1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
18 * FORMAC+ Driver for tag mode
24 #include "h/supern_2.h"
28 static const char ID_sccs
[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ;
33 #define UNUSED(x) (x) = (x)
39 #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1)
40 #define MS2BCLK(x) ((x)*12500L)
41 #define US2BCLK(x) ((x)*1250L)
44 * prototypes for static function
46 static void build_claim_beacon(struct s_smc
*smc
, u_long t_request
);
47 static int init_mac(struct s_smc
*smc
, int all
);
48 static void rtm_init(struct s_smc
*smc
);
49 static void smt_split_up_fifo(struct s_smc
*smc
);
51 #if (!defined(NO_SMT_PANIC) || defined(DEBUG))
52 static char write_mdr_warning
[] = "E350 write_mdr() FM_SNPPND is set\n";
53 static char cam_warning
[] = "E_SMT_004: CAM still busy\n";
56 #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP))
58 #define CHECK_NPP() { unsigned k = 10000 ;\
59 while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\
61 SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \
65 #define CHECK_CAM() { unsigned k = 10 ;\
66 while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\
68 SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \
72 const struct fddi_addr fddi_broadcast
= {{0xff,0xff,0xff,0xff,0xff,0xff}};
73 static const struct fddi_addr null_addr
= {{0,0,0,0,0,0}};
74 static const struct fddi_addr dbeacon_multi
= {{0x01,0x80,0xc2,0x00,0x01,0x00}};
76 static const u_short my_said
= 0xffff ; /* short address (n.u.) */
77 static const u_short my_sagp
= 0xffff ; /* short group address (n.u.) */
83 #define MA smc->hw.fddi_canon_addr
85 #define MA smc->hw.fddi_home_addr
90 * useful interrupt bits
92 static int mac_imsk1u
= FM_STXABRS
| FM_STXABRA0
| FM_SXMTABT
;
93 static int mac_imsk1l
= FM_SQLCKS
| FM_SQLCKA0
| FM_SPCEPDS
| FM_SPCEPDA0
|
94 FM_STBURS
| FM_STBURA0
;
96 /* delete FM_SRBFL after tests */
97 static int mac_imsk2u
= FM_SERRSF
| FM_SNFSLD
| FM_SRCVOVR
| FM_SRBFL
|
99 static int mac_imsk2l
= FM_STRTEXR
| FM_SDUPCLM
| FM_SFRMCTR
|
100 FM_SERRCTR
| FM_SLSTCTR
|
101 FM_STRTEXP
| FM_SMULTDA
| FM_SRNGOP
;
103 static int mac_imsk3u
= FM_SRCVOVR2
| FM_SRBFL2
;
104 static int mac_imsk3l
= FM_SRPERRQ2
| FM_SRPERRQ1
;
106 static int mac_beacon_imsk2u
= FM_SOTRBEC
| FM_SMYBEC
| FM_SBEC
|
107 FM_SLOCLM
| FM_SHICLM
| FM_SMYCLM
| FM_SCLM
;
110 static u_long
mac_get_tneg(struct s_smc
*smc
)
114 tneg
= (u_long
)((long)inpw(FM_A(FM_TNEG
))<<5) ;
115 return((u_long
)((tneg
+ ((inpw(FM_A(FM_TMRS
))>>10)&0x1f)) |
119 void mac_update_counter(struct s_smc
*smc
)
121 smc
->mib
.m
[MAC0
].fddiMACFrame_Ct
=
122 (smc
->mib
.m
[MAC0
].fddiMACFrame_Ct
& 0xffff0000L
)
123 + (u_short
) inpw(FM_A(FM_FCNTR
)) ;
124 smc
->mib
.m
[MAC0
].fddiMACLost_Ct
=
125 (smc
->mib
.m
[MAC0
].fddiMACLost_Ct
& 0xffff0000L
)
126 + (u_short
) inpw(FM_A(FM_LCNTR
)) ;
127 smc
->mib
.m
[MAC0
].fddiMACError_Ct
=
128 (smc
->mib
.m
[MAC0
].fddiMACError_Ct
& 0xffff0000L
)
129 + (u_short
) inpw(FM_A(FM_ECNTR
)) ;
130 smc
->mib
.m
[MAC0
].fddiMACT_Neg
= mac_get_tneg(smc
) ;
131 #ifdef SMT_REAL_TOKEN_CT
133 * If the token counter is emulated it is updated in smt_event.
137 smt_emulate_token_ct( smc
, MAC0
);
142 * write long value into buffer memory over memory data register (MDR),
144 static void write_mdr(struct s_smc
*smc
, u_long val
)
152 * read long value from buffer memory over memory data register (MDR),
154 static u_long
read_mdr(struct s_smc
*smc
, unsigned int addr
)
159 outpw(FM_A(FM_CMDREG1
),FM_IRMEMWO
) ;
160 CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */
161 /* p = MDRR() ; */ /* bad read values if the workaround */
162 /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/
164 p
= (u_long
)inpw(FM_A(FM_MDRU
))<<16 ;
165 p
+= (u_long
)inpw(FM_A(FM_MDRL
)) ;
171 * clear buffer memory
173 static void init_ram(struct s_smc
*smc
)
177 smc
->hw
.fp
.fifo
.rbc_ram_start
= 0 ;
178 smc
->hw
.fp
.fifo
.rbc_ram_end
=
179 smc
->hw
.fp
.fifo
.rbc_ram_start
+ RBC_MEM_SIZE
;
181 MARW(smc
->hw
.fp
.fifo
.rbc_ram_start
) ;
182 for (i
= smc
->hw
.fp
.fifo
.rbc_ram_start
;
183 i
< (u_short
) (smc
->hw
.fp
.fifo
.rbc_ram_end
-1); i
++)
185 /* Erase the last byte too */
190 * set receive FIFO pointer
192 static void set_recvptr(struct s_smc
*smc
)
195 * initialize the pointer for receive queue 1
197 outpw(FM_A(FM_RPR1
),smc
->hw
.fp
.fifo
.rx1_fifo_start
) ; /* RPR1 */
198 outpw(FM_A(FM_SWPR1
),smc
->hw
.fp
.fifo
.rx1_fifo_start
) ; /* SWPR1 */
199 outpw(FM_A(FM_WPR1
),smc
->hw
.fp
.fifo
.rx1_fifo_start
) ; /* WPR1 */
200 outpw(FM_A(FM_EARV1
),smc
->hw
.fp
.fifo
.tx_s_start
-1) ; /* EARV1 */
203 * initialize the pointer for receive queue 2
205 if (smc
->hw
.fp
.fifo
.rx2_fifo_size
) {
206 outpw(FM_A(FM_RPR2
),smc
->hw
.fp
.fifo
.rx2_fifo_start
) ;
207 outpw(FM_A(FM_SWPR2
),smc
->hw
.fp
.fifo
.rx2_fifo_start
) ;
208 outpw(FM_A(FM_WPR2
),smc
->hw
.fp
.fifo
.rx2_fifo_start
) ;
209 outpw(FM_A(FM_EARV2
),smc
->hw
.fp
.fifo
.rbc_ram_end
-1) ;
212 outpw(FM_A(FM_RPR2
),smc
->hw
.fp
.fifo
.rbc_ram_end
-1) ;
213 outpw(FM_A(FM_SWPR2
),smc
->hw
.fp
.fifo
.rbc_ram_end
-1) ;
214 outpw(FM_A(FM_WPR2
),smc
->hw
.fp
.fifo
.rbc_ram_end
-1) ;
215 outpw(FM_A(FM_EARV2
),smc
->hw
.fp
.fifo
.rbc_ram_end
-1) ;
220 * set transmit FIFO pointer
222 static void set_txptr(struct s_smc
*smc
)
224 outpw(FM_A(FM_CMDREG2
),FM_IRSTQ
) ; /* reset transmit queues */
227 * initialize the pointer for asynchronous transmit queue
229 outpw(FM_A(FM_RPXA0
),smc
->hw
.fp
.fifo
.tx_a0_start
) ; /* RPXA0 */
