memory for the skbuffs. However, as the data block
73 * is always the first part of the skb and skbs are 2^n aligned so we
74 * are guarantted to get the whole block within one 64KB align 64KB
75 * chunk.
77 * On the long term, relying on being able to allocate 64KB linear
78 * chunks of memory is not feasible and the skb handling code and the
79 * stack will need to know about I/O vectors or something similar.
83 * These are checked at init time to see if they are at least 256KB
84 * and increased to 256KB if they are not. This is done to avoid ending
85 * up with socket buffers smaller than the MTU size,
87 extern __u32 sysctl_wmem_max;
88 extern __u32 sysctl_rmem_max;
90 static int __devinit rr_init_one(struct pci_dev *pdev,
91 const struct pci_device_id *ent)
93 struct net_device *dev;
94 static int version_disp;
95 u8 pci_latency;
96 struct rr_private *rrpriv;
97 void *tmpptr;
98 dma_addr_t ring_dma;
99 int ret = -ENOMEM;
101 dev = alloc_hippi_dev(sizeof(struct rr_private));
102 if (!dev)
103 goto out3;
105 ret = pci_enable_device(pdev);
106 if (ret) {
107 ret = -ENODEV;
108 goto out2;
111 rrpriv = netdev_priv(dev);
113 SET_MODULE_OWNER(dev);
114 SET_NETDEV_DEV(dev, &pdev->dev);
116 if (pci_request_regions(pdev, "rrunner")) {
117 ret = -EIO;
118 goto out;
121 pci_set_drvdata(pdev, dev);
123 rrpriv->pci_dev = pdev;
125 spin_lock_init(&rrpriv->lock);
127 dev->irq = pdev->irq;
128 dev->open = &rr_open;
129 dev->hard_start_xmit = &rr_start_xmit;
130 dev->stop = &rr_close;
131 dev->get_stats = &rr_get_stats;
132 dev->do_ioctl = &rr_ioctl;
134 dev->base_addr = pci_resource_start(pdev, 0);
136 /* display version info if adapter is found */
137 if (!version_disp) {
138 /* set display flag to TRUE so that */
139 /* we only display this string ONCE */
140 version_disp = 1;
141 printk(version);
144 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
145 if (pci_latency <= 0x58){
146 pci_latency = 0x58;
147 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
150 pci_set_master(pdev);
152 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
153 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
154 dev->base_addr, dev->irq, pci_latency);
157 * Remap the regs into kernel space.
160 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
162 if (!rrpriv->regs){
163 printk(KERN_ERR "%s: Unable to map I/O register, "
164 "RoadRunner will be disabled.\n", dev->name);
165 ret = -EIO;
166 goto out;
169 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
170 rrpriv->tx_ring = tmpptr;
171 rrpriv->tx_ring_dma = ring_dma;
173 if (!tmpptr) {
174 ret = -ENOMEM;
175 goto out;
178 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
179 rrpriv->rx_ring = tmpptr;
180 rrpriv->rx_ring_dma = ring_dma;
182 if (!tmpptr) {
183 ret = -ENOMEM;
184 goto out;
187 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
188 rrpriv->evt_ring = tmpptr;
189 rrpriv->evt_ring_dma = ring_dma;
191 if (!tmpptr) {
192 ret = -ENOMEM;
193 goto out;
197 * Don't access any register before this point!
199 #ifdef __BIG_ENDIAN
200 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
201 &rrpriv->regs->HostCtrl);
202 #endif
204 * Need to add a case for little-endian 64-bit hosts here.
207 rr_init(dev);
209 dev->base_addr = 0;
211 ret = register_netdev(dev);
212 if (ret)
213 goto out;
214 return 0;
216 out:
217 if (rrpriv->rx_ring)
218 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
219 rrpriv->rx_ring_dma);
220 if (rrpriv->tx_ring)
221 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
222 rrpriv->tx_ring_dma);
223 if (rrpriv->regs)
224 iounmap(rrpriv->regs);
225 if (pdev) {
226 pci_release_regions(pdev);
227 pci_set_drvdata(pdev, NULL);
229 out2:
230 free_netdev(dev);
231 out3:
232 return ret;
235 static void __devexit rr_remove_one (struct pci_dev *pdev)
237 struct net_device *dev = pci_get_drvdata(pdev);
239 if (dev) {
240 struct rr_private *rr = netdev_priv(dev);
242 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
243 printk(KERN_ERR "%s: trying to unload running NIC\n",
244 dev->name);
245 writel(HALT_NIC, &rr->regs->HostCtrl);
248 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
249 rr->evt_ring_dma);
250 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
251 rr->rx_ring_dma);
252 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
253 rr->tx_ring_dma);
254 unregister_netdev(dev);
255 iounmap(rr->regs);
256 free_netdev(dev);
257 pci_release_regions(pdev);
258 pci_disable_device(pdev);
259 pci_set_drvdata(pdev, NULL);
265 * Commands are considered to be slow, thus there is no reason to
266 * inline this.
268 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
270 struct rr_regs __iomem *regs;
271 u32 idx;
273 regs = rrpriv->regs;
275 * This is temporary - it will go away in the final version.
276 * We probably also want to make this function inline.
278 if (readl(&regs->HostCtrl) & NIC_HALTED){
279 printk("issuing command for halted NIC, code 0x%x, "
280 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
281 if (readl(&regs->Mode) & FATAL_ERR)
282 printk("error codes Fail1 %02x, Fail2 %02x\n",
283 readl(&regs->Fail1), readl(&regs->Fail2));
286 idx = rrpriv->info->cmd_ctrl.pi;
288 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
289 wmb();
291 idx = (idx - 1) % CMD_RING_ENTRIES;
292 rrpriv->info->cmd_ctrl.pi = idx;
293 wmb();
295 if (readl(&regs->Mode) & FATAL_ERR)
296 printk("error code %02x\n", readl(&regs->Fail1));
301 * Reset the board in a sensible manner. The NIC is already halted
302 * when we get here and a spin-lock is held.