230 outpw(FM_A(FM_SWPXA0
),smc
->hw
.fp
.fifo
.tx_a0_start
) ; /* SWPXA0 */
231 outpw(FM_A(FM_WPXA0
),smc
->hw
.fp
.fifo
.tx_a0_start
) ; /* WPXA0 */
232 outpw(FM_A(FM_EAA0
),smc
->hw
.fp
.fifo
.rx2_fifo_start
-1) ; /* EAA0 */
235 * initialize the pointer for synchronous transmit queue
237 if (smc
->hw
.fp
.fifo
.tx_s_size
) {
238 outpw(FM_A(FM_RPXS
),smc
->hw
.fp
.fifo
.tx_s_start
) ;
239 outpw(FM_A(FM_SWPXS
),smc
->hw
.fp
.fifo
.tx_s_start
) ;
240 outpw(FM_A(FM_WPXS
),smc
->hw
.fp
.fifo
.tx_s_start
) ;
241 outpw(FM_A(FM_EAS
),smc
->hw
.fp
.fifo
.tx_a0_start
-1) ;
244 outpw(FM_A(FM_RPXS
),smc
->hw
.fp
.fifo
.tx_a0_start
-1) ;
245 outpw(FM_A(FM_SWPXS
),smc
->hw
.fp
.fifo
.tx_a0_start
-1) ;
246 outpw(FM_A(FM_WPXS
),smc
->hw
.fp
.fifo
.tx_a0_start
-1) ;
247 outpw(FM_A(FM_EAS
),smc
->hw
.fp
.fifo
.tx_a0_start
-1) ;
252 * init memory buffer management registers
254 static void init_rbc(struct s_smc
*smc
)
256 u_short rbc_ram_addr
;
259 * set unused pointers or permanent pointers
261 rbc_ram_addr
= smc
->hw
.fp
.fifo
.rx2_fifo_start
- 1 ;
263 outpw(FM_A(FM_RPXA1
),rbc_ram_addr
) ; /* a1-send pointer */
264 outpw(FM_A(FM_WPXA1
),rbc_ram_addr
) ;
265 outpw(FM_A(FM_SWPXA1
),rbc_ram_addr
) ;
266 outpw(FM_A(FM_EAA1
),rbc_ram_addr
) ;
275 static void init_rx(struct s_smc
*smc
)
277 struct s_smt_rx_queue
*queue
;
280 * init all tx data structures for receive queue 1
282 smc
->hw
.fp
.rx
[QUEUE_R1
] = queue
= &smc
->hw
.fp
.rx_q
[QUEUE_R1
] ;
283 queue
->rx_bmu_ctl
= (HW_PTR
) ADDR(B0_R1_CSR
) ;
284 queue
->rx_bmu_dsc
= (HW_PTR
) ADDR(B4_R1_DA
) ;
287 * init all tx data structures for receive queue 2
289 smc
->hw
.fp
.rx
[QUEUE_R2
] = queue
= &smc
->hw
.fp
.rx_q
[QUEUE_R2
] ;
290 queue
->rx_bmu_ctl
= (HW_PTR
) ADDR(B0_R2_CSR
) ;
291 queue
->rx_bmu_dsc
= (HW_PTR
) ADDR(B4_R2_DA
) ;
295 * set the TSYNC register of the FORMAC to regulate synchronous transmission
297 void set_formac_tsync(struct s_smc
*smc
, long sync_bw
)
299 outpw(FM_A(FM_TSYNC
),(unsigned int) (((-sync_bw
) >> 5) & 0xffff) ) ;
303 * init all tx data structures
305 static void init_tx(struct s_smc
*smc
)
307 struct s_smt_tx_queue
*queue
;
310 * init all tx data structures for the synchronous queue
312 smc
->hw
.fp
.tx
[QUEUE_S
] = queue
= &smc
->hw
.fp
.tx_q
[QUEUE_S
] ;
313 queue
->tx_bmu_ctl
= (HW_PTR
) ADDR(B0_XS_CSR
) ;
314 queue
->tx_bmu_dsc
= (HW_PTR
) ADDR(B5_XS_DA
) ;
317 set_formac_tsync(smc
,smc
->ess
.sync_bw
) ;
321 * init all tx data structures for the asynchronous queue 0
323 smc
->hw
.fp
.tx
[QUEUE_A0
] = queue
= &smc
->hw
.fp
.tx_q
[QUEUE_A0
] ;
324 queue
->tx_bmu_ctl
= (HW_PTR
) ADDR(B0_XA_CSR
) ;
325 queue
->tx_bmu_dsc
= (HW_PTR
) ADDR(B5_XA_DA
) ;
328 llc_recover_tx(smc
) ;
331 static void mac_counter_init(struct s_smc
*smc
)
337 * clear FORMAC+ frame-, lost- and error counter
339 outpw(FM_A(FM_FCNTR
),0) ;
340 outpw(FM_A(FM_LCNTR
),0) ;
341 outpw(FM_A(FM_ECNTR
),0) ;
343 * clear internal error counter stucture
345 ec
= (u_long
*)&smc
->hw
.fp
.err_stats
;
346 for (i
= (sizeof(struct err_st
)/sizeof(long)) ; i
; i
--)
348 smc
->mib
.m
[MAC0
].fddiMACRingOp_Ct
= 0 ;
352 * set FORMAC address, and t_request
354 static void set_formac_addr(struct s_smc
*smc
)
356 long t_requ
= smc
->mib
.m
[MAC0
].fddiMACT_Req
;
358 outpw(FM_A(FM_SAID
),my_said
) ; /* set short address */
359 outpw(FM_A(FM_LAIL
),(unsigned)((smc
->hw
.fddi_home_addr
.a
[4]<<8) +
360 smc
->hw
.fddi_home_addr
.a
[5])) ;
361 outpw(FM_A(FM_LAIC
),(unsigned)((smc
->hw
.fddi_home_addr
.a
[2]<<8) +
362 smc
->hw
.fddi_home_addr
.a
[3])) ;
363 outpw(FM_A(FM_LAIM
),(unsigned)((smc
->hw
.fddi_home_addr
.a
[0]<<8) +
364 smc
->hw
.fddi_home_addr
.a
[1])) ;
366 outpw(FM_A(FM_SAGP
),my_sagp
) ; /* set short group address */
368 outpw(FM_A(FM_LAGL
),(unsigned)((smc
->hw
.fp
.group_addr
.a
[4]<<8) +
369 smc
->hw
.fp
.group_addr
.a
[5])) ;
370 outpw(FM_A(FM_LAGC
),(unsigned)((smc
->hw
.fp
.group_addr
.a
[2]<<8) +
371 smc
->hw
.fp
.group_addr
.a
[3])) ;
372 outpw(FM_A(FM_LAGM
),(unsigned)((smc
->hw
.fp
.group_addr
.a
[0]<<8) +
373 smc
->hw
.fp
.group_addr
.a
[1])) ;
375 /* set r_request regs. (MSW & LSW of TRT ) */
376 outpw(FM_A(FM_TREQ1
),(unsigned)(t_requ
>>16)) ;
377 outpw(FM_A(FM_TREQ0
),(unsigned)t_requ
) ;
380 static void set_int(char *p
, int l
)
382 p
[0] = (char)(l
>> 24) ;
383 p
[1] = (char)(l
>> 16) ;
384 p
[2] = (char)(l
>> 8) ;
385 p
[3] = (char)(l
>> 0) ;
389 * copy TX descriptor to buffer mem
390 * append FC field and MAC frame
391 * if more bit is set in descr
392 * append pointer to descriptor (endless loop)
394 * append 'end of chain' pointer
396 static void copy_tx_mac(struct s_smc
*smc
, u_long td
, struct fddi_mac
*mac
,
397 unsigned off
, int len
)
398 /* u_long td; transmit descriptor */
399 /* struct fddi_mac *mac; mac frame pointer */
400 /* unsigned off; start address within buffer memory */
401 /* int len ; lenght of the frame including the FC */
407 MARW(off
) ; /* set memory address reg for writes */
410 for (i
= (len
+ 3)/4 ; i
; i
--) {
412 /* last word, set the tag bit */
413 outpw(FM_A(FM_CMDREG2
),FM_ISTTB
) ;
415 write_mdr(smc
,MDR_REVERSE(*p
)) ;
419 outpw(FM_A(FM_CMDREG2
),FM_ISTTB
) ; /* set the tag bit */
420 write_mdr(smc
,td
) ; /* write over memory data reg to buffer */
424 BEGIN_MANUAL_ENTRY(module;tests;3)
425 How to test directed beacon frames
426 ----------------------------------------------------------------
428 o Insert a break point in the function build_claim_beacon()
429 before calling copy_tx_mac() for building the claim frame.