304 static int rr_reset(struct net_device *dev)
306 struct rr_private *rrpriv;
307 struct rr_regs __iomem *regs;
308 struct eeprom *hw = NULL;
309 u32 start_pc;
310 int i;
312 rrpriv = netdev_priv(dev);
313 regs = rrpriv->regs;
315 rr_load_firmware(dev);
317 writel(0x01000000, &regs->TX_state);
318 writel(0xff800000, &regs->RX_state);
319 writel(0, &regs->AssistState);
320 writel(CLEAR_INTA, &regs->LocalCtrl);
321 writel(0x01, &regs->BrkPt);
322 writel(0, &regs->Timer);
323 writel(0, &regs->TimerRef);
324 writel(RESET_DMA, &regs->DmaReadState);
325 writel(RESET_DMA, &regs->DmaWriteState);
326 writel(0, &regs->DmaWriteHostHi);
327 writel(0, &regs->DmaWriteHostLo);
328 writel(0, &regs->DmaReadHostHi);
329 writel(0, &regs->DmaReadHostLo);
330 writel(0, &regs->DmaReadLen);
331 writel(0, &regs->DmaWriteLen);
332 writel(0, &regs->DmaWriteLcl);
333 writel(0, &regs->DmaWriteIPchecksum);
334 writel(0, &regs->DmaReadLcl);
335 writel(0, &regs->DmaReadIPchecksum);
336 writel(0, &regs->PciState);
337 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
338 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
339 #elif (BITS_PER_LONG == 64)
340 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
341 #else
342 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
343 #endif
345 #if 0
347 * Don't worry, this is just black magic.
349 writel(0xdf000, &regs->RxBase);
350 writel(0xdf000, &regs->RxPrd);
351 writel(0xdf000, &regs->RxCon);
352 writel(0xce000, &regs->TxBase);
353 writel(0xce000, &regs->TxPrd);
354 writel(0xce000, &regs->TxCon);
355 writel(0, &regs->RxIndPro);
356 writel(0, &regs->RxIndCon);
357 writel(0, &regs->RxIndRef);
358 writel(0, &regs->TxIndPro);
359 writel(0, &regs->TxIndCon);
360 writel(0, &regs->TxIndRef);
361 writel(0xcc000, &regs->pad10[0]);
362 writel(0, &regs->DrCmndPro);
363 writel(0, &regs->DrCmndCon);
364 writel(0, &regs->DwCmndPro);
365 writel(0, &regs->DwCmndCon);
366 writel(0, &regs->DwCmndRef);
367 writel(0, &regs->DrDataPro);
368 writel(0, &regs->DrDataCon);
369 writel(0, &regs->DrDataRef);
370 writel(0, &regs->DwDataPro);
371 writel(0, &regs->DwDataCon);
372 writel(0, &regs->DwDataRef);
373 #endif
375 writel(0xffffffff, &regs->MbEvent);
376 writel(0, &regs->Event);
378 writel(0, &regs->TxPi);
379 writel(0, &regs->IpRxPi);
381 writel(0, &regs->EvtCon);
382 writel(0, &regs->EvtPrd);
384 rrpriv->info->evt_ctrl.pi = 0;
386 for (i = 0; i < CMD_RING_ENTRIES; i++)
387 writel(0, &regs->CmdRing[i]);
390 * Why 32 ? is this not cache line size dependent?
392 writel(RBURST_64|WBURST_64, &regs->PciState);
393 wmb();
395 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
397 #if (DEBUG > 1)
398 printk("%s: Executing firmware at address 0x%06x\n",
399 dev->name, start_pc);
400 #endif
402 writel(start_pc + 0x800, &regs->Pc);
403 wmb();
404 udelay(5);
406 writel(start_pc, &regs->Pc);
407 wmb();
409 return 0;
414 * Read a string from the EEPROM.
416 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
417 unsigned long offset,
418 unsigned char *buf,
419 unsigned long length)
421 struct rr_regs __iomem *regs = rrpriv->regs;
422 u32 misc, io, host, i;
424 io = readl(&regs->ExtIo);
425 writel(0, &regs->ExtIo);
426 misc = readl(&regs->LocalCtrl);
427 writel(0, &regs->LocalCtrl);
428 host = readl(&regs->HostCtrl);
429 writel(host | HALT_NIC, &regs->HostCtrl);
430 mb();
432 for (i = 0; i < length; i++){
433 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
434 mb();
435 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
436 mb();
439 writel(host, &regs->HostCtrl);
440 writel(misc, &regs->LocalCtrl);
441 writel(io, &regs->ExtIo);
442 mb();
443 return i;
448 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
449 * it to our CPU byte-order.
451 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
452 void * offset)
454 u32 word;
456 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
457 (char *)&word, 4) == 4))
458 return be32_to_cpu(word);
459 return 0;
464 * Write a string to the EEPROM.
466 * This is only called when the firmware is not running.
468 static unsigned int write_eeprom(struct rr_private *rrpriv,
469 unsigned long offset,
470 unsigned char *buf,
471 unsigned long length)
473 struct rr_regs __iomem *regs = rrpriv->regs;
474 u32 misc, io, data, i, j, ready, error = 0;
476 io = readl(&regs->ExtIo);
477 writel(0, &regs->ExtIo);
478 misc = readl(&regs->LocalCtrl);
479 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
480 mb();
482 for (i = 0; i < length; i++){
483 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
484 mb();
485 data = buf[i] << 24;
487 * Only try to write the data if it is not the same
488 * value already.
490 if ((readl(&regs->WinData) & 0xff000000) != data){
491 writel(data, &regs->WinData);
492 ready = 0;
493 j = 0;
494 mb();
495 while(!ready){
496 udelay(20);
497 if ((readl(&regs->WinData) & 0xff000000) ==
498 data)
499 ready = 1;
500 mb();
501 if (j++ > 5000){
502 printk("data mismatch: %08x, "
503 "WinData %08x\n", data,
504 readl(&regs->WinData));
505 ready = 1;
506 error = 1;
512 writel(misc, &regs->LocalCtrl);
513 writel(io, &regs->ExtIo);
514 mb();
516 return error;
520 static int __init rr_init(struct net_device *dev)
522 struct rr_private *rrpriv;
523 struct rr_regs __iomem *regs;
524 struct eeprom *hw = NULL;
525 u32 sram_size, rev;
526 int i;
528 rrpriv = netdev_priv(dev);
529 regs = rrpriv->regs;
531 rev = readl(&regs->FwRev);
532 rrpriv->fw_rev = rev;
533 if (rev > 0x00020024)
534 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
535 ((rev >> 8) & 0xff), (rev & 0xff));
536 else if (rev >= 0x00020000) {
537 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
538 "later is recommended)\n", (rev >> 16),
539 ((rev >> 8) & 0xff), (rev & 0xff));
540 }else{
541 printk(" Firmware revision too old: %i.%i.%i, please "
542 "upgrade to 2.0.37 or later.\n",
543 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
546 #if (DEBUG > 2)
547 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
548 #endif
551 * Read the hardware address from the eeprom. The HW address
552 * is not really necessary for HIPPI but awfully convenient.
553 * The pointer arithmetic to put it in dev_addr is ugly, but
554 * Donald Becker does it this way for the GigE version of this
555 * card and it's shorter and more portable than any
556 * other method I've seen. -VAL
559 *(u16 *)(dev->dev_addr) =
560 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
561 *(u32 *)(dev->dev_addr+2) =
562 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
564 printk(" MAC: ");
566 for (i = 0; i < 5; i++)
567 printk("%2.2x:", dev->dev_addr[i]);
568 printk("%2.2x\n", dev->dev_addr[i]);
570 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
571 printk(" SRAM size 0x%06x\n", sram_size);
573 if (sysctl_rmem_max < 262144){
574 printk(" Receive socket buffer limit too low (%i), "
575 "setting to 262144\n", sysctl_rmem_max);
576 sysctl_rmem_max = 262144;
579 if (sysctl_wmem_max < 262144){
580 printk(" Transmit socket buffer limit too low (%i), "
581 "setting to 262144\n", sysctl_wmem_max);
582 sysctl_wmem_max = 262144;
585 return 0;
589 static int rr_init1(struct net_device *dev)
591 struct rr_private *rrpriv;
592 struct rr_regs __iomem *regs;
593 unsigned long myjif, flags;
594 struct cmd cmd;
595 u32 hostctrl;
596 int ecode = 0;
597 short i;
599 rrpriv = netdev_priv(dev);
600 regs = rrpriv->regs;
602 spin_lock_irqsave(&rrpriv->lock, flags);
604 hostctrl = readl(&regs->HostCtrl);
605 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
606 wmb();
608 if (hostctrl & PARITY_ERR){
609 printk("%s: Parity error halting NIC - this is serious!\n",
610 dev->name);
611 spin_unlock_irqrestore(&rrpriv->lock, flags);
612 ecode = -EFAULT;
613 goto error;
616 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
617 set_infoaddr(regs, rrpriv->info_dma);
619 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
620 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
621 rrpriv->info->evt_ctrl.mode = 0;
622 rrpriv->info->evt_ctrl.pi = 0;
623 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
625 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
626 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
627 rrpriv->info->cmd_ctrl.mode = 0;
628 rrpriv->info->cmd_ctrl.pi = 15;
630 for (i = 0; i < CMD_RING_ENTRIES; i++) {
631 writel(0, &regs->CmdRing[i]);
634 for (i = 0; i < TX_RING_ENTRIES; i++) {
635 rrpriv->tx_ring[i].size = 0;
636 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
637 rrpriv->tx_skbuff[i] = NULL;
639 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
640 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
641 rrpriv->info->tx_ctrl.mode = 0;
642 rrpriv->info->tx_ctrl.pi = 0;
643 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
646 * Set dirty_tx before we start receiving interrupts, otherwise
647 * the interrupt handler might think it is supposed to process
648 * tx ints before we are up and running, which may cause a null
649 * pointer access in the int handler.
651 rrpriv->tx_full = 0;
652 rrpriv->cur_rx = 0;
653 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
655 rr_reset(dev);
657 /* Tuning values */
658 writel(0x5000, &regs->ConRetry);
659 writel(0x100, &regs->ConRetryTmr);
660 writel(0x500000, &regs->ConTmout);
661 writel(0x60, &regs->IntrTmr);
662 writel(0x500000, &regs->TxDataMvTimeout);
663 writel(0x200000, &regs->RxDataMvTimeout);
664 writel(0x80, &regs->WriteDmaThresh);
665 writel(0x80, &regs->ReadDmaThresh);
667 rrpriv->fw_running = 0;
668 wmb();
670 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
671 writel(hostctrl, &regs->HostCtrl);
672 wmb();
674 spin_unlock_irqrestore(&rrpriv->lock, flags);
676 for (i = 0; i < RX_RING_ENTRIES; i++) {
677 struct sk_buff *skb;
678 dma_addr_t addr;
680 rrpriv->rx_ring[i].mode = 0;
681 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
682 if (!skb) {
683 printk(KERN_WARNING "%s: Unable to allocate memory "
684 "for receive ring - halting NIC\n", dev->name);
685 ecode = -ENOMEM;
686 goto error;
688 rrpriv->rx_skbuff[i] = skb;
689 addr = pci_map_single(rrpriv->pci_dev, skb->data,
690 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
692 * Sanity test to see if we conflict with the DMA
693 * limitations of the Roadrunner.
695 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
696 printk("skb alloc error\n");
698 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
699 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
702 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
703 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
704 rrpriv->rx_ctrl[4].mode = 8;
705 rrpriv->rx_ctrl[4].pi = 0;
706 wmb();
707 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
709 udelay(1000);
712 * Now start the FirmWare.