430 o Modify the RM3_DETECT case so that the RM6_DETECT state
431 will always entered from the RM3_DETECT state (function rmt_fsm(),
433 o Compile the driver.
434 o Set the parameter TREQ in the protocol.ini or net.cfg to a
435 small value to make sure your station will win the claim
438 o When you reach the break point, modify the SA and DA address
439 of the claim frame (e.g. SA = DA = 10005affffff).
440 o When you see RM3_DETECT and RM6_DETECT, observe the direct
441 beacon frames on the UPPSLANA.
445 static void directed_beacon(struct s_smc
*smc
)
447 SK_LOC_DECL(u_int
,a
[2]) ;
451 * enable FORMAC to send endless queue of directed beacon
452 * important: the UNA starts at byte 1 (not at byte 0)
454 * (char *) a
= (char) ((long)DBEACON_INFO
<<24L) ;
456 memcpy((char *)a
+1,(char *) &smc
->mib
.m
[MAC0
].fddiMACUpstreamNbr
,6) ;
459 /* set memory address reg for writes */
460 MARW(smc
->hw
.fp
.fifo
.rbc_ram_start
+DBEACON_FRAME_OFF
+4) ;
461 write_mdr(smc
,MDR_REVERSE(a
[0])) ;
462 outpw(FM_A(FM_CMDREG2
),FM_ISTTB
) ; /* set the tag bit */
463 write_mdr(smc
,MDR_REVERSE(a
[1])) ;
465 outpw(FM_A(FM_SABC
),smc
->hw
.fp
.fifo
.rbc_ram_start
+ DBEACON_FRAME_OFF
) ;
469 setup claim & beacon pointer
471 special frame packets end with a pointer to their own
472 descriptor, and the MORE bit is set in the descriptor
474 static void build_claim_beacon(struct s_smc
*smc
, u_long t_request
)
478 struct fddi_mac_sf
*mac
;
484 td
= TX_DESCRIPTOR
| ((((u_int
)len
-1)&3)<<27) ;
485 mac
= &smc
->hw
.fp
.mac_sfb
;
486 mac
->mac_fc
= FC_CLAIM
;
487 /* DA == SA in claim frame */
488 mac
->mac_source
= mac
->mac_dest
= MA
;
490 set_int((char *)mac
->mac_info
,(int)t_request
) ;
492 copy_tx_mac(smc
,td
,(struct fddi_mac
*)mac
,
493 smc
->hw
.fp
.fifo
.rbc_ram_start
+ CLAIM_FRAME_OFF
,len
) ;
494 /* set CLAIM start pointer */
495 outpw(FM_A(FM_SACL
),smc
->hw
.fp
.fifo
.rbc_ram_start
+ CLAIM_FRAME_OFF
) ;
498 * build beacon packet
501 td
= TX_DESCRIPTOR
| ((((u_int
)len
-1)&3)<<27) ;
502 mac
->mac_fc
= FC_BEACON
;
503 mac
->mac_source
= MA
;
504 mac
->mac_dest
= null_addr
; /* DA == 0 in beacon frame */
505 set_int((char *) mac
->mac_info
,((int)BEACON_INFO
<<24) + 0 ) ;
507 copy_tx_mac(smc
,td
,(struct fddi_mac
*)mac
,
508 smc
->hw
.fp
.fifo
.rbc_ram_start
+ BEACON_FRAME_OFF
,len
) ;
509 /* set beacon start pointer */
510 outpw(FM_A(FM_SABC
),smc
->hw
.fp
.fifo
.rbc_ram_start
+ BEACON_FRAME_OFF
) ;
513 * build directed beacon packet
514 * contains optional UNA
517 td
= TX_DESCRIPTOR
| ((((u_int
)len
-1)&3)<<27) ;
518 mac
->mac_fc
= FC_BEACON
;
519 mac
->mac_source
= MA
;
520 mac
->mac_dest
= dbeacon_multi
; /* multicast */
521 set_int((char *) mac
->mac_info
,((int)DBEACON_INFO
<<24) + 0 ) ;
522 set_int((char *) mac
->mac_info
+4,0) ;
523 set_int((char *) mac
->mac_info
+8,0) ;
525 copy_tx_mac(smc
,td
,(struct fddi_mac
*)mac
,
526 smc
->hw
.fp
.fifo
.rbc_ram_start
+ DBEACON_FRAME_OFF
,len
) ;
528 /* end of claim/beacon queue */
529 outpw(FM_A(FM_EACB
),smc
->hw
.fp
.fifo
.rx1_fifo_start
-1) ;
531 outpw(FM_A(FM_WPXSF
),0) ;
532 outpw(FM_A(FM_RPXSF
),0) ;
535 static void formac_rcv_restart(struct s_smc
*smc
)
537 /* enable receive function */
538 SETMASK(FM_A(FM_MDREG1
),smc
->hw
.fp
.rx_mode
,FM_ADDRX
) ;
540 outpw(FM_A(FM_CMDREG1
),FM_ICLLR
) ; /* clear receive lock */
543 void formac_tx_restart(struct s_smc
*smc
)
545 outpw(FM_A(FM_CMDREG1
),FM_ICLLS
) ; /* clear s-frame lock */
546 outpw(FM_A(FM_CMDREG1
),FM_ICLLA0
) ; /* clear a-frame lock */
549 static void enable_formac(struct s_smc
*smc
)
551 /* set formac IMSK : 0 enables irq */
552 outpw(FM_A(FM_IMSK1U
),~mac_imsk1u
) ;
553 outpw(FM_A(FM_IMSK1L
),~mac_imsk1l
) ;
554 outpw(FM_A(FM_IMSK2U
),~mac_imsk2u
) ;
555 outpw(FM_A(FM_IMSK2L
),~mac_imsk2l
) ;
556 outpw(FM_A(FM_IMSK3U
),~mac_imsk3u
) ;
557 outpw(FM_A(FM_IMSK3L
),~mac_imsk3l
) ;
560 #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */
561 /* The FORMACs tx complete IRQ should be used any longer */
564 BEGIN_MANUAL_ENTRY(if,func;others;4)
566 void enable_tx_irq(smc, queue)
570 Function DOWNCALL (SMT, fplustm.c)
571 enable_tx_irq() enables the FORMACs transmit complete
572 interrupt of the queue.