714 cmd.code = C_START_FW;
715 cmd.ring = 0;
716 cmd.index = 0;
718 rr_issue_cmd(rrpriv, &cmd);
721 * Give the FirmWare time to chew on the `get running' command.
723 myjif = jiffies + 5 * HZ;
724 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
725 cpu_relax();
727 netif_start_queue(dev);
729 return ecode;
731 error:
733 * We might have gotten here because we are out of memory,
734 * make sure we release everything we allocated before failing
736 for (i = 0; i < RX_RING_ENTRIES; i++) {
737 struct sk_buff *skb = rrpriv->rx_skbuff[i];
739 if (skb) {
740 pci_unmap_single(rrpriv->pci_dev,
741 rrpriv->rx_ring[i].addr.addrlo,
742 dev->mtu + HIPPI_HLEN,
743 PCI_DMA_FROMDEVICE);
744 rrpriv->rx_ring[i].size = 0;
745 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
746 dev_kfree_skb(skb);
747 rrpriv->rx_skbuff[i] = NULL;
750 return ecode;
755 * All events are considered to be slow (RX/TX ints do not generate
756 * events) and are handled here, outside the main interrupt handler,
757 * to reduce the size of the handler.
759 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
761 struct rr_private *rrpriv;
762 struct rr_regs __iomem *regs;
763 u32 tmp;
765 rrpriv = netdev_priv(dev);
766 regs = rrpriv->regs;
768 while (prodidx != eidx){
769 switch (rrpriv->evt_ring[eidx].code){
770 case E_NIC_UP:
771 tmp = readl(&regs->FwRev);
772 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
773 "up and running\n", dev->name,
774 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
775 rrpriv->fw_running = 1;
776 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
777 wmb();
778 break;
779 case E_LINK_ON:
780 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
781 break;
782 case E_LINK_OFF:
783 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
784 break;
785 case E_RX_IDLE:
786 printk(KERN_WARNING "%s: RX data not moving\n",
787 dev->name);
788 goto drop;
789 case E_WATCHDOG:
790 printk(KERN_INFO "%s: The watchdog is here to see "
791 "us\n", dev->name);
792 break;
793 case E_INTERN_ERR:
794 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
795 dev->name);
796 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
797 &regs->HostCtrl);
798 wmb();
799 break;
800 case E_HOST_ERR:
801 printk(KERN_ERR "%s: Host software error\n",
802 dev->name);
803 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
804 &regs->HostCtrl);
805 wmb();
806 break;
808 * TX events.
810 case E_CON_REJ:
811 printk(KERN_WARNING "%s: Connection rejected\n",
812 dev->name);
813 rrpriv->stats.tx_aborted_errors++;
814 break;
815 case E_CON_TMOUT:
816 printk(KERN_WARNING "%s: Connection timeout\n",
817 dev->name);
818 break;
819 case E_DISC_ERR:
820 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
821 dev->name);
822 rrpriv->stats.tx_aborted_errors++;
823 break;
824 case E_INT_PRTY:
825 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
826 dev->name);
827 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
828 &regs->HostCtrl);
829 wmb();
830 break;
831 case E_TX_IDLE:
832 printk(KERN_WARNING "%s: Transmitter idle\n",
833 dev->name);
834 break;
835 case E_TX_LINK_DROP:
836 printk(KERN_WARNING "%s: Link lost during transmit\n",
837 dev->name);
838 rrpriv->stats.tx_aborted_errors++;
839 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
840 &regs->HostCtrl);
841 wmb();
842 break;
843 case E_TX_INV_RNG:
844 printk(KERN_ERR "%s: Invalid send ring block\n",
845 dev->name);
846 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
847 &regs->HostCtrl);
848 wmb();
849 break;
850 case E_TX_INV_BUF:
851 printk(KERN_ERR "%s: Invalid send buffer address\n",
852 dev->name);
853 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
854 &regs->HostCtrl);
855 wmb();
856 break;
857 case E_TX_INV_DSC:
858 printk(KERN_ERR "%s: Invalid descriptor address\n",
859 dev->name);
860 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
861 &regs->HostCtrl);
862 wmb();
863 break;
865 * RX events.
867 case E_RX_RNG_OUT:
868 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
869 break;
871 case E_RX_PAR_ERR:
872 printk(KERN_WARNING "%s: Receive parity error\n",
873 dev->name);
874 goto drop;
875 case E_RX_LLRC_ERR:
876 printk(KERN_WARNING "%s: Receive LLRC error\n",
877 dev->name);
878 goto drop;
879 case E_PKT_LN_ERR:
880 printk(KERN_WARNING "%s: Receive packet length "
881 "error\n", dev->name);
882 goto drop;
883 case E_DTA_CKSM_ERR:
884 printk(KERN_WARNING "%s: Data checksum error\n",
885 dev->name);
886 goto drop;
887 case E_SHT_BST:
888 printk(KERN_WARNING "%s: Unexpected short burst "
889 "error\n", dev->name);
890 goto drop;
891 case E_STATE_ERR:
892 printk(KERN_WARNING "%s: Recv. state transition"
893 " error\n", dev->name);
894 goto drop;
895 case E_UNEXP_DATA:
896 printk(KERN_WARNING "%s: Unexpected data error\n",
897 dev->name);
898 goto drop;
899 case E_LST_LNK_ERR:
900 printk(KERN_WARNING "%s: Link lost error\n",
901 dev->name);
902 goto drop;
903 case E_FRM_ERR:
904 printk(KERN_WARNING "%s: Framming Error\n",
905 dev->name);
906 goto drop;
907 case E_FLG_SYN_ERR:
908 printk(KERN_WARNING "%s: Flag sync. lost during"
909 "packet\n", dev->name);
910 goto drop;
911 case E_RX_INV_BUF:
912 printk(KERN_ERR "%s: Invalid receive buffer "
913 "address\n", dev->name);
914 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
915 &regs->HostCtrl);
916 wmb();
917 break;
918 case E_RX_INV_DSC:
919 printk(KERN_ERR "%s: Invalid receive descriptor "
920 "address\n", dev->name);
921 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
922 &regs->HostCtrl);
923 wmb();
924 break;
925 case E_RNG_BLK:
926 printk(KERN_ERR "%s: Invalid ring block\n",
927 dev->name);
928 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
929 &regs->HostCtrl);
930 wmb();
931 break;
932 drop:
933 /* Label packet to be dropped.
934 * Actual dropping occurs in rx
935 * handling.
937 * The index of packet we get to drop is
938 * the index of the packet following
939 * the bad packet. -kbf
942 u16 index = rrpriv->evt_ring[eidx].index;
943 index = (index + (RX_RING_ENTRIES - 1)) %
944 RX_RING_ENTRIES;
945 rrpriv->rx_ring[index].mode |=
946 (PACKET_BAD | PACKET_END);
948 break;
949 default:
950 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
951 dev->name, rrpriv->evt_ring[eidx].code);
953 eidx = (eidx + 1) % EVT_RING_ENTRIES;
956 rrpriv->info->evt_ctrl.pi = eidx;
957 wmb();
958 return eidx;
962 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
964 struct rr_private *rrpriv = netdev_priv(dev);
965 struct rr_regs __iomem *regs = rrpriv->regs;
967 do {
968 struct rx_desc *desc;
969 u32 pkt_len;
971 desc = &(rrpriv->rx_ring[index]);
972 pkt_len = desc->size;
973 #if (DEBUG > 2)
974 printk("index %i, rxlimit %i\n", index, rxlimit);
975 printk("len %x, mode %x\n", pkt_len, desc->mode);
976 #endif
977 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
978 rrpriv->stats.rx_dropped++;
979 goto defer;
982 if (pkt_len > 0){
983 struct sk_buff *skb, *rx_skb;
985 rx_skb = rrpriv->rx_skbuff[index];
987 if (pkt_len < PKT_COPY_THRESHOLD) {
988 skb = alloc_skb(pkt_len, GFP_ATOMIC);
989 if (skb == NULL){
990 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
991 rrpriv->stats.rx_dropped++;
992 goto defer;
993 } else {
994 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
995 desc->addr.addrlo,
996 pkt_len,
997 PCI_DMA_FROMDEVICE);
999 memcpy(skb_put(skb, pkt_len),
1000 rx_skb->data, pkt_len);
1002 pci_dma_sync_single_for_device(rrpriv->pci_dev,
1003 desc->addr.addrlo,
1004 pkt_len,
1005 PCI_DMA_FROMDEVICE);
1007 }else{
1008 struct sk_buff *newskb;
1010 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1011 GFP_ATOMIC);
1012 if (newskb){
1013 dma_addr_t addr;
1015 pci_unmap_single(rrpriv->pci_dev,
1016 desc->addr.addrlo, dev->mtu +
1017 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1018 skb = rx_skb;
1019 skb_put(skb, pkt_len);
1020 rrpriv->rx_skbuff[index] = newskb;
1021 addr = pci_map_single(rrpriv->pci_dev,
1022 newskb->data,
1023 dev->mtu + HIPPI_HLEN,
1024 PCI_DMA_FROMDEVICE);
1025 set_rraddr(&desc->addr, addr);
1026 } else {
1027 printk("%s: Out of memory, deferring "
1028 "packet\n", dev->name);
1029 rrpriv->stats.rx_dropped++;
1030 goto defer;
1033 skb->dev = dev;
1034 skb->protocol = hippi_type_trans(skb, dev);
1036 netif_rx(skb); /* send it up */
1038 dev->last_rx = jiffies;
1039 rrpriv->stats.rx_packets++;
1040 rrpriv->stats.rx_bytes += pkt_len;
1042 defer:
1043 desc->mode = 0;
1044 desc->size = dev->mtu + HIPPI_HLEN;
1046 if ((index & 7) == 7)
1047 writel(index, &regs->IpRxPi);
1049 index = (index + 1) % RX_RING_ENTRIES;
1050 } while(index != rxlimit);
1052 rrpriv->cur_rx = index;
1053 wmb();
1057 static irqreturn_t rr_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
1059 struct rr_private *rrpriv;
1060 struct rr_regs __iomem *regs;
1061 struct net_device *dev = (struct net_device *)dev_id;
1062 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1064 rrpriv = netdev_priv(dev);
1065 regs = rrpriv->regs;
1067 if (!(readl(&regs->HostCtrl) & RR_INT))
1068 return IRQ_NONE;
1070 spin_lock(&rrpriv->lock);
1072 prodidx = readl(&regs->EvtPrd);
1073 txcsmr = (prodidx >> 8) & 0xff;
1074 rxlimit = (prodidx >> 16) & 0xff;
1075 prodidx &= 0xff;
1077 #if (DEBUG > 2)
1078 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1079 prodidx, rrpriv->info->evt_ctrl.pi);
1080 #endif
1082 * Order here is important. We must handle events
1083 * before doing anything else in order to catch
1084 * such things as LLRC errors, etc -kbf
1087 eidx = rrpriv->info->evt_ctrl.pi;
1088 if (prodidx != eidx)
1089 eidx = rr_handle_event(dev, prodidx, eidx);
1091 rxindex = rrpriv->cur_rx;
1092 if (rxindex != rxlimit)
1093 rx_int(dev, rxlimit, rxindex);
1095 txcon = rrpriv->dirty_tx;
1096 if (txcsmr != txcon) {
1097 do {
1098 /* Due to occational firmware TX producer/consumer out
1099 * of sync. error need to check entry in ring -kbf
1101 if(rrpriv->tx_skbuff[txcon]){
1102 struct tx_desc *desc;
1103 struct sk_buff *skb;
1105 desc = &(rrpriv->tx_ring[txcon]);
1106 skb = rrpriv->tx_skbuff[txcon];
1108 rrpriv->stats.tx_packets++;
1109 rrpriv->stats.tx_bytes += skb->len;
1111 pci_unmap_single(rrpriv->pci_dev,
1112 desc->addr.addrlo, skb->len,
1113 PCI_DMA_TODEVICE);
1114 dev_kfree_skb_irq(skb);
1116 rrpriv->tx_skbuff[txcon] = NULL;
1117 desc->size = 0;
1118 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1119 desc->mode = 0;
1121 txcon = (txcon + 1) % TX_RING_ENTRIES;
1122 } while (txcsmr != txcon);
1123 wmb();
1125 rrpriv->dirty_tx = txcon;
1126 if (rrpriv->tx_full && rr_if_busy(dev) &&
1127 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1128 != rrpriv->dirty_tx)){
1129 rrpriv->tx_full = 0;
1130 netif_wake_queue(dev);
1134 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1135 writel(eidx, &regs->EvtCon);
1136 wmb();
1138 spin_unlock(&rrpriv->lock);
1139 return IRQ_HANDLED;
1142 static inline void rr_raz_tx(struct rr_private *rrpriv,
1143 struct net_device *dev)
1145 int i;
1147 for (i = 0; i < TX_RING_ENTRIES; i++) {
1148 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1150 if (skb) {
1151 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1153 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1154 skb->len, PCI_DMA_TODEVICE);
1155 desc->size = 0;
1156 set_rraddr(&desc->addr, 0);
1157 dev_kfree_skb(skb);
1158 rrpriv->tx_skbuff[i] = NULL;
1164 static inline void rr_raz_rx(struct rr_private *rrpriv,
1165 struct net_device *dev)
1167 int i;
1169 for (i = 0; i < RX_RING_ENTRIES; i++) {