574 Para queue = QUEUE_S: synchronous queue
575 = QUEUE_A0: asynchronous queue
577 Note After any ring operational change the transmit complete
578 interrupts are disabled.
579 The operating system dependent module must enable
580 the transmit complete interrupt of a queue,
581 - when it queues the first frame,
582 because of no transmit resources are beeing
584 - when it escapes from the function llc_restart_tx
585 while some frames are still queued.
589 void enable_tx_irq(struct s_smc
*smc
, u_short queue
)
590 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
594 imask
= ~(inpw(FM_A(FM_IMSK1U
))) ;
597 outpw(FM_A(FM_IMSK1U
),~(imask
|FM_STEFRMS
)) ;
600 outpw(FM_A(FM_IMSK1U
),~(imask
|FM_STEFRMA0
)) ;
605 BEGIN_MANUAL_ENTRY(if,func;others;4)
607 void disable_tx_irq(smc, queue)
611 Function DOWNCALL (SMT, fplustm.c)
612 disable_tx_irq disables the FORMACs transmit complete
613 interrupt of the queue
615 Para queue = QUEUE_S: synchronous queue
616 = QUEUE_A0: asynchronous queue
618 Note The operating system dependent module should disable
619 the transmit complete interrupts if it escapes from the
620 function llc_restart_tx and no frames are queued.
624 void disable_tx_irq(struct s_smc
*smc
, u_short queue
)
625 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
629 imask
= ~(inpw(FM_A(FM_IMSK1U
))) ;
632 outpw(FM_A(FM_IMSK1U
),~(imask
&~FM_STEFRMS
)) ;
635 outpw(FM_A(FM_IMSK1U
),~(imask
&~FM_STEFRMA0
)) ;
640 static void disable_formac(struct s_smc
*smc
)
642 /* clear formac IMSK : 1 disables irq */
643 outpw(FM_A(FM_IMSK1U
),MW
) ;
644 outpw(FM_A(FM_IMSK1L
),MW
) ;
645 outpw(FM_A(FM_IMSK2U
),MW
) ;
646 outpw(FM_A(FM_IMSK2L
),MW
) ;
647 outpw(FM_A(FM_IMSK3U
),MW
) ;
648 outpw(FM_A(FM_IMSK3L
),MW
) ;
652 static void mac_ring_up(struct s_smc
*smc
, int up
)
655 formac_rcv_restart(smc
) ; /* enable receive function */
656 smc
->hw
.mac_ring_is_up
= TRUE
;
657 llc_restart_tx(smc
) ; /* TX queue */
660 /* disable receive function */
661 SETMASK(FM_A(FM_MDREG1
),FM_MDISRCV
,FM_ADDET
) ;
663 /* abort current transmit activity */
664 outpw(FM_A(FM_CMDREG2
),FM_IACTR
) ;
666 smc
->hw
.mac_ring_is_up
= FALSE
;
670 /*--------------------------- ISR handling ----------------------------------*/
672 * mac1_irq is in drvfbi.c
676 * mac2_irq: status bits for the receive queue 1, and ring status
677 * ring status indication bits
679 void mac2_irq(struct s_smc
*smc
, u_short code_s2u
, u_short code_s2l
)
685 * Restart 2_DMax Timer after end of claiming or beaconing
687 if (code_s2u
& (FM_SCLM
|FM_SHICLM
|FM_SBEC
|FM_SOTRBEC
)) {
688 queue_event(smc
,EVENT_RMT
,RM_TX_STATE_CHANGE
) ;
690 else if (code_s2l
& (FM_STKISS
)) {
691 queue_event(smc
,EVENT_RMT
,RM_TX_STATE_CHANGE
) ;
695 * XOR current st bits with the last to avoid useless RMT event queuing
697 change_s2l
= smc
->hw
.fp
.s2l
^ code_s2l
;
698 change_s2u
= smc
->hw
.fp
.s2u
^ code_s2u
;
700 if ((change_s2l
& FM_SRNGOP
) ||
701 (!smc
->hw
.mac_ring_is_up
&& ((code_s2l
& FM_SRNGOP
)))) {
702 if (code_s2l
& FM_SRNGOP
) {
704 queue_event(smc
,EVENT_RMT
,RM_RING_OP
) ;
705 smc
->mib
.m
[MAC0
].fddiMACRingOp_Ct
++ ;
709 queue_event(smc
,EVENT_RMT
,RM_RING_NON_OP
) ;
713 if (code_s2l
& FM_SMISFRM
) { /* missed frame */
714 smc
->mib
.m
[MAC0
].fddiMACNotCopied_Ct
++ ;
716 if (code_s2u
& (FM_SRCVOVR
| /* recv. FIFO overflow */
717 FM_SRBFL
)) { /* recv. buffer full */
718 smc
->hw
.mac_ct
.mac_r_restart_counter
++ ;
719 /* formac_rcv_restart(smc) ; */
720 smt_stat_counter(smc
,1) ;
721 /* goto mac2_end ; */
723 if (code_s2u
& FM_SOTRBEC
)
724 queue_event(smc
,EVENT_RMT
,RM_OTHER_BEACON
) ;
725 if (code_s2u
& FM_SMYBEC
)
726 queue_event(smc
,EVENT_RMT
,RM_MY_BEACON
) ;
727 if (change_s2u
& code_s2u
& FM_SLOCLM
) {
728 DB_RMTN(2,"RMT : lower claim received\n",0,0) ;
730 if ((code_s2u
& FM_SMYCLM
) && !(code_s2l
& FM_SDUPCLM
)) {
732 * This is my claim and that claim is not detected as a
735 queue_event(smc
,EVENT_RMT
,RM_MY_CLAIM
) ;
737 if (code_s2l
& FM_SDUPCLM
) {
739 * If a duplicate claim frame (same SA but T_Bid != T_Req)
740 * this flag will be set.
741 * In the RMT state machine we need a RM_VALID_CLAIM event
742 * to do the appropriate state change.
745 queue_event(smc
,EVENT_RMT
,RM_VALID_CLAIM
) ;
747 if (change_s2u
& code_s2u
& FM_SHICLM
) {
748 DB_RMTN(2,"RMT : higher claim received\n",0,0) ;
750 if ( (code_s2l
& FM_STRTEXP
) ||
751 (code_s2l
& FM_STRTEXR
) )
752 queue_event(smc
,EVENT_RMT
,RM_TRT_EXP
) ;
753 if (code_s2l
& FM_SMULTDA
) {
755 * The MAC has found a 2. MAC with the same address.
756 * Signal dup_addr_test = failed to RMT state machine.
759 smc
->r
.dup_addr_test
= DA_FAILED
;
760 queue_event(smc
,EVENT_RMT
,RM_DUP_ADDR
) ;
762 if (code_s2u
& FM_SBEC
)
763 smc
->hw
.fp
.err_stats
.err_bec_stat
++ ;
764 if (code_s2u
& FM_SCLM
)
765 smc
->hw
.fp
.err_stats
.err_clm_stat
++ ;
766 if (code_s2l
& FM_STVXEXP
)
767 smc
->mib
.m
[MAC0
].fddiMACTvxExpired_Ct
++ ;
768 if ((code_s2u
& (FM_SBEC
|FM_SCLM
))) {
769 if (!(change_s2l
& FM_SRNGOP
) && (smc
->hw
.fp
.s2l
& FM_SRNGOP
)) {
771 queue_event(smc
,EVENT_RMT
,RM_RING_NON_OP
) ;
774 queue_event(smc
,EVENT_RMT
,RM_RING_OP
) ;
775 smc
->mib
.m
[MAC0
].fddiMACRingOp_Ct
++ ;
778 if (code_s2l
& FM_SPHINV
)
779 smc
->hw
.fp
.err_stats
.err_phinv
++ ;
780 if (code_s2l
& FM_SSIFG
)
781 smc
->hw
.fp
.err_stats
.err_sifg_det
++ ;
782 if (code_s2l
& FM_STKISS
)
783 smc
->hw
.fp
.err_stats
.err_tkiss
++ ;
784 if (code_s2l
& FM_STKERR
)
785 smc
->hw
.fp
.err_stats
.err_tkerr
++ ;
786 if (code_s2l
& FM_SFRMCTR
)
787 smc
->mib
.m
[MAC0
].fddiMACFrame_Ct
+= 0x10000L
;
788 if (code_s2l
& FM_SERRCTR
)
789 smc
->mib
.m
[MAC0
].fddiMACError_Ct
+= 0x10000L
;
790 if (code_s2l
& FM_SLSTCTR
)
791 smc
->mib
.m
[MAC0
].fddiMACLost_Ct
+= 0x10000L
;
792 if (code_s2u
& FM_SERRSF
) {
793 SMT_PANIC(smc
,SMT_E0114
, SMT_E0114_MSG
) ;
796 /* notice old status */
797 smc
->hw
.fp
.s2l
= code_s2l
;
798 smc
->hw
.fp
.s2u
= code_s2u
;
799 outpw(FM_A(FM_IMSK2U
),~mac_imsk2u
) ;
803 * mac3_irq: receive queue 2 bits and address detection bits
805 void mac3_irq(struct s_smc
*smc
, u_short code_s3u
, u_short code_s3l
)
809 if (code_s3u
& (FM_SRCVOVR2
| /* recv. FIFO overflow */
810 FM_SRBFL2
)) { /* recv. buffer full */
811 smc
->hw
.mac_ct
.mac_r_restart_counter
++ ;
812 smt_stat_counter(smc
,1);
816 if (code_s3u
& FM_SRPERRQ2
) { /* parity error receive queue 2 */
817 SMT_PANIC(smc
,SMT_E0115
, SMT_E0115_MSG
) ;
819 if (code_s3u
& FM_SRPERRQ1
) { /* parity error receive queue 2 */
820 SMT_PANIC(smc
,SMT_E0116
, SMT_E0116_MSG
) ;
826 * take formac offline
828 static void formac_offline(struct s_smc
*smc
)
830 outpw(FM_A(FM_CMDREG2
),FM_IACTR
) ;/* abort current transmit activity */
832 /* disable receive function */
833 SETMASK(FM_A(FM_MDREG1
),FM_MDISRCV
,FM_ADDET
) ;
835 /* FORMAC+ 'Initialize Mode' */
836 SETMASK(FM_A(FM_MDREG1
),FM_MINIT
,FM_MMODE
) ;
838 disable_formac(smc
) ;
839 smc
->hw
.mac_ring_is_up
= FALSE
;
840 smc
->hw
.hw_state
= STOPPED
;
844 * bring formac online
846 static void formac_online(struct s_smc
*smc
)
849 SETMASK(FM_A(FM_MDREG1
),FM_MONLINE
| FM_SELRA
| MDR1INIT
|
850 smc
->hw
.fp
.rx_mode
, FM_MMODE
| FM_SELRA
| FM_ADDRX
) ;
854 * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon)
856 int init_fplus(struct s_smc
*smc
)
858 smc
->hw
.fp
.nsa_mode
= FM_MRNNSAFNMA
;
859 smc
->hw
.fp
.rx_mode
= FM_MDAMA
;
860 smc
->hw
.fp
.group_addr
= fddi_broadcast
;
861 smc
->hw
.fp
.func_addr
= 0 ;
862 smc
->hw
.fp
.frselreg_init
= 0 ;
864 init_driver_fplus(smc
) ;
865 if (smc
->s
.sas
== SMT_DAS
)
866 smc
->hw
.fp
.mdr3init
|= FM_MENDAS
;
868 smc
->hw
.mac_ct
.mac_nobuf_counter
= 0 ;
869 smc
->hw
.mac_ct
.mac_r_restart_counter
= 0 ;
871 smc
->hw
.fp
.fm_st1u
= (HW_PTR
) ADDR(B0_ST1U
) ;
872 smc
->hw
.fp
.fm_st1l
= (HW_PTR
) ADDR(B0_ST1L
) ;
873 smc
->hw
.fp
.fm_st2u
= (HW_PTR
) ADDR(B0_ST2U
) ;
874 smc
->hw
.fp
.fm_st2l
= (HW_PTR
) ADDR(B0_ST2L
) ;
875 smc
->hw
.fp
.fm_st3u
= (HW_PTR
) ADDR(B0_ST3U
) ;
876 smc
->hw
.fp
.fm_st3l
= (HW_PTR
) ADDR(B0_ST3L
) ;
878 smc
->hw
.fp
.s2l
= smc
->hw
.fp
.s2u
= 0 ;
879 smc
->hw
.mac_ring_is_up
= 0 ;
881 mac_counter_init(smc
) ;
883 /* convert BCKL units to symbol time */
884 smc
->hw
.mac_pa
.t_neg
= (u_long
)0 ;
885 smc
->hw
.mac_pa
.t_pri
= (u_long
)0 ;
887 /* make sure all PCI settings are correct */
888 mac_do_pci_fix(smc
) ;
890 return(init_mac(smc
,1)) ;
891 /* enable_formac(smc) ; */
894 static int init_mac(struct s_smc
*smc
, int all
)
902 outpw(FM_A(FM_MDREG1
),FM_MINIT
) ; /* FORMAC+ init mode */
903 set_formac_addr(smc
) ;
904 outpw(FM_A(FM_MDREG1
),FM_MMEMACT
) ; /* FORMAC+ memory activ mode */
905 /* Note: Mode register 2 is set here, incase parity is enabled. */
906 outpw(FM_A(FM_MDREG2
),smc
->hw
.fp
.mdr2init
) ;
913 * reset the HPI, the Master and the BMUs
915 outp(ADDR(B0_CTRL
), CTRL_HPI_SET
) ;
916 time
= hwt_quick_read(smc
) ;
920 * set all pointers, frames etc
922 smt_split_up_fifo(smc
) ;
928 build_claim_beacon(smc
,smc
->mib
.m
[MAC0
].fddiMACT_Req
) ;
930 /* set RX threshold */
931 /* see Errata #SN2 Phantom receive overflow */
932 outpw(FM_A(FM_FRMTHR
),14<<12) ; /* switch on */
934 /* set formac work mode */
935 outpw(FM_A(FM_MDREG1
),MDR1INIT
| FM_SELRA
| smc
->hw
.fp
.rx_mode
) ;
936 outpw(FM_A(FM_MDREG2
),smc
->hw
.fp
.mdr2init
) ;
937 outpw(FM_A(FM_MDREG3
),smc
->hw
.fp
.mdr3init
) ;
938 outpw(FM_A(FM_FRSELREG
),smc
->hw
.fp
.frselreg_init
) ;
943 * T_MAX must not be FFFE
944 * or one of FFDF, FFB8, FF91 (-0x27 etc..)