1170 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1172 if (skb) {
1173 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1175 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1176 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1177 desc->size = 0;
1178 set_rraddr(&desc->addr, 0);
1179 dev_kfree_skb(skb);
1180 rrpriv->rx_skbuff[i] = NULL;
1185 static void rr_timer(unsigned long data)
1187 struct net_device *dev = (struct net_device *)data;
1188 struct rr_private *rrpriv = netdev_priv(dev);
1189 struct rr_regs __iomem *regs = rrpriv->regs;
1190 unsigned long flags;
1192 if (readl(&regs->HostCtrl) & NIC_HALTED){
1193 printk("%s: Restarting nic\n", dev->name);
1194 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1195 memset(rrpriv->info, 0, sizeof(struct rr_info));
1196 wmb();
1198 rr_raz_tx(rrpriv, dev);
1199 rr_raz_rx(rrpriv, dev);
1201 if (rr_init1(dev)) {
1202 spin_lock_irqsave(&rrpriv->lock, flags);
1203 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1204 &regs->HostCtrl);
1205 spin_unlock_irqrestore(&rrpriv->lock, flags);
1208 rrpriv->timer.expires = RUN_AT(5*HZ);
1209 add_timer(&rrpriv->timer);
1213 static int rr_open(struct net_device *dev)
1215 struct rr_private *rrpriv = netdev_priv(dev);
1216 struct pci_dev *pdev = rrpriv->pci_dev;
1217 struct rr_regs __iomem *regs;
1218 int ecode = 0;
1219 unsigned long flags;
1220 dma_addr_t dma_addr;
1222 regs = rrpriv->regs;
1224 if (rrpriv->fw_rev < 0x00020000) {
1225 printk(KERN_WARNING "%s: trying to configure device with "
1226 "obsolete firmware\n", dev->name);
1227 ecode = -EBUSY;
1228 goto error;
1231 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1232 256 * sizeof(struct ring_ctrl),
1233 &dma_addr);
1234 if (!rrpriv->rx_ctrl) {
1235 ecode = -ENOMEM;
1236 goto error;
1238 rrpriv->rx_ctrl_dma = dma_addr;
1239 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1241 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1242 &dma_addr);
1243 if (!rrpriv->info) {
1244 ecode = -ENOMEM;
1245 goto error;
1247 rrpriv->info_dma = dma_addr;
1248 memset(rrpriv->info, 0, sizeof(struct rr_info));
1249 wmb();
1251 spin_lock_irqsave(&rrpriv->lock, flags);
1252 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1253 readl(&regs->HostCtrl);
1254 spin_unlock_irqrestore(&rrpriv->lock, flags);
1256 if (request_irq(dev->irq, rr_interrupt, SA_SHIRQ, dev->name, dev)) {
1257 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1258 dev->name, dev->irq);
1259 ecode = -EAGAIN;
1260 goto error;
1263 if ((ecode = rr_init1(dev)))
1264 goto error;
1266 /* Set the timer to switch to check for link beat and perhaps switch
1267 to an alternate media type. */
1268 init_timer(&rrpriv->timer);
1269 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1270 rrpriv->timer.data = (unsigned long)dev;
1271 rrpriv->timer.function = &rr_timer; /* timer handler */
1272 add_timer(&rrpriv->timer);
1274 netif_start_queue(dev);
1276 return ecode;
1278 error:
1279 spin_lock_irqsave(&rrpriv->lock, flags);
1280 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1281 spin_unlock_irqrestore(&rrpriv->lock, flags);
1283 if (rrpriv->info) {
1284 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1285 rrpriv->info_dma);
1286 rrpriv->info = NULL;
1288 if (rrpriv->rx_ctrl) {
1289 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1290 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1291 rrpriv->rx_ctrl = NULL;
1294 netif_stop_queue(dev);
1296 return ecode;
1300 static void rr_dump(struct net_device *dev)
1302 struct rr_private *rrpriv;
1303 struct rr_regs __iomem *regs;
1304 u32 index, cons;
1305 short i;
1306 int len;
1308 rrpriv = netdev_priv(dev);
1309 regs = rrpriv->regs;
1311 printk("%s: dumping NIC TX rings\n", dev->name);
1313 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1314 readl(&regs->RxPrd), readl(&regs->TxPrd),
1315 readl(&regs->EvtPrd), readl(&regs->TxPi),
1316 rrpriv->info->tx_ctrl.pi);
1318 printk("Error code 0x%x\n", readl(&regs->Fail1));
1320 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1321 cons = rrpriv->dirty_tx;
1322 printk("TX ring index %i, TX consumer %i\n",
1323 index, cons);
1325 if (rrpriv->tx_skbuff[index]){
1326 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1327 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1328 for (i = 0; i < len; i++){
1329 if (!(i & 7))
1330 printk("\n");
1331 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1333 printk("\n");
1336 if (rrpriv->tx_skbuff[cons]){
1337 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1338 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1339 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1340 rrpriv->tx_ring[cons].mode,
1341 rrpriv->tx_ring[cons].size,
1342 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1343 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1344 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1345 for (i = 0; i < len; i++){
1346 if (!(i & 7))
1347 printk("\n");
1348 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1350 printk("\n");
1353 printk("dumping TX ring info:\n");
1354 for (i = 0; i < TX_RING_ENTRIES; i++)
1355 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1356 rrpriv->tx_ring[i].mode,
1357 rrpriv->tx_ring[i].size,
1358 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1363 static int rr_close(struct net_device *dev)
1365 struct rr_private *rrpriv;
1366 struct rr_regs __iomem *regs;
1367 unsigned long flags;
1368 u32 tmp;
1369 short i;
1371 netif_stop_queue(dev);
1373 rrpriv = netdev_priv(dev);
1374 regs = rrpriv->regs;
1377 * Lock to make sure we are not cleaning up while another CPU
1378 * is handling interrupts.
1380 spin_lock_irqsave(&rrpriv->lock, flags);
1382 tmp = readl(&regs->HostCtrl);
1383 if (tmp & NIC_HALTED){
1384 printk("%s: NIC already halted\n", dev->name);
1385 rr_dump(dev);
1386 }else{
1387 tmp |= HALT_NIC | RR_CLEAR_INT;
1388 writel(tmp, &regs->HostCtrl);
1389 readl(&regs->HostCtrl);
1392 rrpriv->fw_running = 0;
1394 del_timer_sync(&rrpriv->timer);
1396 writel(0, &regs->TxPi);
1397 writel(0, &regs->IpRxPi);
1399 writel(0, &regs->EvtCon);
1400 writel(0, &regs->EvtPrd);
1402 for (i = 0; i < CMD_RING_ENTRIES; i++)
1403 writel(0, &regs->CmdRing[i]);
1405 rrpriv->info->tx_ctrl.entries = 0;
1406 rrpriv->info->cmd_ctrl.pi = 0;
1407 rrpriv->info->evt_ctrl.pi = 0;
1408 rrpriv->rx_ctrl[4].entries = 0;
1410 rr_raz_tx(rrpriv, dev);
1411 rr_raz_rx(rrpriv, dev);
1413 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1414 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1415 rrpriv->rx_ctrl = NULL;
1417 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1418 rrpriv->info, rrpriv->info_dma);
1419 rrpriv->info = NULL;
1421 free_irq(dev->irq, dev);
1422 spin_unlock_irqrestore(&rrpriv->lock, flags);
1424 return 0;
1428 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1430 struct rr_private *rrpriv = netdev_priv(dev);
1431 struct rr_regs __iomem *regs = rrpriv->regs;
1432 struct ring_ctrl *txctrl;
1433 unsigned long flags;
1434 u32 index, len = skb->len;
1435 u32 *ifield;
1436 struct sk_buff *new_skb;
1438 if (readl(&regs->Mode) & FATAL_ERR)
1439 printk("error codes Fail1 %02x, Fail2 %02x\n",
1440 readl(&regs->Fail1), readl(&regs->Fail2));
1443 * We probably need to deal with tbusy here to prevent overruns.
1446 if (skb_headroom(skb) < 8){
1447 printk("incoming skb too small - reallocating\n");
1448 if (!(new_skb = dev_alloc_skb(len + 8))) {
1449 dev_kfree_skb(skb);
1450 netif_wake_queue(dev);
1451 return -EBUSY;
1453 skb_reserve(new_skb, 8);
1454 skb_put(new_skb, len);
1455 memcpy(new_skb->data, skb->data, len);
1456 dev_kfree_skb(skb);
1457 skb = new_skb;
1460 ifield = (u32 *)skb_push(skb, 8);
1462 ifield[0] = 0;
1463 ifield[1] = skb->private.ifield;
1466 * We don't need the lock before we are actually going to start
1467 * fiddling with the control blocks.
1469 spin_lock_irqsave(&rrpriv->lock, flags);
1471 txctrl = &rrpriv->info->tx_ctrl;
1473 index = txctrl->pi;
1475 rrpriv->tx_skbuff[index] = skb;
1476 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1477 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1478 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1479 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1480 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1481 wmb();
1482 writel(txctrl->pi, &regs->TxPi);
1484 if (txctrl->pi == rrpriv->dirty_tx){
1485 rrpriv->tx_full = 1;
1486 netif_stop_queue(dev);
1489 spin_unlock_irqrestore(&rrpriv->lock, flags);
1491 dev->trans_start = jiffies;
1492 return 0;
1496 static struct net_device_stats *rr_get_stats(struct net_device *dev)
1498 struct rr_private *rrpriv;
1500 rrpriv = netdev_priv(dev);
1502 return(&rrpriv->stats);
1507 * Read the firmware out of the EEPROM and put it into the SRAM
1508 * (or from user space - later)
1510 * This operation requires the NIC to be halted and is performed with
1511 * interrupts disabled and with the spinlock hold.