946 t_max
= (u_short
)(smc
->mib
.m
[MAC0
].fddiMACT_Max
/32) ;
949 if ((t_max
== 0xfffe) || (t_max
- x
== 0x16))
951 outpw(FM_A(FM_TMAX
),(u_short
)t_max
) ;
953 /* BugFix for report #10204 */
954 if (smc
->mib
.m
[MAC0
].fddiMACTvxValue
< (u_long
) (- US2BCLK(52))) {
955 outpw(FM_A(FM_TVX
), (u_short
) (- US2BCLK(52))/255 & MB
) ;
958 (u_short
)((smc
->mib
.m
[MAC0
].fddiMACTvxValue
/255) & MB
)) ;
961 outpw(FM_A(FM_CMDREG1
),FM_ICLLS
) ; /* clear s-frame lock */
962 outpw(FM_A(FM_CMDREG1
),FM_ICLLA0
) ; /* clear a-frame lock */
963 outpw(FM_A(FM_CMDREG1
),FM_ICLLR
); /* clear receive lock */
965 /* Auto unlock receice threshold for receive queue 1 and 2 */
966 outpw(FM_A(FM_UNLCKDLY
),(0xff|(0xff<<8))) ;
968 rtm_init(smc
) ; /* RT-Monitor */
972 * after 10ms, reset the BMUs and repair the rings
974 hwt_wait_time(smc
,time
,MS2BCLK(10)) ;
975 outpd(ADDR(B0_R1_CSR
),CSR_SET_RESET
) ;
976 outpd(ADDR(B0_XA_CSR
),CSR_SET_RESET
) ;
977 outpd(ADDR(B0_XS_CSR
),CSR_SET_RESET
) ;
978 outp(ADDR(B0_CTRL
), CTRL_HPI_CLR
) ;
979 outpd(ADDR(B0_R1_CSR
),CSR_CLR_RESET
) ;
980 outpd(ADDR(B0_XA_CSR
),CSR_CLR_RESET
) ;
981 outpd(ADDR(B0_XS_CSR
),CSR_CLR_RESET
) ;
982 if (!smc
->hw
.hw_is_64bit
) {
983 outpd(ADDR(B4_R1_F
), RX_WATERMARK
) ;
984 outpd(ADDR(B5_XA_F
), TX_WATERMARK
) ;
985 outpd(ADDR(B5_XS_F
), TX_WATERMARK
) ;
987 smc
->hw
.hw_state
= STOPPED
;
988 mac_drv_repair_descr(smc
) ;
990 smc
->hw
.hw_state
= STARTED
;
999 void config_mux(struct s_smc
*smc
, int mux
)
1001 plc_config_mux(smc
,mux
) ;
1003 SETMASK(FM_A(FM_MDREG1
),FM_SELRA
,FM_SELRA
) ;
1008 * enable CLAIM/BEACON interrupts
1009 * (only called if these events are of interest, e.g. in DETECT state
1010 * the interrupt must not be permanently enabled
1011 * RMT calls this function periodically (timer driven polling)
1013 void sm_mac_check_beacon_claim(struct s_smc
*smc
)
1015 /* set formac IMSK : 0 enables irq */
1016 outpw(FM_A(FM_IMSK2U
),~(mac_imsk2u
| mac_beacon_imsk2u
)) ;
1017 /* the driver must receive the directed beacons */
1018 formac_rcv_restart(smc
) ;
1019 process_receive(smc
) ;
1022 /*-------------------------- interface functions ----------------------------*/
1024 * control MAC layer (called by RMT)
1026 void sm_ma_control(struct s_smc
*smc
, int mode
)
1030 /* Add to make the MAC offline in RM0_ISOLATED state */
1031 formac_offline(smc
) ;
1034 (void)init_mac(smc
,0) ;
1037 formac_online(smc
) ;
1040 directed_beacon(smc
) ;
1044 * no actions necessary, TREQ is already set
1050 int sm_mac_get_tx_state(struct s_smc
*smc
)
1052 return((inpw(FM_A(FM_STMCHN
))>>4)&7) ;
1056 * multicast functions
1059 static struct s_fpmc
* mac_get_mc_table(struct s_smc
*smc
,
1060 struct fddi_addr
*user
,
1061 struct fddi_addr
*own
,
1065 struct s_fpmc
*slot
;
1070 * set own = can(user)
1075 for (i
= 0 ; i
< 6 ; i
++, p
++)
1076 *p
= canonical
[*p
] ;
1079 for (i
= 0, tb
= smc
->hw
.fp
.mc
.table
; i
< FPMAX_MULTICAST
; i
++, tb
++){
1080 if (!tb
->n
) { /* not used */
1081 if (!del
&& !slot
) /* if !del save first free */
1085 if (memcmp((char *)&tb
->a
,(char *)own
,6))
1089 return(slot
) ; /* return first free or NULL */
1093 BEGIN_MANUAL_ENTRY(if,func;others;2)
1095 void mac_clear_multicast(smc)
1098 Function DOWNCALL (SMT, fplustm.c)
1099 Clear all multicast entries
1103 void mac_clear_multicast(struct s_smc
*smc
)
1108 smc
->hw
.fp
.os_slots_used
= 0 ; /* note the SMT addresses */
1109 /* will not be deleted */
1110 for (i
= 0, tb
= smc
->hw
.fp
.mc
.table
; i
< FPMAX_MULTICAST
; i
++, tb
++){
1118 BEGIN_MANUAL_ENTRY(if,func;others;2)
1120 int mac_set_func_addr(smc,f_addr)
1124 Function DOWNCALL (SMT, fplustm.c)
1125 Set a Token-Ring functional address, the address will
1126 be activated after calling mac_update_multicast()
1128 Para f_addr functional bits in non-canonical format
1130 Returns 0: always success
1134 int mac_set_func_addr(struct s_smc
*smc
, u_long f_addr
)
1136 smc
->hw
.fp
.func_addr
= f_addr
;
1142 BEGIN_MANUAL_ENTRY(if,func;others;2)
1144 int mac_add_multicast(smc,addr,can)
1146 struct fddi_addr *addr ;
1149 Function DOWNCALL (SMC, fplustm.c)
1150 Add an entry to the multicast table
1152 Para addr pointer to a multicast address
1153 can = 0: the multicast address has the physical format
1154 = 1: the multicast address has the canonical format
1158 1: address table full
1160 Note After a 'driver reset' or a 'station set address' all
1161 entries of the multicast table are cleared.
1162 In this case the driver has to fill the multicast table again.
1163 After the operating system dependent module filled
1164 the multicast table it must call mac_update_multicast
1165 to activate the new multicast addresses!
1169 int mac_add_multicast(struct s_smc
*smc
, struct fddi_addr
*addr
, int can
)
1171 SK_LOC_DECL(struct fddi_addr
,own
) ;
1175 * check if there are free table entries
1178 if (smc
->hw
.fp
.smt_slots_used
>= SMT_MAX_MULTI
) {
1183 if (smc
->hw
.fp
.os_slots_used
>= FPMAX_MULTICAST
-SMT_MAX_MULTI
) {
1191 if (!(tb
= mac_get_mc_table(smc
,addr
,&own
,0,can
& ~0x80)))
1195 tb
->perm
= (can
& 0x80) ? 1 : 0 ;
1198 smc
->hw
.fp
.smt_slots_used
++ ;
1200 smc
->hw
.fp
.os_slots_used
++ ;
1206 BEGIN_MANUAL_ENTRY(if,func;others;2)
1208 void mac_del_multicast(smc,addr,can)
1210 struct fddi_addr *addr ;
1213 Function DOWNCALL (SMT, fplustm.c)
1214 Delete an entry from the multicast table
1216 Para addr pointer to a multicast address
1217 can = 0: the multicast address has the physical format
1218 = 1: the multicast address has the canonical format
1223 void mac_del_multicast(struct s_smc
*smc
, struct fddi_addr
*addr
, int can
)
1225 SK_LOC_DECL(struct fddi_addr
,own
) ;
1228 if (!(tb
= mac_get_mc_table(smc
,addr
,&own
,1,can
& ~0x80)))
1231 * permanent addresses must be deleted with perm bit
1234 if (( tb
->perm
&& (can
& 0x80)) ||
1235 (!tb
->perm
&& !(can
& 0x80))) {
1242 smc
->hw
.fp
.smt_slots_used
-- ;
1245 smc
->hw
.fp
.os_slots_used
-- ;
1255 #define RX_MODE_PROM 0x1
1256 #define RX_MODE_ALL_MULTI 0x2
1259 BEGIN_MANUAL_ENTRY(if,func;others;2)
1261 void mac_update_multicast(smc)
1264 Function DOWNCALL (SMT, fplustm.c)
1265 Update FORMAC multicast registers
1269 void mac_update_multicast(struct s_smc
*smc
)
1276 * invalidate the CAM
1278 outpw(FM_A(FM_AFCMD
),FM_IINV_CAM
) ;
1281 * set the functional address
1283 if (smc
->hw
.fp
.func_addr
) {
1284 fu
= (u_char
*) &smc
->hw
.fp
.func_addr
;
1285 outpw(FM_A(FM_AFMASK2
),0xffff) ;
1286 outpw(FM_A(FM_AFMASK1
),(u_short
) ~((fu
[0] << 8) + fu
[1])) ;
1287 outpw(FM_A(FM_AFMASK0
),(u_short
) ~((fu
[2] << 8) + fu
[3])) ;
1288 outpw(FM_A(FM_AFPERS
),FM_VALID
|FM_DA
) ;
1289 outpw(FM_A(FM_AFCOMP2
), 0xc000) ;
1290 outpw(FM_A(FM_AFCOMP1
), 0x0000) ;
1291 outpw(FM_A(FM_AFCOMP0
), 0x0000) ;
1292 outpw(FM_A(FM_AFCMD
),FM_IWRITE_CAM
) ;
1296 * set the mask and the personality register(s)
1298 outpw(FM_A(FM_AFMASK0
),0xffff) ;
1299 outpw(FM_A(FM_AFMASK1
),0xffff) ;
1300 outpw(FM_A(FM_AFMASK2
),0xffff) ;
1301 outpw(FM_A(FM_AFPERS
),FM_VALID
|FM_DA
) ;
1303 for (i
= 0, tb
= smc
->hw
.fp
.mc
.table
; i
< FPMAX_MULTICAST
; i
++, tb
++) {
1308 * write the multicast address into the CAM
1310 outpw(FM_A(FM_AFCOMP2
),
1311 (u_short
)((tb
->a
.a
[0]<<8)+tb
->a
.a
[1])) ;
1312 outpw(FM_A(FM_AFCOMP1
),
1313 (u_short
)((tb
->a
.a
[2]<<8)+tb
->a
.a
[3])) ;
1314 outpw(FM_A(FM_AFCOMP0
),
1315 (u_short
)((tb
->a
.a
[4]<<8)+tb
->a
.a
[5])) ;
1316 outpw(FM_A(FM_AFCMD
),FM_IWRITE_CAM
) ;
1322 BEGIN_MANUAL_ENTRY(if,func;others;3)
1324 void mac_set_rx_mode(smc,mode)
1328 Function DOWNCALL/INTERN (SMT, fplustm.c)
1329 This function enables / disables the selected receive.
1330 Don't call this function if the hardware module is
1331 used -- use mac_drv_rx_mode() instead of.
1333 Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts
1334 2 RX_DISABLE_ALLMULTI disable "enable all multicasts"
1335 3 RX_ENABLE_PROMISC enable promiscous
1336 4 RX_DISABLE_PROMISC disable promiscous
1337 5 RX_ENABLE_NSA enable reception of NSA frames
1338 6 RX_DISABLE_NSA disable reception of NSA frames
1340 Note The selected receive modes will be lost after 'driver reset'
1341 or 'set station address'
1345 void mac_set_rx_mode(struct s_smc
*smc
, int mode
)
1348 case RX_ENABLE_ALLMULTI
:
1349 smc
->hw
.fp
.rx_prom
|= RX_MODE_ALL_MULTI
;
1351 case RX_DISABLE_ALLMULTI
:
1352 smc
->hw
.fp
.rx_prom
&= ~RX_MODE_ALL_MULTI
;
1354 case RX_ENABLE_PROMISC
:
1355 smc
->hw
.fp
.rx_prom
|= RX_MODE_PROM
;
1357 case RX_DISABLE_PROMISC
:
1358 smc
->hw
.fp
.rx_prom
&= ~RX_MODE_PROM
;
1360 case RX_ENABLE_NSA
:
1361 smc
->hw
.fp
.nsa_mode
= FM_MDAMA
;
1362 smc
->hw
.fp
.rx_mode
= (smc
->hw
.fp
.rx_mode
& ~FM_ADDET
) |
1363 smc
->hw
.fp
.nsa_mode
;
1365 case RX_DISABLE_NSA
:
1366 smc
->hw
.fp
.nsa_mode
= FM_MRNNSAFNMA
;
1367 smc
->hw
.fp
.rx_mode
= (smc
->hw
.fp
.rx_mode
& ~FM_ADDET
) |
1368 smc
->hw
.fp
.nsa_mode
;
1371 if (smc
->hw
.fp
.rx_prom
& RX_MODE_PROM
) {
1372 smc
->hw
.fp
.rx_mode
= FM_MLIMPROM
;
1374 else if (smc
->hw
.fp
.rx_prom
& RX_MODE_ALL_MULTI
) {
1375 smc
->hw
.fp
.rx_mode
= smc
->hw
.fp
.nsa_mode
| FM_EXGPA0
;
1378 smc
->hw
.fp
.rx_mode
= smc
->hw
.fp
.nsa_mode
;
1379 SETMASK(FM_A(FM_MDREG1
),smc
->hw
.fp
.rx_mode
,FM_ADDRX
) ;
1380 mac_update_multicast(smc
) ;
1384 BEGIN_MANUAL_ENTRY(module;tests;3)
1385 How to test the Restricted Token Monitor
1386 ----------------------------------------------------------------
1388 o Insert a break point in the function rtm_irq()
1389 o Remove all stations with a restricted token monitor from the
1391 o Connect a UPPS ISA or EISA station to the network.
1392 o Give the FORMAC of UPPS station the command to send
1393 restricted tokens until the ring becomes instable.
1394 o Now connect your test test client.
1395 o The restricted token monitor should detect the restricted token,
1396 and your break point will be reached.
1397 o You can ovserve how the station will clean the ring.
1401 void rtm_irq(struct s_smc
*smc
)
1403 outpw(ADDR(B2_RTM_CRTL
),TIM_CL_IRQ
) ; /* clear IRQ */
1404 if (inpw(ADDR(B2_RTM_CRTL
)) & TIM_RES_TOK
) {
1405 outpw(FM_A(FM_CMDREG1
),FM_ICL
) ; /* force claim */
1406 DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ;
1407 AIX_EVENT(smc
, (u_long
) FDDI_RING_STATUS
,
1408 (u_long
) FDDI_SMT_EVENT
,
1409 (u_long
) FDDI_RTT
, smt_get_event_word(smc
));
1411 outpw(ADDR(B2_RTM_CRTL
),TIM_START
) ; /* enable RTM monitoring */
1414 static void rtm_init(struct s_smc
*smc
)
1416 outpd(ADDR(B2_RTM_INI
),0) ; /* timer = 0 */
1417 outpw(ADDR(B2_RTM_CRTL
),TIM_START
) ; /* enable IRQ */
1420 void rtm_set_timer(struct s_smc
*smc
)
1423 * MIB timer and hardware timer have the same resolution of 80nS
1425 DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns \n",
1426 (int) smc
->mib
.a
[PATH0
].fddiPATHT_Rmode
,0) ;
1427 outpd(ADDR(B2_RTM_INI
),smc
->mib
.a
[PATH0
].fddiPATHT_Rmode
) ;
1430 static void smt_split_up_fifo(struct s_smc
*smc
)
1434 BEGIN_MANUAL_ENTRY(module;mem;1)
1435 -------------------------------------------------------------
1436 RECEIVE BUFFER MEMORY DIVERSION
1437 -------------------------------------------------------------
1439 R1_RxD == SMT_R1_RXD_COUNT
1440 R2_RxD == SMT_R2_RXD_COUNT
1442 SMT_R1_RXD_COUNT must be unequal zero
1444 | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD
1445 | x 0 | x 1-3 | x < 3
1446 ----------------------------------------------------------------------
1447 | 63,75 kB | 54,75 | R1_RxD
1448 rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB
1450 ----------------------------------------------------------------------
1452 rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB
1453 | (not used) | | R1_RxD+R2_RxD
1458 if (SMT_R1_RXD_COUNT
== 0) {
1459 SMT_PANIC(smc
,SMT_E0117
, SMT_E0117_MSG
) ;
1462 switch(SMT_R2_RXD_COUNT
) {
1464 smc
->hw
.fp
.fifo
.rx1_fifo_size
= RX_FIFO_SPACE
;
1465 smc
->hw
.fp
.fifo
.rx2_fifo_size
= 0 ;
1470 smc
->hw
.fp
.fifo
.rx1_fifo_size
= RX_LARGE_FIFO
;
1471 smc
->hw
.fp
.fifo
.rx2_fifo_size
= RX_SMALL_FIFO
;
1473 default: /* this is not the real defaule */
1474 smc
->hw
.fp
.fifo
.rx1_fifo_size
= RX_FIFO_SPACE
*
1475 SMT_R1_RXD_COUNT
/(SMT_R1_RXD_COUNT
+SMT_R2_RXD_COUNT
) ;
1476 smc
->hw
.fp
.fifo
.rx2_fifo_size
= RX_FIFO_SPACE
*
1477 SMT_R2_RXD_COUNT
/(SMT_R1_RXD_COUNT
+SMT_R2_RXD_COUNT
) ;
1482 BEGIN_MANUAL_ENTRY(module;mem;1)
1483 -------------------------------------------------------------
1484 TRANSMIT BUFFER MEMORY DIVERSION
1485 -------------------------------------------------------------
1488 | no sync bw | sync bw available and | sync bw available and
1489 | available | SynchTxMode = SPLIT | SynchTxMode = ALL
1490 -----------------------------------------------------------------------
1491 sync tx | 0 kB | 32 kB | 55 kB
1492 queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO
1493 -----------------------------------------------------------------------
1494 async tx | 64 kB | 32 kB | 9 k
1495 queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO
1501 * set the tx mode bits
1503 if (smc
->mib
.a
[PATH0
].fddiPATHSbaPayload
) {
1505 smc
->hw
.fp
.fifo
.fifo_config_mode
|=
1506 smc
->mib
.fddiESSSynchTxMode
| SYNC_TRAFFIC_ON
;
1510 smc
->hw
.fp
.fifo
.fifo_config_mode
&=
1511 ~(SEND_ASYNC_AS_SYNC
|SYNC_TRAFFIC_ON
) ;
1517 if (smc
->hw
.fp
.fifo
.fifo_config_mode
& SYNC_TRAFFIC_ON
) {
1518 if (smc
->hw
.fp
.fifo
.fifo_config_mode
& SEND_ASYNC_AS_SYNC
) {
1519 smc
->hw
.fp
.fifo
.tx_s_size
= TX_LARGE_FIFO
;
1520 smc
->hw
.fp
.fifo
.tx_a0_size
= TX_SMALL_FIFO
;
1523 smc
->hw
.fp
.fifo
.tx_s_size
= TX_MEDIUM_FIFO
;
1524 smc
->hw
.fp
.fifo
.tx_a0_size
= TX_MEDIUM_FIFO
;
1528 smc
->hw
.fp
.fifo
.tx_s_size
= 0 ;
1529 smc
->hw
.fp
.fifo
.tx_a0_size
= TX_FIFO_SPACE
;
1532 smc
->hw
.fp
.fifo
.rx1_fifo_start
= smc
->hw
.fp
.fifo
.rbc_ram_start
+
1534 smc
->hw
.fp
.fifo
.tx_s_start
= smc
->hw
.fp
.fifo
.rx1_fifo_start
+
1535 smc
->hw
.fp
.fifo
.rx1_fifo_size
;
1536 smc
->hw
.fp
.fifo
.tx_a0_start
= smc
->hw
.fp
.fifo
.tx_s_start
+
1537 smc
->hw
.fp
.fifo
.tx_s_size
;
1538 smc
->hw
.fp
.fifo
.rx2_fifo_start
= smc
->hw
.fp
.fifo
.tx_a0_start
+
1539 smc
->hw
.fp
.fifo
.tx_a0_size
;
1541 DB_SMT("FIFO split: mode = %x\n",smc
->hw
.fp
.fifo
.fifo_config_mode
,0) ;
1542 DB_SMT("rbc_ram_start = %x rbc_ram_end = %x\n",
1543 smc
->hw
.fp
.fifo
.rbc_ram_start
, smc
->hw
.fp
.fifo
.rbc_ram_end
) ;
1544 DB_SMT("rx1_fifo_start = %x tx_s_start = %x\n",
1545 smc
->hw
.fp
.fifo
.rx1_fifo_start
, smc
->hw
.fp
.fifo
.tx_s_start
) ;
1546 DB_SMT("tx_a0_start = %x rx2_fifo_start = %x\n",
1547 smc
->hw
.fp
.fifo
.tx_a0_start
, smc
->hw
.fp
.fifo
.rx2_fifo_start
) ;
1550 void formac_reinit_tx(struct s_smc
*smc
)
1553 * Split up the FIFO and reinitialize the MAC if synchronous
1554 * bandwidth becomes available but no synchronous queue is
1557 if (!smc
->hw
.fp
.fifo
.tx_s_size
&& smc
->mib
.a
[PATH0
].fddiPATHSbaPayload
){
1558 (void)init_mac(smc
,0) ;