1513 static int rr_load_firmware(struct net_device *dev)
1515 struct rr_private *rrpriv;
1516 struct rr_regs __iomem *regs;
1517 unsigned long eptr, segptr;
1518 int i, j;
1519 u32 localctrl, sptr, len, tmp;
1520 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1521 struct eeprom *hw = NULL;
1523 rrpriv = netdev_priv(dev);
1524 regs = rrpriv->regs;
1526 if (dev->flags & IFF_UP)
1527 return -EBUSY;
1529 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1530 printk("%s: Trying to load firmware to a running NIC.\n",
1531 dev->name);
1532 return -EBUSY;
1535 localctrl = readl(&regs->LocalCtrl);
1536 writel(0, &regs->LocalCtrl);
1538 writel(0, &regs->EvtPrd);
1539 writel(0, &regs->RxPrd);
1540 writel(0, &regs->TxPrd);
1543 * First wipe the entire SRAM, otherwise we might run into all
1544 * kinds of trouble ... sigh, this took almost all afternoon
1545 * to track down ;-(
1547 io = readl(&regs->ExtIo);
1548 writel(0, &regs->ExtIo);
1549 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1551 for (i = 200; i < sram_size / 4; i++){
1552 writel(i * 4, &regs->WinBase);
1553 mb();
1554 writel(0, &regs->WinData);
1555 mb();
1557 writel(io, &regs->ExtIo);
1558 mb();
1560 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1561 &hw->rncd_info.AddrRunCodeSegs);
1562 eptr = ((eptr & 0x1fffff) >> 3);
1564 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1565 p2len = (p2len << 2);
1566 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1567 p2size = ((p2size & 0x1fffff) >> 3);
1569 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1570 printk("%s: eptr is invalid\n", dev->name);
1571 goto out;
1574 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1576 if (revision != 1){
1577 printk("%s: invalid firmware format (%i)\n",
1578 dev->name, revision);
1579 goto out;
1582 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1583 eptr +=4;
1584 #if (DEBUG > 1)
1585 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1586 #endif
1588 for (i = 0; i < nr_seg; i++){
1589 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1590 eptr += 4;
1591 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1592 eptr += 4;
1593 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1594 segptr = ((segptr & 0x1fffff) >> 3);
1595 eptr += 4;
1596 #if (DEBUG > 1)
1597 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1598 dev->name, i, sptr, len, segptr);
1599 #endif
1600 for (j = 0; j < len; j++){
1601 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1602 writel(sptr, &regs->WinBase);
1603 mb();
1604 writel(tmp, &regs->WinData);
1605 mb();
1606 segptr += 4;
1607 sptr += 4;
1611 out:
1612 writel(localctrl, &regs->LocalCtrl);
1613 mb();
1614 return 0;
1618 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1620 struct rr_private *rrpriv;
1621 unsigned char *image, *oldimage;
1622 unsigned long flags;
1623 unsigned int i;
1624 int error = -EOPNOTSUPP;
1626 rrpriv = netdev_priv(dev);
1628 switch(cmd){
1629 case SIOCRRGFW:
1630 if (!capable(CAP_SYS_RAWIO)){
1631 return -EPERM;
1634 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1635 if (!image){
1636 printk(KERN_ERR "%s: Unable to allocate memory "
1637 "for EEPROM image\n", dev->name);
1638 return -ENOMEM;
1642 if (rrpriv->fw_running){
1643 printk("%s: Firmware already running\n", dev->name);
1644 error = -EPERM;
1645 goto gf_out;
1648 spin_lock_irqsave(&rrpriv->lock, flags);
1649 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1650 spin_unlock_irqrestore(&rrpriv->lock, flags);
1651 if (i != EEPROM_BYTES){
1652 printk(KERN_ERR "%s: Error reading EEPROM\n",
1653 dev->name);
1654 error = -EFAULT;
1655 goto gf_out;
1657 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1658 if (error)
1659 error = -EFAULT;
1660 gf_out:
1661 kfree(image);
1662 return error;
1664 case SIOCRRPFW:
1665 if (!capable(CAP_SYS_RAWIO)){
1666 return -EPERM;
1669 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1670 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1671 if (!image || !oldimage) {
1672 printk(KERN_ERR "%s: Unable to allocate memory "
1673 "for EEPROM image\n", dev->name);
1674 error = -ENOMEM;
1675 goto wf_out;
1678 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1679 if (error) {
1680 error = -EFAULT;
1681 goto wf_out;
1684 if (rrpriv->fw_running){
1685 printk("%s: Firmware already running\n", dev->name);
1686 error = -EPERM;
1687 goto wf_out;
1690 printk("%s: Updating EEPROM firmware\n", dev->name);
1692 spin_lock_irqsave(&rrpriv->lock, flags);
1693 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1694 if (error)
1695 printk(KERN_ERR "%s: Error writing EEPROM\n",
1696 dev->name);
1698 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1699 spin_unlock_irqrestore(&rrpriv->lock, flags);
1701 if (i != EEPROM_BYTES)
1702 printk(KERN_ERR "%s: Error reading back EEPROM "
1703 "image\n", dev->name);
1705 error = memcmp(image, oldimage, EEPROM_BYTES);
1706 if (error){
1707 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1708 dev->name);
1709 error = -EFAULT;
1711 wf_out:
1712 if (oldimage)
1713 kfree(oldimage);
1714 if (image)
1715 kfree(image);
1716 return error;
1718 case SIOCRRID:
1719 return put_user(0x52523032, (int __user *)rq->ifr_data);
1720 default:
1721 return error;
1725 static struct pci_device_id rr_pci_tbl[] = {
1726 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1727 PCI_ANY_ID, PCI_ANY_ID, },
1728 { 0,}
1730 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1732 static struct pci_driver rr_driver = {
1733 .name = "rrunner",
1734 .id_table = rr_pci_tbl,
1735 .probe = rr_init_one,
1736 .remove = __devexit_p(rr_remove_one),
1739 static int __init rr_init_module(void)
1741 return pci_module_init(&rr_driver);
1744 static void __exit rr_cleanup_module(void)
1746 pci_unregister_driver(&rr_driver);
1749 module_init(rr_init_module);
1750 module_exit(rr_cleanup_module);
1753 * Local variables:
1754 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1755 * End: