[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / net / tulip / de4x5.c
blob93800c126e8669c88942fce107a79d775e777fa8
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the SA_SHIRQ flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added SA_INTERRUPT temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/config.h>
447 #include <linux/module.h>
448 #include <linux/kernel.h>
449 #include <linux/string.h>
450 #include <linux/interrupt.h>
451 #include <linux/ptrace.h>
452 #include <linux/errno.h>
453 #include <linux/ioport.h>
454 #include <linux/slab.h>
455 #include <linux/pci.h>
456 #include <linux/eisa.h>
457 #include <linux/delay.h>
458 #include <linux/init.h>
459 #include <linux/spinlock.h>
460 #include <linux/crc32.h>
461 #include <linux/netdevice.h>
462 #include <linux/etherdevice.h>
463 #include <linux/skbuff.h>
464 #include <linux/time.h>
465 #include <linux/types.h>
466 #include <linux/unistd.h>
467 #include <linux/ctype.h>
468 #include <linux/dma-mapping.h>
469 #include <linux/moduleparam.h>
470 #include <linux/bitops.h>
472 #include <asm/io.h>
473 #include <asm/dma.h>
474 #include <asm/byteorder.h>
475 #include <asm/unaligned.h>
476 #include <asm/uaccess.h>
477 #ifdef CONFIG_PPC_MULTIPLATFORM
478 #include <asm/machdep.h>
479 #endif /* CONFIG_PPC_MULTIPLATFORM */
481 #include "de4x5.h"
483 static char version[] __devinitdata = "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
485 #define c_char const char
486 #define TWIDDLE(a) (u_short)le16_to_cpu(get_unaligned((u_short *)(a)))
489 ** MII Information
491 struct phy_table {
492 int reset; /* Hard reset required? */
493 int id; /* IEEE OUI */
494 int ta; /* One cycle TA time - 802.3u is confusing here */
495 struct { /* Non autonegotiation (parallel) speed det. */
496 int reg;
497 int mask;
498 int value;
499 } spd;
502 struct mii_phy {
503 int reset; /* Hard reset required? */
504 int id; /* IEEE OUI */
505 int ta; /* One cycle TA time */
506 struct { /* Non autonegotiation (parallel) speed det. */
507 int reg;
508 int mask;
509 int value;
510 } spd;
511 int addr; /* MII address for the PHY */
512 u_char *gep; /* Start of GEP sequence block in SROM */
513 u_char *rst; /* Start of reset sequence in SROM */
514 u_int mc; /* Media Capabilities */
515 u_int ana; /* NWay Advertisement */
516 u_int fdx; /* Full DupleX capabilites for each media */
517 u_int ttm; /* Transmit Threshold Mode for each media */
518 u_int mci; /* 21142 MII Connector Interrupt info */
521 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
523 struct sia_phy {
524 u_char mc; /* Media Code */
525 u_char ext; /* csr13-15 valid when set */
526 int csr13; /* SIA Connectivity Register */
527 int csr14; /* SIA TX/RX Register */
528 int csr15; /* SIA General Register */
529 int gepc; /* SIA GEP Control Information */
530 int gep; /* SIA GEP Data */
534 ** Define the know universe of PHY devices that can be
535 ** recognised by this driver.
537 static struct phy_table phy_info[] = {
538 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
539 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
540 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
541 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
542 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
546 ** These GENERIC values assumes that the PHY devices follow 802.3u and
547 ** allow parallel detection to set the link partner ability register.
548 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
550 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
551 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
552 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
555 ** Define special SROM detection cases
557 static c_char enet_det[][ETH_ALEN] = {
558 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
559 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
562 #define SMC 1
563 #define ACCTON 2
566 ** SROM Repair definitions. If a broken SROM is detected a card may
567 ** use this information to help figure out what to do. This is a
568 ** "stab in the dark" and so far for SMC9332's only.
570 static c_char srom_repair_info[][100] = {
571 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
572 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
573 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
574 0x00,0x18,}
578 #ifdef DE4X5_DEBUG
579 static int de4x5_debug = DE4X5_DEBUG;
580 #else
581 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
582 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
583 #endif
586 ** Allow per adapter set up. For modules this is simply a command line
587 ** parameter, e.g.:
588 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
590 ** For a compiled in driver, place e.g.
591 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
592 ** here
594 #ifdef DE4X5_PARM
595 static char *args = DE4X5_PARM;
596 #else
597 static char *args;
598 #endif
600 struct parameters {
601 int fdx;
602 int autosense;
605 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
607 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
610 ** Ethernet PROM defines
612 #define PROBE_LENGTH 32
613 #define ETH_PROM_SIG 0xAA5500FFUL
616 ** Ethernet Info
618 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
619 #define IEEE802_3_SZ 1518 /* Packet + CRC */
620 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
621 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
622 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
623 #define PKT_HDR_LEN 14 /* Addresses and data length info */
624 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
625 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
629 ** EISA bus defines
631 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
632 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
634 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
636 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
637 #define DE4X5_NAME_LENGTH 8
639 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
642 ** Ethernet PROM defines for DC21040
644 #define PROBE_LENGTH 32
645 #define ETH_PROM_SIG 0xAA5500FFUL
648 ** PCI Bus defines
650 #define PCI_MAX_BUS_NUM 8
651 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
652 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
655 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
656 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
657 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
658 ** and hence the RX descriptor ring's first entry.
660 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
661 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
662 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
663 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
664 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
665 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
667 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
668 #define DE4X5_CACHE_ALIGN CAL_16LONG
669 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
670 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
671 #define DESC_ALIGN
673 #ifndef DEC_ONLY /* See README.de4x5 for using this */
674 static int dec_only;
675 #else
676 static int dec_only = 1;
677 #endif
680 ** DE4X5 IRQ ENABLE/DISABLE
682 #define ENABLE_IRQs { \
683 imr |= lp->irq_en;\
684 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
687 #define DISABLE_IRQs {\
688 imr = inl(DE4X5_IMR);\
689 imr &= ~lp->irq_en;\
690 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
693 #define UNMASK_IRQs {\
694 imr |= lp->irq_mask;\
695 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
698 #define MASK_IRQs {\
699 imr = inl(DE4X5_IMR);\
700 imr &= ~lp->irq_mask;\
701 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
705 ** DE4X5 START/STOP
707 #define START_DE4X5 {\
708 omr = inl(DE4X5_OMR);\
709 omr |= OMR_ST | OMR_SR;\
710 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
713 #define STOP_DE4X5 {\
714 omr = inl(DE4X5_OMR);\
715 omr &= ~(OMR_ST|OMR_SR);\
716 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
720 ** DE4X5 SIA RESET
722 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
725 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
727 #define DE4X5_AUTOSENSE_MS 250
730 ** SROM Structure
732 struct de4x5_srom {
733 char sub_vendor_id[2];
734 char sub_system_id[2];
735 char reserved[12];
736 char id_block_crc;
737 char reserved2;
738 char version;
739 char num_controllers;
740 char ieee_addr[6];
741 char info[100];
742 short chksum;
744 #define SUB_VENDOR_ID 0x500a
747 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
748 ** and have sizes of both a power of 2 and a multiple of 4.
749 ** A size of 256 bytes for each buffer could be chosen because over 90% of
750 ** all packets in our network are <256 bytes long and 64 longword alignment
751 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
752 ** descriptors are needed for machines with an ALPHA CPU.
754 #define NUM_RX_DESC 8 /* Number of RX descriptors */
755 #define NUM_TX_DESC 32 /* Number of TX descriptors */
756 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
757 /* Multiple of 4 for DC21040 */
758 /* Allows 512 byte alignment */
759 struct de4x5_desc {
760 volatile s32 status;
761 u32 des1;
762 u32 buf;
763 u32 next;
764 DESC_ALIGN
768 ** The DE4X5 private structure
770 #define DE4X5_PKT_STAT_SZ 16
771 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
772 increase DE4X5_PKT_STAT_SZ */
774 struct pkt_stats {
775 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
776 u_int unicast;
777 u_int multicast;
778 u_int broadcast;
779 u_int excessive_collisions;
780 u_int tx_underruns;
781 u_int excessive_underruns;
782 u_int rx_runt_frames;
783 u_int rx_collision;
784 u_int rx_dribble;
785 u_int rx_overflow;
788 struct de4x5_private {
789 char adapter_name[80]; /* Adapter name */
790 u_long interrupt; /* Aligned ISR flag */
791 struct de4x5_desc *rx_ring; /* RX descriptor ring */
792 struct de4x5_desc *tx_ring; /* TX descriptor ring */
793 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
794 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
795 int rx_new, rx_old; /* RX descriptor ring pointers */
796 int tx_new, tx_old; /* TX descriptor ring pointers */
797 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
798 char frame[64]; /* Min sized packet for loopback*/
799 spinlock_t lock; /* Adapter specific spinlock */
800 struct net_device_stats stats; /* Public stats */
801 struct pkt_stats pktStats; /* Private stats counters */
802 char rxRingSize;
803 char txRingSize;
804 int bus; /* EISA or PCI */
805 int bus_num; /* PCI Bus number */
806 int device; /* Device number on PCI bus */
807 int state; /* Adapter OPENED or CLOSED */
808 int chipset; /* DC21040, DC21041 or DC21140 */
809 s32 irq_mask; /* Interrupt Mask (Enable) bits */
810 s32 irq_en; /* Summary interrupt bits */
811 int media; /* Media (eg TP), mode (eg 100B)*/
812 int c_media; /* Remember the last media conn */
813 int fdx; /* media full duplex flag */
814 int linkOK; /* Link is OK */
815 int autosense; /* Allow/disallow autosensing */
816 int tx_enable; /* Enable descriptor polling */
817 int setup_f; /* Setup frame filtering type */
818 int local_state; /* State within a 'media' state */
819 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
820 struct sia_phy sia; /* SIA PHY Information */
821 int active; /* Index to active PHY device */
822 int mii_cnt; /* Number of attached PHY's */
823 int timeout; /* Scheduling counter */
824 struct timer_list timer; /* Timer info for kernel */
825 int tmp; /* Temporary global per card */
826 struct {
827 u_long lock; /* Lock the cache accesses */
828 s32 csr0; /* Saved Bus Mode Register */
829 s32 csr6; /* Saved Operating Mode Reg. */
830 s32 csr7; /* Saved IRQ Mask Register */
831 s32 gep; /* Saved General Purpose Reg. */
832 s32 gepc; /* Control info for GEP */
833 s32 csr13; /* Saved SIA Connectivity Reg. */
834 s32 csr14; /* Saved SIA TX/RX Register */
835 s32 csr15; /* Saved SIA General Register */
836 int save_cnt; /* Flag if state already saved */
837 struct sk_buff *skb; /* Save the (re-ordered) skb's */
838 } cache;
839 struct de4x5_srom srom; /* A copy of the SROM */
840 int cfrv; /* Card CFRV copy */
841 int rx_ovf; /* Check for 'RX overflow' tag */
842 int useSROM; /* For non-DEC card use SROM */
843 int useMII; /* Infoblock using the MII */
844 int asBitValid; /* Autosense bits in GEP? */
845 int asPolarity; /* 0 => asserted high */
846 int asBit; /* Autosense bit number in GEP */
847 int defMedium; /* SROM default medium */
848 int tcount; /* Last infoblock number */
849 int infoblock_init; /* Initialised this infoblock? */
850 int infoleaf_offset; /* SROM infoleaf for controller */
851 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
852 int infoblock_media; /* infoblock media */
853 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
854 u_char *rst; /* Pointer to Type 5 reset info */
855 u_char ibn; /* Infoblock number */
856 struct parameters params; /* Command line/ #defined params */
857 struct device *gendev; /* Generic device */
858 dma_addr_t dma_rings; /* DMA handle for rings */
859 int dma_size; /* Size of the DMA area */
860 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
864 ** To get around certain poxy cards that don't provide an SROM
865 ** for the second and more DECchip, I have to key off the first
866 ** chip's address. I'll assume there's not a bad SROM iff:
868 ** o the chipset is the same
869 ** o the bus number is the same and > 0
870 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
872 ** Also have to save the irq for those cards whose hardware designers
873 ** can't follow the PCI to PCI Bridge Architecture spec.
875 static struct {
876 int chipset;
877 int bus;
878 int irq;
879 u_char addr[ETH_ALEN];
880 } last = {0,};
883 ** The transmit ring full condition is described by the tx_old and tx_new
884 ** pointers by:
885 ** tx_old = tx_new Empty ring
886 ** tx_old = tx_new+1 Full ring
887 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
889 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
890 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
891 lp->tx_old -lp->tx_new-1)
893 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
896 ** Public Functions
898 static int de4x5_open(struct net_device *dev);
899 static int de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
908 ** Private functions
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static int de4x5_ast(struct net_device *dev);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, int pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static void enable_ast(struct net_device *dev, u32 time_out);
989 static long de4x5_switch_mac_port(struct net_device *dev);
990 static int gep_rd(struct net_device *dev);
991 static void gep_wr(s32 data, struct net_device *dev);
992 static void timeout(struct net_device *dev, void (*fn)(u_long data), u_long data, u_long msec);
993 static void yawn(struct net_device *dev, int state);
994 static void de4x5_parse_params(struct net_device *dev);
995 static void de4x5_dbg_open(struct net_device *dev);
996 static void de4x5_dbg_mii(struct net_device *dev, int k);
997 static void de4x5_dbg_media(struct net_device *dev);
998 static void de4x5_dbg_srom(struct de4x5_srom *p);
999 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
1000 static int de4x5_strncmp(char *a, char *b, int n);
1001 static int dc21041_infoleaf(struct net_device *dev);
1002 static int dc21140_infoleaf(struct net_device *dev);
1003 static int dc21142_infoleaf(struct net_device *dev);
1004 static int dc21143_infoleaf(struct net_device *dev);
1005 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1010 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1011 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1014 ** Note now that module autoprobing is allowed under EISA and PCI. The
1015 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1016 ** to "do the right thing".
1019 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1021 module_param(io, int, 0);
1022 module_param(de4x5_debug, int, 0);
1023 module_param(dec_only, int, 0);
1024 module_param(args, charp, 0);
1026 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1027 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1028 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1029 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1030 MODULE_LICENSE("GPL");
1033 ** List the SROM infoleaf functions and chipsets
1035 struct InfoLeaf {
1036 int chipset;
1037 int (*fn)(struct net_device *);
1039 static struct InfoLeaf infoleaf_array[] = {
1040 {DC21041, dc21041_infoleaf},
1041 {DC21140, dc21140_infoleaf},
1042 {DC21142, dc21142_infoleaf},
1043 {DC21143, dc21143_infoleaf}
1045 #define INFOLEAF_SIZE (sizeof(infoleaf_array)/(sizeof(int)+sizeof(int *)))
1048 ** List the SROM info block functions
1050 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1051 type0_infoblock,
1052 type1_infoblock,
1053 type2_infoblock,
1054 type3_infoblock,
1055 type4_infoblock,
1056 type5_infoblock,
1057 compact_infoblock
1060 #define COMPACT (sizeof(dc_infoblock)/sizeof(int *) - 1)
1063 ** Miscellaneous defines...
1065 #define RESET_DE4X5 {\
1066 int i;\
1067 i=inl(DE4X5_BMR);\
1068 mdelay(1);\
1069 outl(i | BMR_SWR, DE4X5_BMR);\
1070 mdelay(1);\
1071 outl(i, DE4X5_BMR);\
1072 mdelay(1);\
1073 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1074 mdelay(1);\
1077 #define PHY_HARD_RESET {\
1078 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1079 mdelay(1); /* Assert for 1ms */\
1080 outl(0x00, DE4X5_GEP);\
1081 mdelay(2); /* Wait for 2ms */\
1085 static int __devinit
1086 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1088 char name[DE4X5_NAME_LENGTH + 1];
1089 struct de4x5_private *lp = netdev_priv(dev);
1090 struct pci_dev *pdev = NULL;
1091 int i, status=0;
1093 gendev->driver_data = dev;
1095 /* Ensure we're not sleeping */
1096 if (lp->bus == EISA) {
1097 outb(WAKEUP, PCI_CFPM);
1098 } else {
1099 pdev = to_pci_dev (gendev);
1100 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1102 mdelay(10);
1104 RESET_DE4X5;
1106 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1107 return -ENXIO; /* Hardware could not reset */
1111 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1113 lp->useSROM = FALSE;
1114 if (lp->bus == PCI) {
1115 PCI_signature(name, lp);
1116 } else {
1117 EISA_signature(name, gendev);
1120 if (*name == '\0') { /* Not found a board signature */
1121 return -ENXIO;
1124 dev->base_addr = iobase;
1125 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
1127 printk(", h/w address ");
1128 status = get_hw_addr(dev);
1129 for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */
1130 printk("%2.2x:", dev->dev_addr[i]);
1132 printk("%2.2x,\n", dev->dev_addr[i]);
1134 if (status != 0) {
1135 printk(" which has an Ethernet PROM CRC error.\n");
1136 return -ENXIO;
1137 } else {
1138 lp->cache.gepc = GEP_INIT;
1139 lp->asBit = GEP_SLNK;
1140 lp->asPolarity = GEP_SLNK;
1141 lp->asBitValid = TRUE;
1142 lp->timeout = -1;
1143 lp->gendev = gendev;
1144 spin_lock_init(&lp->lock);
1145 init_timer(&lp->timer);
1146 de4x5_parse_params(dev);
1149 ** Choose correct autosensing in case someone messed up
1151 lp->autosense = lp->params.autosense;
1152 if (lp->chipset != DC21140) {
1153 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1154 lp->params.autosense = TP;
1156 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1157 lp->params.autosense = BNC;
1160 lp->fdx = lp->params.fdx;
1161 sprintf(lp->adapter_name,"%s (%s)", name, gendev->bus_id);
1163 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1164 #if defined(__alpha__) || defined(__powerpc__) || defined(__sparc_v9__) || defined(DE4X5_DO_MEMCPY)
1165 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1166 #endif
1167 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1168 &lp->dma_rings, GFP_ATOMIC);
1169 if (lp->rx_ring == NULL) {
1170 return -ENOMEM;
1173 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1176 ** Set up the RX descriptor ring (Intels)
1177 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1179 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
1180 for (i=0; i<NUM_RX_DESC; i++) {
1181 lp->rx_ring[i].status = 0;
1182 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1183 lp->rx_ring[i].buf = 0;
1184 lp->rx_ring[i].next = 0;
1185 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1188 #else
1190 dma_addr_t dma_rx_bufs;
1192 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1193 * sizeof(struct de4x5_desc);
1194 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1195 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1196 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1197 for (i=0; i<NUM_RX_DESC; i++) {
1198 lp->rx_ring[i].status = 0;
1199 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1200 lp->rx_ring[i].buf =
1201 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1202 lp->rx_ring[i].next = 0;
1203 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1207 #endif
1209 barrier();
1211 lp->rxRingSize = NUM_RX_DESC;
1212 lp->txRingSize = NUM_TX_DESC;
1214 /* Write the end of list marker to the descriptor lists */
1215 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1216 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1218 /* Tell the adapter where the TX/RX rings are located. */
1219 outl(lp->dma_rings, DE4X5_RRBA);
1220 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1221 DE4X5_TRBA);
1223 /* Initialise the IRQ mask and Enable/Disable */
1224 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1225 lp->irq_en = IMR_NIM | IMR_AIM;
1227 /* Create a loopback packet frame for later media probing */
1228 create_packet(dev, lp->frame, sizeof(lp->frame));
1230 /* Check if the RX overflow bug needs testing for */
1231 i = lp->cfrv & 0x000000fe;
1232 if ((lp->chipset == DC21140) && (i == 0x20)) {
1233 lp->rx_ovf = 1;
1236 /* Initialise the SROM pointers if possible */
1237 if (lp->useSROM) {
1238 lp->state = INITIALISED;
1239 if (srom_infoleaf_info(dev)) {
1240 dma_free_coherent (gendev, lp->dma_size,
1241 lp->rx_ring, lp->dma_rings);
1242 return -ENXIO;
1244 srom_init(dev);
1247 lp->state = CLOSED;
1250 ** Check for an MII interface
1252 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1253 mii_get_phy(dev);
1256 #ifndef __sparc_v9__
1257 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1258 #else
1259 printk(" and requires IRQ%x (provided by %s).\n", dev->irq,
1260 #endif
1261 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1264 if (de4x5_debug & DEBUG_VERSION) {
1265 printk(version);
1268 /* The DE4X5-specific entries in the device structure. */
1269 SET_MODULE_OWNER(dev);
1270 SET_NETDEV_DEV(dev, gendev);
1271 dev->open = &de4x5_open;
1272 dev->hard_start_xmit = &de4x5_queue_pkt;
1273 dev->stop = &de4x5_close;
1274 dev->get_stats = &de4x5_get_stats;
1275 dev->set_multicast_list = &set_multicast_list;
1276 dev->do_ioctl = &de4x5_ioctl;
1278 dev->mem_start = 0;
1280 /* Fill in the generic fields of the device structure. */
1281 if ((status = register_netdev (dev))) {
1282 dma_free_coherent (gendev, lp->dma_size,
1283 lp->rx_ring, lp->dma_rings);
1284 return status;
1287 /* Let the adapter sleep to save power */
1288 yawn(dev, SLEEP);
1290 return status;
1294 static int
1295 de4x5_open(struct net_device *dev)
1297 struct de4x5_private *lp = netdev_priv(dev);
1298 u_long iobase = dev->base_addr;
1299 int i, status = 0;
1300 s32 omr;
1302 /* Allocate the RX buffers */
1303 for (i=0; i<lp->rxRingSize; i++) {
1304 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1305 de4x5_free_rx_buffs(dev);
1306 return -EAGAIN;
1311 ** Wake up the adapter
1313 yawn(dev, WAKEUP);
1316 ** Re-initialize the DE4X5...
1318 status = de4x5_init(dev);
1319 spin_lock_init(&lp->lock);
1320 lp->state = OPEN;
1321 de4x5_dbg_open(dev);
1323 if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ,
1324 lp->adapter_name, dev)) {
1325 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1326 if (request_irq(dev->irq, de4x5_interrupt, SA_INTERRUPT | SA_SHIRQ,
1327 lp->adapter_name, dev)) {
1328 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1329 disable_ast(dev);
1330 de4x5_free_rx_buffs(dev);
1331 de4x5_free_tx_buffs(dev);
1332 yawn(dev, SLEEP);
1333 lp->state = CLOSED;
1334 return -EAGAIN;
1335 } else {
1336 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1337 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1341 lp->interrupt = UNMASK_INTERRUPTS;
1342 dev->trans_start = jiffies;
1344 START_DE4X5;
1346 de4x5_setup_intr(dev);
1348 if (de4x5_debug & DEBUG_OPEN) {
1349 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1350 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1351 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1352 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1353 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1354 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1355 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1356 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1359 return status;
1363 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1364 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1365 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1366 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1367 ** to be data corruption problems if it is larger (UDP errors seen from a
1368 ** ttcp source).
1370 static int
1371 de4x5_init(struct net_device *dev)
1373 /* Lock out other processes whilst setting up the hardware */
1374 netif_stop_queue(dev);
1376 de4x5_sw_reset(dev);
1378 /* Autoconfigure the connected port */
1379 autoconf_media(dev);
1381 return 0;
1384 static int
1385 de4x5_sw_reset(struct net_device *dev)
1387 struct de4x5_private *lp = netdev_priv(dev);
1388 u_long iobase = dev->base_addr;
1389 int i, j, status = 0;
1390 s32 bmr, omr;
1392 /* Select the MII or SRL port now and RESET the MAC */
1393 if (!lp->useSROM) {
1394 if (lp->phy[lp->active].id != 0) {
1395 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1396 } else {
1397 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1399 de4x5_switch_mac_port(dev);
1403 ** Set the programmable burst length to 8 longwords for all the DC21140
1404 ** Fasternet chips and 4 longwords for all others: DMA errors result
1405 ** without these values. Cache align 16 long.
1407 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1408 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1409 outl(bmr, DE4X5_BMR);
1411 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1412 if (lp->chipset == DC21140) {
1413 omr |= (OMR_SDP | OMR_SB);
1415 lp->setup_f = PERFECT;
1416 outl(lp->dma_rings, DE4X5_RRBA);
1417 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1418 DE4X5_TRBA);
1420 lp->rx_new = lp->rx_old = 0;
1421 lp->tx_new = lp->tx_old = 0;
1423 for (i = 0; i < lp->rxRingSize; i++) {
1424 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1427 for (i = 0; i < lp->txRingSize; i++) {
1428 lp->tx_ring[i].status = cpu_to_le32(0);
1431 barrier();
1433 /* Build the setup frame depending on filtering mode */
1434 SetMulticastFilter(dev);
1436 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1437 outl(omr|OMR_ST, DE4X5_OMR);
1439 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1441 for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */
1442 mdelay(1);
1443 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1445 outl(omr, DE4X5_OMR); /* Stop everything! */
1447 if (j == 0) {
1448 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1449 inl(DE4X5_STS));
1450 status = -EIO;
1453 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1454 lp->tx_old = lp->tx_new;
1456 return status;
1460 ** Writes a socket buffer address to the next available transmit descriptor.
1462 static int
1463 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1465 struct de4x5_private *lp = netdev_priv(dev);
1466 u_long iobase = dev->base_addr;
1467 int status = 0;
1468 u_long flags = 0;
1470 netif_stop_queue(dev);
1471 if (lp->tx_enable == NO) { /* Cannot send for now */
1472 return -1;
1476 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1477 ** interrupts are lost by delayed descriptor status updates relative to
1478 ** the irq assertion, especially with a busy PCI bus.
1480 spin_lock_irqsave(&lp->lock, flags);
1481 de4x5_tx(dev);
1482 spin_unlock_irqrestore(&lp->lock, flags);
1484 /* Test if cache is already locked - requeue skb if so */
1485 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1486 return -1;
1488 /* Transmit descriptor ring full or stale skb */
1489 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1490 if (lp->interrupt) {
1491 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1492 } else {
1493 de4x5_put_cache(dev, skb);
1495 if (de4x5_debug & DEBUG_TX) {
1496 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1498 } else if (skb->len > 0) {
1499 /* If we already have stuff queued locally, use that first */
1500 if (lp->cache.skb && !lp->interrupt) {
1501 de4x5_put_cache(dev, skb);
1502 skb = de4x5_get_cache(dev);
1505 while (skb && !netif_queue_stopped(dev) &&
1506 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1507 spin_lock_irqsave(&lp->lock, flags);
1508 netif_stop_queue(dev);
1509 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1510 lp->stats.tx_bytes += skb->len;
1511 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1513 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1514 dev->trans_start = jiffies;
1516 if (TX_BUFFS_AVAIL) {
1517 netif_start_queue(dev); /* Another pkt may be queued */
1519 skb = de4x5_get_cache(dev);
1520 spin_unlock_irqrestore(&lp->lock, flags);
1522 if (skb) de4x5_putb_cache(dev, skb);
1525 lp->cache.lock = 0;
1527 return status;
1531 ** The DE4X5 interrupt handler.
1533 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1534 ** so that the asserted interrupt always has some real data to work with -
1535 ** if these I/O accesses are ever changed to memory accesses, ensure the
1536 ** STS write is read immediately to complete the transaction if the adapter
1537 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1538 ** is high and descriptor status bits cannot be set before the associated
1539 ** interrupt is asserted and this routine entered.
1541 static irqreturn_t
1542 de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1544 struct net_device *dev = (struct net_device *)dev_id;
1545 struct de4x5_private *lp;
1546 s32 imr, omr, sts, limit;
1547 u_long iobase;
1548 unsigned int handled = 0;
1550 if (dev == NULL) {
1551 printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq);
1552 return IRQ_NONE;
1554 lp = netdev_priv(dev);
1555 spin_lock(&lp->lock);
1556 iobase = dev->base_addr;
1558 DISABLE_IRQs; /* Ensure non re-entrancy */
1560 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1561 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1563 synchronize_irq(dev->irq);
1565 for (limit=0; limit<8; limit++) {
1566 sts = inl(DE4X5_STS); /* Read IRQ status */
1567 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1569 if (!(sts & lp->irq_mask)) break;/* All done */
1570 handled = 1;
1572 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1573 de4x5_rx(dev);
1575 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1576 de4x5_tx(dev);
1578 if (sts & STS_LNF) { /* TP Link has failed */
1579 lp->irq_mask &= ~IMR_LFM;
1582 if (sts & STS_UNF) { /* Transmit underrun */
1583 de4x5_txur(dev);
1586 if (sts & STS_SE) { /* Bus Error */
1587 STOP_DE4X5;
1588 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1589 dev->name, sts);
1590 spin_unlock(&lp->lock);
1591 return IRQ_HANDLED;
1595 /* Load the TX ring with any locally stored packets */
1596 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1597 while (lp->cache.skb && !netif_queue_stopped(dev) && lp->tx_enable) {
1598 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1600 lp->cache.lock = 0;
1603 lp->interrupt = UNMASK_INTERRUPTS;
1604 ENABLE_IRQs;
1605 spin_unlock(&lp->lock);
1607 return IRQ_RETVAL(handled);
1610 static int
1611 de4x5_rx(struct net_device *dev)
1613 struct de4x5_private *lp = netdev_priv(dev);
1614 u_long iobase = dev->base_addr;
1615 int entry;
1616 s32 status;
1618 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1619 entry=lp->rx_new) {
1620 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1622 if (lp->rx_ovf) {
1623 if (inl(DE4X5_MFC) & MFC_FOCM) {
1624 de4x5_rx_ovfc(dev);
1625 break;
1629 if (status & RD_FS) { /* Remember the start of frame */
1630 lp->rx_old = entry;
1633 if (status & RD_LS) { /* Valid frame status */
1634 if (lp->tx_enable) lp->linkOK++;
1635 if (status & RD_ES) { /* There was an error. */
1636 lp->stats.rx_errors++; /* Update the error stats. */
1637 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1638 if (status & RD_CE) lp->stats.rx_crc_errors++;
1639 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1640 if (status & RD_TL) lp->stats.rx_length_errors++;
1641 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1642 if (status & RD_CS) lp->pktStats.rx_collision++;
1643 if (status & RD_DB) lp->pktStats.rx_dribble++;
1644 if (status & RD_OF) lp->pktStats.rx_overflow++;
1645 } else { /* A valid frame received */
1646 struct sk_buff *skb;
1647 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1648 >> 16) - 4;
1650 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1651 printk("%s: Insufficient memory; nuking packet.\n",
1652 dev->name);
1653 lp->stats.rx_dropped++;
1654 } else {
1655 de4x5_dbg_rx(skb, pkt_len);
1657 /* Push up the protocol stack */
1658 skb->protocol=eth_type_trans(skb,dev);
1659 de4x5_local_stats(dev, skb->data, pkt_len);
1660 netif_rx(skb);
1662 /* Update stats */
1663 dev->last_rx = jiffies;
1664 lp->stats.rx_packets++;
1665 lp->stats.rx_bytes += pkt_len;
1669 /* Change buffer ownership for this frame, back to the adapter */
1670 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1671 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1672 barrier();
1674 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1675 barrier();
1679 ** Update entry information
1681 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1684 return 0;
1687 static inline void
1688 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1690 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1691 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1692 DMA_TO_DEVICE);
1693 if ((u_long) lp->tx_skb[entry] > 1)
1694 dev_kfree_skb_irq(lp->tx_skb[entry]);
1695 lp->tx_skb[entry] = NULL;
1699 ** Buffer sent - check for TX buffer errors.
1701 static int
1702 de4x5_tx(struct net_device *dev)
1704 struct de4x5_private *lp = netdev_priv(dev);
1705 u_long iobase = dev->base_addr;
1706 int entry;
1707 s32 status;
1709 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1710 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1711 if (status < 0) { /* Buffer not sent yet */
1712 break;
1713 } else if (status != 0x7fffffff) { /* Not setup frame */
1714 if (status & TD_ES) { /* An error happened */
1715 lp->stats.tx_errors++;
1716 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1717 if (status & TD_LC) lp->stats.tx_window_errors++;
1718 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1719 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1720 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1722 if (TX_PKT_PENDING) {
1723 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1725 } else { /* Packet sent */
1726 lp->stats.tx_packets++;
1727 if (lp->tx_enable) lp->linkOK++;
1729 /* Update the collision counter */
1730 lp->stats.collisions += ((status & TD_EC) ? 16 :
1731 ((status & TD_CC) >> 3));
1733 /* Free the buffer. */
1734 if (lp->tx_skb[entry] != NULL)
1735 de4x5_free_tx_buff(lp, entry);
1738 /* Update all the pointers */
1739 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1742 /* Any resources available? */
1743 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1744 if (lp->interrupt)
1745 netif_wake_queue(dev);
1746 else
1747 netif_start_queue(dev);
1750 return 0;
1753 static int
1754 de4x5_ast(struct net_device *dev)
1756 struct de4x5_private *lp = netdev_priv(dev);
1757 int next_tick = DE4X5_AUTOSENSE_MS;
1759 disable_ast(dev);
1761 if (lp->useSROM) {
1762 next_tick = srom_autoconf(dev);
1763 } else if (lp->chipset == DC21140) {
1764 next_tick = dc21140m_autoconf(dev);
1765 } else if (lp->chipset == DC21041) {
1766 next_tick = dc21041_autoconf(dev);
1767 } else if (lp->chipset == DC21040) {
1768 next_tick = dc21040_autoconf(dev);
1770 lp->linkOK = 0;
1771 enable_ast(dev, next_tick);
1773 return 0;
1776 static int
1777 de4x5_txur(struct net_device *dev)
1779 struct de4x5_private *lp = netdev_priv(dev);
1780 u_long iobase = dev->base_addr;
1781 int omr;
1783 omr = inl(DE4X5_OMR);
1784 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1785 omr &= ~(OMR_ST|OMR_SR);
1786 outl(omr, DE4X5_OMR);
1787 while (inl(DE4X5_STS) & STS_TS);
1788 if ((omr & OMR_TR) < OMR_TR) {
1789 omr += 0x4000;
1790 } else {
1791 omr |= OMR_SF;
1793 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1796 return 0;
1799 static int
1800 de4x5_rx_ovfc(struct net_device *dev)
1802 struct de4x5_private *lp = netdev_priv(dev);
1803 u_long iobase = dev->base_addr;
1804 int omr;
1806 omr = inl(DE4X5_OMR);
1807 outl(omr & ~OMR_SR, DE4X5_OMR);
1808 while (inl(DE4X5_STS) & STS_RS);
1810 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1811 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1812 lp->rx_new = (++lp->rx_new % lp->rxRingSize);
1815 outl(omr, DE4X5_OMR);
1817 return 0;
1820 static int
1821 de4x5_close(struct net_device *dev)
1823 struct de4x5_private *lp = netdev_priv(dev);
1824 u_long iobase = dev->base_addr;
1825 s32 imr, omr;
1827 disable_ast(dev);
1829 netif_stop_queue(dev);
1831 if (de4x5_debug & DEBUG_CLOSE) {
1832 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1833 dev->name, inl(DE4X5_STS));
1837 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1839 DISABLE_IRQs;
1840 STOP_DE4X5;
1842 /* Free the associated irq */
1843 free_irq(dev->irq, dev);
1844 lp->state = CLOSED;
1846 /* Free any socket buffers */
1847 de4x5_free_rx_buffs(dev);
1848 de4x5_free_tx_buffs(dev);
1850 /* Put the adapter to sleep to save power */
1851 yawn(dev, SLEEP);
1853 return 0;
1856 static struct net_device_stats *
1857 de4x5_get_stats(struct net_device *dev)
1859 struct de4x5_private *lp = netdev_priv(dev);
1860 u_long iobase = dev->base_addr;
1862 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1864 return &lp->stats;
1867 static void
1868 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1870 struct de4x5_private *lp = netdev_priv(dev);
1871 int i;
1873 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1874 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1875 lp->pktStats.bins[i]++;
1876 i = DE4X5_PKT_STAT_SZ;
1879 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1880 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1881 lp->pktStats.broadcast++;
1882 } else {
1883 lp->pktStats.multicast++;
1885 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1886 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1887 lp->pktStats.unicast++;
1890 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1891 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1892 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1895 return;
1899 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1900 ** If the flag is changed on a descriptor that is being read by the hardware,
1901 ** I assume PCI transaction ordering will mean you are either successful or
1902 ** just miss asserting the change to the hardware. Anyway you're messing with
1903 ** a descriptor you don't own, but this shouldn't kill the chip provided
1904 ** the descriptor register is read only to the hardware.
1906 static void
1907 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1909 struct de4x5_private *lp = netdev_priv(dev);
1910 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1911 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1913 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1914 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1915 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1916 lp->tx_skb[lp->tx_new] = skb;
1917 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1918 barrier();
1920 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1921 barrier();
1925 ** Set or clear the multicast filter for this adaptor.
1927 static void
1928 set_multicast_list(struct net_device *dev)
1930 struct de4x5_private *lp = netdev_priv(dev);
1931 u_long iobase = dev->base_addr;
1933 /* First, double check that the adapter is open */
1934 if (lp->state == OPEN) {
1935 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1936 u32 omr;
1937 omr = inl(DE4X5_OMR);
1938 omr |= OMR_PR;
1939 outl(omr, DE4X5_OMR);
1940 } else {
1941 SetMulticastFilter(dev);
1942 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1943 SETUP_FRAME_LEN, (struct sk_buff *)1);
1945 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1946 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1947 dev->trans_start = jiffies;
1953 ** Calculate the hash code and update the logical address filter
1954 ** from a list of ethernet multicast addresses.
1955 ** Little endian crc one liner from Matt Thomas, DEC.
1957 static void
1958 SetMulticastFilter(struct net_device *dev)
1960 struct de4x5_private *lp = netdev_priv(dev);
1961 struct dev_mc_list *dmi=dev->mc_list;
1962 u_long iobase = dev->base_addr;
1963 int i, j, bit, byte;
1964 u16 hashcode;
1965 u32 omr, crc;
1966 char *pa;
1967 unsigned char *addrs;
1969 omr = inl(DE4X5_OMR);
1970 omr &= ~(OMR_PR | OMR_PM);
1971 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1973 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1974 omr |= OMR_PM; /* Pass all multicasts */
1975 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1976 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1977 addrs=dmi->dmi_addr;
1978 dmi=dmi->next;
1979 if ((*addrs & 0x01) == 1) { /* multicast address? */
1980 crc = ether_crc_le(ETH_ALEN, addrs);
1981 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1983 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1984 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1986 byte <<= 1; /* calc offset into setup frame */
1987 if (byte & 0x02) {
1988 byte -= 1;
1990 lp->setup_frame[byte] |= bit;
1993 } else { /* Perfect filtering */
1994 for (j=0; j<dev->mc_count; j++) {
1995 addrs=dmi->dmi_addr;
1996 dmi=dmi->next;
1997 for (i=0; i<ETH_ALEN; i++) {
1998 *(pa + (i&1)) = *addrs++;
1999 if (i & 0x01) pa += 4;
2003 outl(omr, DE4X5_OMR);
2005 return;
2008 #ifdef CONFIG_EISA
2010 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
2012 static int __init de4x5_eisa_probe (struct device *gendev)
2014 struct eisa_device *edev;
2015 u_long iobase;
2016 u_char irq, regval;
2017 u_short vendor;
2018 u32 cfid;
2019 int status, device;
2020 struct net_device *dev;
2021 struct de4x5_private *lp;
2023 edev = to_eisa_device (gendev);
2024 iobase = edev->base_addr;
2026 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2027 return -EBUSY;
2029 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2030 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2031 status = -EBUSY;
2032 goto release_reg_1;
2035 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2036 status = -ENOMEM;
2037 goto release_reg_2;
2039 lp = netdev_priv(dev);
2041 cfid = (u32) inl(PCI_CFID);
2042 lp->cfrv = (u_short) inl(PCI_CFRV);
2043 device = (cfid >> 8) & 0x00ffff00;
2044 vendor = (u_short) cfid;
2046 /* Read the EISA Configuration Registers */
2047 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2048 #ifdef CONFIG_ALPHA
2049 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2050 * care about the EISA configuration, and thus doesn't
2051 * configure the PLX bridge properly. Oh well... Simply mimic
2052 * the EISA config file to sort it out. */
2054 /* EISA REG1: Assert DecChip 21040 HW Reset */
2055 outb (ER1_IAM | 1, EISA_REG1);
2056 mdelay (1);
2058 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2059 outb (ER1_IAM, EISA_REG1);
2060 mdelay (1);
2062 /* EISA REG3: R/W Burst Transfer Enable */
2063 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2065 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2066 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2067 #endif
2068 irq = de4x5_irq[(regval >> 1) & 0x03];
2070 if (is_DC2114x) {
2071 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2073 lp->chipset = device;
2074 lp->bus = EISA;
2076 /* Write the PCI Configuration Registers */
2077 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2078 outl(0x00006000, PCI_CFLT);
2079 outl(iobase, PCI_CBIO);
2081 DevicePresent(dev, EISA_APROM);
2083 dev->irq = irq;
2085 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2086 return 0;
2089 free_netdev (dev);
2090 release_reg_2:
2091 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2092 release_reg_1:
2093 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2095 return status;
2098 static int __devexit de4x5_eisa_remove (struct device *device)
2100 struct net_device *dev;
2101 u_long iobase;
2103 dev = device->driver_data;
2104 iobase = dev->base_addr;
2106 unregister_netdev (dev);
2107 free_netdev (dev);
2108 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2109 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2111 return 0;
2114 static struct eisa_device_id de4x5_eisa_ids[] = {
2115 { "DEC4250", 0 }, /* 0 is the board name index... */
2116 { "" }
2119 static struct eisa_driver de4x5_eisa_driver = {
2120 .id_table = de4x5_eisa_ids,
2121 .driver = {
2122 .name = "de4x5",
2123 .probe = de4x5_eisa_probe,
2124 .remove = __devexit_p (de4x5_eisa_remove),
2127 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2128 #endif
2130 #ifdef CONFIG_PCI
2133 ** This function searches the current bus (which is >0) for a DECchip with an
2134 ** SROM, so that in multiport cards that have one SROM shared between multiple
2135 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2136 ** For single port cards this is a time waster...
2138 static void __devinit
2139 srom_search(struct net_device *dev, struct pci_dev *pdev)
2141 u_char pb;
2142 u_short vendor, status;
2143 u_int irq = 0, device;
2144 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2145 int i, j, cfrv;
2146 struct de4x5_private *lp = netdev_priv(dev);
2147 struct list_head *walk = &pdev->bus_list;
2149 for (walk = walk->next; walk != &pdev->bus_list; walk = walk->next) {
2150 struct pci_dev *this_dev = pci_dev_b(walk);
2152 /* Skip the pci_bus list entry */
2153 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2155 vendor = this_dev->vendor;
2156 device = this_dev->device << 8;
2157 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2159 /* Get the chip configuration revision register */
2160 pb = this_dev->bus->number;
2161 pci_read_config_dword(this_dev, PCI_REVISION_ID, &cfrv);
2163 /* Set the device number information */
2164 lp->device = PCI_SLOT(this_dev->devfn);
2165 lp->bus_num = pb;
2167 /* Set the chipset information */
2168 if (is_DC2114x) {
2169 device = ((cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2171 lp->chipset = device;
2173 /* Get the board I/O address (64 bits on sparc64) */
2174 iobase = pci_resource_start(this_dev, 0);
2176 /* Fetch the IRQ to be used */
2177 irq = this_dev->irq;
2178 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2180 /* Check if I/O accesses are enabled */
2181 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2182 if (!(status & PCI_COMMAND_IO)) continue;
2184 /* Search for a valid SROM attached to this DECchip */
2185 DevicePresent(dev, DE4X5_APROM);
2186 for (j=0, i=0; i<ETH_ALEN; i++) {
2187 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2189 if ((j != 0) && (j != 0x5fa)) {
2190 last.chipset = device;
2191 last.bus = pb;
2192 last.irq = irq;
2193 for (i=0; i<ETH_ALEN; i++) {
2194 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2196 return;
2200 return;
2204 ** PCI bus I/O device probe
2205 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2206 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2207 ** enabled by the user first in the set up utility. Hence we just check for
2208 ** enabled features and silently ignore the card if they're not.
2210 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2211 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2212 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2213 ** PC doesn't conform to the PCI standard)!
2215 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2216 ** kernels use the V0.535[n] drivers.
2219 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2220 const struct pci_device_id *ent)
2222 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2223 u_short vendor, status;
2224 u_int irq = 0, device;
2225 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2226 int error;
2227 struct net_device *dev;
2228 struct de4x5_private *lp;
2230 dev_num = PCI_SLOT(pdev->devfn);
2231 pb = pdev->bus->number;
2233 if (io) { /* probe a single PCI device */
2234 pbus = (u_short)(io >> 8);
2235 dnum = (u_short)(io & 0xff);
2236 if ((pbus != pb) || (dnum != dev_num))
2237 return -ENODEV;
2240 vendor = pdev->vendor;
2241 device = pdev->device << 8;
2242 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2243 return -ENODEV;
2245 /* Ok, the device seems to be for us. */
2246 if ((error = pci_enable_device (pdev)))
2247 return error;
2249 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2250 error = -ENOMEM;
2251 goto disable_dev;
2254 lp = netdev_priv(dev);
2255 lp->bus = PCI;
2256 lp->bus_num = 0;
2258 /* Search for an SROM on this bus */
2259 if (lp->bus_num != pb) {
2260 lp->bus_num = pb;
2261 srom_search(dev, pdev);
2264 /* Get the chip configuration revision register */
2265 pci_read_config_dword(pdev, PCI_REVISION_ID, &lp->cfrv);
2267 /* Set the device number information */
2268 lp->device = dev_num;
2269 lp->bus_num = pb;
2271 /* Set the chipset information */
2272 if (is_DC2114x) {
2273 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2275 lp->chipset = device;
2277 /* Get the board I/O address (64 bits on sparc64) */
2278 iobase = pci_resource_start(pdev, 0);
2280 /* Fetch the IRQ to be used */
2281 irq = pdev->irq;
2282 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2283 error = -ENODEV;
2284 goto free_dev;
2287 /* Check if I/O accesses and Bus Mastering are enabled */
2288 pci_read_config_word(pdev, PCI_COMMAND, &status);
2289 #ifdef __powerpc__
2290 if (!(status & PCI_COMMAND_IO)) {
2291 status |= PCI_COMMAND_IO;
2292 pci_write_config_word(pdev, PCI_COMMAND, status);
2293 pci_read_config_word(pdev, PCI_COMMAND, &status);
2295 #endif /* __powerpc__ */
2296 if (!(status & PCI_COMMAND_IO)) {
2297 error = -ENODEV;
2298 goto free_dev;
2301 if (!(status & PCI_COMMAND_MASTER)) {
2302 status |= PCI_COMMAND_MASTER;
2303 pci_write_config_word(pdev, PCI_COMMAND, status);
2304 pci_read_config_word(pdev, PCI_COMMAND, &status);
2306 if (!(status & PCI_COMMAND_MASTER)) {
2307 error = -ENODEV;
2308 goto free_dev;
2311 /* Check the latency timer for values >= 0x60 */
2312 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2313 if (timer < 0x60) {
2314 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2317 DevicePresent(dev, DE4X5_APROM);
2319 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2320 error = -EBUSY;
2321 goto free_dev;
2324 dev->irq = irq;
2326 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2327 goto release;
2330 return 0;
2332 release:
2333 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2334 free_dev:
2335 free_netdev (dev);
2336 disable_dev:
2337 pci_disable_device (pdev);
2338 return error;
2341 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2343 struct net_device *dev;
2344 u_long iobase;
2346 dev = pdev->dev.driver_data;
2347 iobase = dev->base_addr;
2349 unregister_netdev (dev);
2350 free_netdev (dev);
2351 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2352 pci_disable_device (pdev);
2355 static struct pci_device_id de4x5_pci_tbl[] = {
2356 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2357 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2358 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2359 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2360 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2361 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2362 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2363 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2364 { },
2367 static struct pci_driver de4x5_pci_driver = {
2368 .name = "de4x5",
2369 .id_table = de4x5_pci_tbl,
2370 .probe = de4x5_pci_probe,
2371 .remove = __devexit_p (de4x5_pci_remove),
2374 #endif
2377 ** Auto configure the media here rather than setting the port at compile
2378 ** time. This routine is called by de4x5_init() and when a loss of media is
2379 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2380 ** [TP] or no recent receive activity) to check whether the user has been
2381 ** sneaky and changed the port on us.
2383 static int
2384 autoconf_media(struct net_device *dev)
2386 struct de4x5_private *lp = netdev_priv(dev);
2387 u_long iobase = dev->base_addr;
2388 int next_tick = DE4X5_AUTOSENSE_MS;
2390 lp->linkOK = 0;
2391 lp->c_media = AUTO; /* Bogus last media */
2392 disable_ast(dev);
2393 inl(DE4X5_MFC); /* Zero the lost frames counter */
2394 lp->media = INIT;
2395 lp->tcount = 0;
2397 if (lp->useSROM) {
2398 next_tick = srom_autoconf(dev);
2399 } else if (lp->chipset == DC21040) {
2400 next_tick = dc21040_autoconf(dev);
2401 } else if (lp->chipset == DC21041) {
2402 next_tick = dc21041_autoconf(dev);
2403 } else if (lp->chipset == DC21140) {
2404 next_tick = dc21140m_autoconf(dev);
2407 enable_ast(dev, next_tick);
2409 return (lp->media);
2413 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2414 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2415 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2416 ** The only way to test for that is to place a loopback packet onto the
2417 ** network and watch for errors. Since we're messing with the interrupt mask
2418 ** register, disable the board interrupts and do not allow any more packets to
2419 ** be queued to the hardware. Re-enable everything only when the media is
2420 ** found.
2421 ** I may have to "age out" locally queued packets so that the higher layer
2422 ** timeouts don't effectively duplicate packets on the network.
2424 static int
2425 dc21040_autoconf(struct net_device *dev)
2427 struct de4x5_private *lp = netdev_priv(dev);
2428 u_long iobase = dev->base_addr;
2429 int next_tick = DE4X5_AUTOSENSE_MS;
2430 s32 imr;
2432 switch (lp->media) {
2433 case INIT:
2434 DISABLE_IRQs;
2435 lp->tx_enable = NO;
2436 lp->timeout = -1;
2437 de4x5_save_skbs(dev);
2438 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2439 lp->media = TP;
2440 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2441 lp->media = BNC_AUI;
2442 } else if (lp->autosense == EXT_SIA) {
2443 lp->media = EXT_SIA;
2444 } else {
2445 lp->media = NC;
2447 lp->local_state = 0;
2448 next_tick = dc21040_autoconf(dev);
2449 break;
2451 case TP:
2452 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2453 TP_SUSPECT, test_tp);
2454 break;
2456 case TP_SUSPECT:
2457 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2458 break;
2460 case BNC:
2461 case AUI:
2462 case BNC_AUI:
2463 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2464 BNC_AUI_SUSPECT, ping_media);
2465 break;
2467 case BNC_AUI_SUSPECT:
2468 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2469 break;
2471 case EXT_SIA:
2472 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2473 NC, EXT_SIA_SUSPECT, ping_media);
2474 break;
2476 case EXT_SIA_SUSPECT:
2477 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2478 break;
2480 case NC:
2481 /* default to TP for all */
2482 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2483 if (lp->media != lp->c_media) {
2484 de4x5_dbg_media(dev);
2485 lp->c_media = lp->media;
2487 lp->media = INIT;
2488 lp->tx_enable = NO;
2489 break;
2492 return next_tick;
2495 static int
2496 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2497 int next_state, int suspect_state,
2498 int (*fn)(struct net_device *, int))
2500 struct de4x5_private *lp = netdev_priv(dev);
2501 int next_tick = DE4X5_AUTOSENSE_MS;
2502 int linkBad;
2504 switch (lp->local_state) {
2505 case 0:
2506 reset_init_sia(dev, csr13, csr14, csr15);
2507 lp->local_state++;
2508 next_tick = 500;
2509 break;
2511 case 1:
2512 if (!lp->tx_enable) {
2513 linkBad = fn(dev, timeout);
2514 if (linkBad < 0) {
2515 next_tick = linkBad & ~TIMER_CB;
2516 } else {
2517 if (linkBad && (lp->autosense == AUTO)) {
2518 lp->local_state = 0;
2519 lp->media = next_state;
2520 } else {
2521 de4x5_init_connection(dev);
2524 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2525 lp->media = suspect_state;
2526 next_tick = 3000;
2528 break;
2531 return next_tick;
2534 static int
2535 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2536 int (*fn)(struct net_device *, int),
2537 int (*asfn)(struct net_device *))
2539 struct de4x5_private *lp = netdev_priv(dev);
2540 int next_tick = DE4X5_AUTOSENSE_MS;
2541 int linkBad;
2543 switch (lp->local_state) {
2544 case 1:
2545 if (lp->linkOK) {
2546 lp->media = prev_state;
2547 } else {
2548 lp->local_state++;
2549 next_tick = asfn(dev);
2551 break;
2553 case 2:
2554 linkBad = fn(dev, timeout);
2555 if (linkBad < 0) {
2556 next_tick = linkBad & ~TIMER_CB;
2557 } else if (!linkBad) {
2558 lp->local_state--;
2559 lp->media = prev_state;
2560 } else {
2561 lp->media = INIT;
2562 lp->tcount++;
2566 return next_tick;
2570 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2571 ** before BNC, because the BNC port will indicate activity if it's not
2572 ** terminated correctly. The only way to test for that is to place a loopback
2573 ** packet onto the network and watch for errors. Since we're messing with
2574 ** the interrupt mask register, disable the board interrupts and do not allow
2575 ** any more packets to be queued to the hardware. Re-enable everything only
2576 ** when the media is found.
2578 static int
2579 dc21041_autoconf(struct net_device *dev)
2581 struct de4x5_private *lp = netdev_priv(dev);
2582 u_long iobase = dev->base_addr;
2583 s32 sts, irqs, irq_mask, imr, omr;
2584 int next_tick = DE4X5_AUTOSENSE_MS;
2586 switch (lp->media) {
2587 case INIT:
2588 DISABLE_IRQs;
2589 lp->tx_enable = NO;
2590 lp->timeout = -1;
2591 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2592 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2593 lp->media = TP; /* On chip auto negotiation is broken */
2594 } else if (lp->autosense == TP) {
2595 lp->media = TP;
2596 } else if (lp->autosense == BNC) {
2597 lp->media = BNC;
2598 } else if (lp->autosense == AUI) {
2599 lp->media = AUI;
2600 } else {
2601 lp->media = NC;
2603 lp->local_state = 0;
2604 next_tick = dc21041_autoconf(dev);
2605 break;
2607 case TP_NW:
2608 if (lp->timeout < 0) {
2609 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2610 outl(omr | OMR_FDX, DE4X5_OMR);
2612 irqs = STS_LNF | STS_LNP;
2613 irq_mask = IMR_LFM | IMR_LPM;
2614 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2615 if (sts < 0) {
2616 next_tick = sts & ~TIMER_CB;
2617 } else {
2618 if (sts & STS_LNP) {
2619 lp->media = ANS;
2620 } else {
2621 lp->media = AUI;
2623 next_tick = dc21041_autoconf(dev);
2625 break;
2627 case ANS:
2628 if (!lp->tx_enable) {
2629 irqs = STS_LNP;
2630 irq_mask = IMR_LPM;
2631 sts = test_ans(dev, irqs, irq_mask, 3000);
2632 if (sts < 0) {
2633 next_tick = sts & ~TIMER_CB;
2634 } else {
2635 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2636 lp->media = TP;
2637 next_tick = dc21041_autoconf(dev);
2638 } else {
2639 lp->local_state = 1;
2640 de4x5_init_connection(dev);
2643 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2644 lp->media = ANS_SUSPECT;
2645 next_tick = 3000;
2647 break;
2649 case ANS_SUSPECT:
2650 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2651 break;
2653 case TP:
2654 if (!lp->tx_enable) {
2655 if (lp->timeout < 0) {
2656 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2657 outl(omr & ~OMR_FDX, DE4X5_OMR);
2659 irqs = STS_LNF | STS_LNP;
2660 irq_mask = IMR_LFM | IMR_LPM;
2661 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2662 if (sts < 0) {
2663 next_tick = sts & ~TIMER_CB;
2664 } else {
2665 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2666 if (inl(DE4X5_SISR) & SISR_NRA) {
2667 lp->media = AUI; /* Non selected port activity */
2668 } else {
2669 lp->media = BNC;
2671 next_tick = dc21041_autoconf(dev);
2672 } else {
2673 lp->local_state = 1;
2674 de4x5_init_connection(dev);
2677 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2678 lp->media = TP_SUSPECT;
2679 next_tick = 3000;
2681 break;
2683 case TP_SUSPECT:
2684 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2685 break;
2687 case AUI:
2688 if (!lp->tx_enable) {
2689 if (lp->timeout < 0) {
2690 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2691 outl(omr & ~OMR_FDX, DE4X5_OMR);
2693 irqs = 0;
2694 irq_mask = 0;
2695 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2696 if (sts < 0) {
2697 next_tick = sts & ~TIMER_CB;
2698 } else {
2699 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2700 lp->media = BNC;
2701 next_tick = dc21041_autoconf(dev);
2702 } else {
2703 lp->local_state = 1;
2704 de4x5_init_connection(dev);
2707 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2708 lp->media = AUI_SUSPECT;
2709 next_tick = 3000;
2711 break;
2713 case AUI_SUSPECT:
2714 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2715 break;
2717 case BNC:
2718 switch (lp->local_state) {
2719 case 0:
2720 if (lp->timeout < 0) {
2721 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2722 outl(omr & ~OMR_FDX, DE4X5_OMR);
2724 irqs = 0;
2725 irq_mask = 0;
2726 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2727 if (sts < 0) {
2728 next_tick = sts & ~TIMER_CB;
2729 } else {
2730 lp->local_state++; /* Ensure media connected */
2731 next_tick = dc21041_autoconf(dev);
2733 break;
2735 case 1:
2736 if (!lp->tx_enable) {
2737 if ((sts = ping_media(dev, 3000)) < 0) {
2738 next_tick = sts & ~TIMER_CB;
2739 } else {
2740 if (sts) {
2741 lp->local_state = 0;
2742 lp->media = NC;
2743 } else {
2744 de4x5_init_connection(dev);
2747 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2748 lp->media = BNC_SUSPECT;
2749 next_tick = 3000;
2751 break;
2753 break;
2755 case BNC_SUSPECT:
2756 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2757 break;
2759 case NC:
2760 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2761 outl(omr | OMR_FDX, DE4X5_OMR);
2762 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2763 if (lp->media != lp->c_media) {
2764 de4x5_dbg_media(dev);
2765 lp->c_media = lp->media;
2767 lp->media = INIT;
2768 lp->tx_enable = NO;
2769 break;
2772 return next_tick;
2776 ** Some autonegotiation chips are broken in that they do not return the
2777 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2778 ** register, except at the first power up negotiation.
2780 static int
2781 dc21140m_autoconf(struct net_device *dev)
2783 struct de4x5_private *lp = netdev_priv(dev);
2784 int ana, anlpa, cap, cr, slnk, sr;
2785 int next_tick = DE4X5_AUTOSENSE_MS;
2786 u_long imr, omr, iobase = dev->base_addr;
2788 switch(lp->media) {
2789 case INIT:
2790 if (lp->timeout < 0) {
2791 DISABLE_IRQs;
2792 lp->tx_enable = FALSE;
2793 lp->linkOK = 0;
2794 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2796 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2797 next_tick &= ~TIMER_CB;
2798 } else {
2799 if (lp->useSROM) {
2800 if (srom_map_media(dev) < 0) {
2801 lp->tcount++;
2802 return next_tick;
2804 srom_exec(dev, lp->phy[lp->active].gep);
2805 if (lp->infoblock_media == ANS) {
2806 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2807 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2809 } else {
2810 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2811 SET_10Mb;
2812 if (lp->autosense == _100Mb) {
2813 lp->media = _100Mb;
2814 } else if (lp->autosense == _10Mb) {
2815 lp->media = _10Mb;
2816 } else if ((lp->autosense == AUTO) &&
2817 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2818 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2819 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2820 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2821 lp->media = ANS;
2822 } else if (lp->autosense == AUTO) {
2823 lp->media = SPD_DET;
2824 } else if (is_spd_100(dev) && is_100_up(dev)) {
2825 lp->media = _100Mb;
2826 } else {
2827 lp->media = NC;
2830 lp->local_state = 0;
2831 next_tick = dc21140m_autoconf(dev);
2833 break;
2835 case ANS:
2836 switch (lp->local_state) {
2837 case 0:
2838 if (lp->timeout < 0) {
2839 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2841 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, FALSE, 500);
2842 if (cr < 0) {
2843 next_tick = cr & ~TIMER_CB;
2844 } else {
2845 if (cr) {
2846 lp->local_state = 0;
2847 lp->media = SPD_DET;
2848 } else {
2849 lp->local_state++;
2851 next_tick = dc21140m_autoconf(dev);
2853 break;
2855 case 1:
2856 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
2857 next_tick = sr & ~TIMER_CB;
2858 } else {
2859 lp->media = SPD_DET;
2860 lp->local_state = 0;
2861 if (sr) { /* Success! */
2862 lp->tmp = MII_SR_ASSC;
2863 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2864 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2865 if (!(anlpa & MII_ANLPA_RF) &&
2866 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2867 if (cap & MII_ANA_100M) {
2868 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
2869 lp->media = _100Mb;
2870 } else if (cap & MII_ANA_10M) {
2871 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) ? TRUE : FALSE);
2873 lp->media = _10Mb;
2876 } /* Auto Negotiation failed to finish */
2877 next_tick = dc21140m_autoconf(dev);
2878 } /* Auto Negotiation failed to start */
2879 break;
2881 break;
2883 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2884 if (lp->timeout < 0) {
2885 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2886 (~gep_rd(dev) & GEP_LNP));
2887 SET_100Mb_PDET;
2889 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2890 next_tick = slnk & ~TIMER_CB;
2891 } else {
2892 if (is_spd_100(dev) && is_100_up(dev)) {
2893 lp->media = _100Mb;
2894 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2895 lp->media = _10Mb;
2896 } else {
2897 lp->media = NC;
2899 next_tick = dc21140m_autoconf(dev);
2901 break;
2903 case _100Mb: /* Set 100Mb/s */
2904 next_tick = 3000;
2905 if (!lp->tx_enable) {
2906 SET_100Mb;
2907 de4x5_init_connection(dev);
2908 } else {
2909 if (!lp->linkOK && (lp->autosense == AUTO)) {
2910 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2911 lp->media = INIT;
2912 lp->tcount++;
2913 next_tick = DE4X5_AUTOSENSE_MS;
2917 break;
2919 case BNC:
2920 case AUI:
2921 case _10Mb: /* Set 10Mb/s */
2922 next_tick = 3000;
2923 if (!lp->tx_enable) {
2924 SET_10Mb;
2925 de4x5_init_connection(dev);
2926 } else {
2927 if (!lp->linkOK && (lp->autosense == AUTO)) {
2928 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2929 lp->media = INIT;
2930 lp->tcount++;
2931 next_tick = DE4X5_AUTOSENSE_MS;
2935 break;
2937 case NC:
2938 if (lp->media != lp->c_media) {
2939 de4x5_dbg_media(dev);
2940 lp->c_media = lp->media;
2942 lp->media = INIT;
2943 lp->tx_enable = FALSE;
2944 break;
2947 return next_tick;
2951 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2952 ** changing how I figure out the media - but trying to keep it backwards
2953 ** compatible with the de500-xa and de500-aa.
2954 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2955 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2956 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2957 ** active.
2958 ** When autonegotiation is working, the ANS part searches the SROM for
2959 ** the highest common speed (TP) link that both can run and if that can
2960 ** be full duplex. That infoblock is executed and then the link speed set.
2962 ** Only _10Mb and _100Mb are tested here.
2964 static int
2965 dc2114x_autoconf(struct net_device *dev)
2967 struct de4x5_private *lp = netdev_priv(dev);
2968 u_long iobase = dev->base_addr;
2969 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2970 int next_tick = DE4X5_AUTOSENSE_MS;
2972 switch (lp->media) {
2973 case INIT:
2974 if (lp->timeout < 0) {
2975 DISABLE_IRQs;
2976 lp->tx_enable = FALSE;
2977 lp->linkOK = 0;
2978 lp->timeout = -1;
2979 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2980 if (lp->params.autosense & ~AUTO) {
2981 srom_map_media(dev); /* Fixed media requested */
2982 if (lp->media != lp->params.autosense) {
2983 lp->tcount++;
2984 lp->media = INIT;
2985 return next_tick;
2987 lp->media = INIT;
2990 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2991 next_tick &= ~TIMER_CB;
2992 } else {
2993 if (lp->autosense == _100Mb) {
2994 lp->media = _100Mb;
2995 } else if (lp->autosense == _10Mb) {
2996 lp->media = _10Mb;
2997 } else if (lp->autosense == TP) {
2998 lp->media = TP;
2999 } else if (lp->autosense == BNC) {
3000 lp->media = BNC;
3001 } else if (lp->autosense == AUI) {
3002 lp->media = AUI;
3003 } else {
3004 lp->media = SPD_DET;
3005 if ((lp->infoblock_media == ANS) &&
3006 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
3007 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
3008 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
3009 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3010 lp->media = ANS;
3013 lp->local_state = 0;
3014 next_tick = dc2114x_autoconf(dev);
3016 break;
3018 case ANS:
3019 switch (lp->local_state) {
3020 case 0:
3021 if (lp->timeout < 0) {
3022 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3024 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, FALSE, 500);
3025 if (cr < 0) {
3026 next_tick = cr & ~TIMER_CB;
3027 } else {
3028 if (cr) {
3029 lp->local_state = 0;
3030 lp->media = SPD_DET;
3031 } else {
3032 lp->local_state++;
3034 next_tick = dc2114x_autoconf(dev);
3036 break;
3038 case 1:
3039 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
3040 next_tick = sr & ~TIMER_CB;
3041 } else {
3042 lp->media = SPD_DET;
3043 lp->local_state = 0;
3044 if (sr) { /* Success! */
3045 lp->tmp = MII_SR_ASSC;
3046 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3047 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3048 if (!(anlpa & MII_ANLPA_RF) &&
3049 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3050 if (cap & MII_ANA_100M) {
3051 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
3052 lp->media = _100Mb;
3053 } else if (cap & MII_ANA_10M) {
3054 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) ? TRUE : FALSE);
3055 lp->media = _10Mb;
3058 } /* Auto Negotiation failed to finish */
3059 next_tick = dc2114x_autoconf(dev);
3060 } /* Auto Negotiation failed to start */
3061 break;
3063 break;
3065 case AUI:
3066 if (!lp->tx_enable) {
3067 if (lp->timeout < 0) {
3068 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3069 outl(omr & ~OMR_FDX, DE4X5_OMR);
3071 irqs = 0;
3072 irq_mask = 0;
3073 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3074 if (sts < 0) {
3075 next_tick = sts & ~TIMER_CB;
3076 } else {
3077 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3078 lp->media = BNC;
3079 next_tick = dc2114x_autoconf(dev);
3080 } else {
3081 lp->local_state = 1;
3082 de4x5_init_connection(dev);
3085 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3086 lp->media = AUI_SUSPECT;
3087 next_tick = 3000;
3089 break;
3091 case AUI_SUSPECT:
3092 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3093 break;
3095 case BNC:
3096 switch (lp->local_state) {
3097 case 0:
3098 if (lp->timeout < 0) {
3099 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3100 outl(omr & ~OMR_FDX, DE4X5_OMR);
3102 irqs = 0;
3103 irq_mask = 0;
3104 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3105 if (sts < 0) {
3106 next_tick = sts & ~TIMER_CB;
3107 } else {
3108 lp->local_state++; /* Ensure media connected */
3109 next_tick = dc2114x_autoconf(dev);
3111 break;
3113 case 1:
3114 if (!lp->tx_enable) {
3115 if ((sts = ping_media(dev, 3000)) < 0) {
3116 next_tick = sts & ~TIMER_CB;
3117 } else {
3118 if (sts) {
3119 lp->local_state = 0;
3120 lp->tcount++;
3121 lp->media = INIT;
3122 } else {
3123 de4x5_init_connection(dev);
3126 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3127 lp->media = BNC_SUSPECT;
3128 next_tick = 3000;
3130 break;
3132 break;
3134 case BNC_SUSPECT:
3135 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3136 break;
3138 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3139 if (srom_map_media(dev) < 0) {
3140 lp->tcount++;
3141 lp->media = INIT;
3142 return next_tick;
3144 if (lp->media == _100Mb) {
3145 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3146 lp->media = SPD_DET;
3147 return (slnk & ~TIMER_CB);
3149 } else {
3150 if (wait_for_link(dev) < 0) {
3151 lp->media = SPD_DET;
3152 return PDET_LINK_WAIT;
3155 if (lp->media == ANS) { /* Do MII parallel detection */
3156 if (is_spd_100(dev)) {
3157 lp->media = _100Mb;
3158 } else {
3159 lp->media = _10Mb;
3161 next_tick = dc2114x_autoconf(dev);
3162 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3163 (((lp->media == _10Mb) || (lp->media == TP) ||
3164 (lp->media == BNC) || (lp->media == AUI)) &&
3165 is_10_up(dev))) {
3166 next_tick = dc2114x_autoconf(dev);
3167 } else {
3168 lp->tcount++;
3169 lp->media = INIT;
3171 break;
3173 case _10Mb:
3174 next_tick = 3000;
3175 if (!lp->tx_enable) {
3176 SET_10Mb;
3177 de4x5_init_connection(dev);
3178 } else {
3179 if (!lp->linkOK && (lp->autosense == AUTO)) {
3180 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3181 lp->media = INIT;
3182 lp->tcount++;
3183 next_tick = DE4X5_AUTOSENSE_MS;
3187 break;
3189 case _100Mb:
3190 next_tick = 3000;
3191 if (!lp->tx_enable) {
3192 SET_100Mb;
3193 de4x5_init_connection(dev);
3194 } else {
3195 if (!lp->linkOK && (lp->autosense == AUTO)) {
3196 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3197 lp->media = INIT;
3198 lp->tcount++;
3199 next_tick = DE4X5_AUTOSENSE_MS;
3203 break;
3205 default:
3206 lp->tcount++;
3207 printk("Huh?: media:%02x\n", lp->media);
3208 lp->media = INIT;
3209 break;
3212 return next_tick;
3215 static int
3216 srom_autoconf(struct net_device *dev)
3218 struct de4x5_private *lp = netdev_priv(dev);
3220 return lp->infoleaf_fn(dev);
3224 ** This mapping keeps the original media codes and FDX flag unchanged.
3225 ** While it isn't strictly necessary, it helps me for the moment...
3226 ** The early return avoids a media state / SROM media space clash.
3228 static int
3229 srom_map_media(struct net_device *dev)
3231 struct de4x5_private *lp = netdev_priv(dev);
3233 lp->fdx = 0;
3234 if (lp->infoblock_media == lp->media)
3235 return 0;
3237 switch(lp->infoblock_media) {
3238 case SROM_10BASETF:
3239 if (!lp->params.fdx) return -1;
3240 lp->fdx = TRUE;
3241 case SROM_10BASET:
3242 if (lp->params.fdx && !lp->fdx) return -1;
3243 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3244 lp->media = _10Mb;
3245 } else {
3246 lp->media = TP;
3248 break;
3250 case SROM_10BASE2:
3251 lp->media = BNC;
3252 break;
3254 case SROM_10BASE5:
3255 lp->media = AUI;
3256 break;
3258 case SROM_100BASETF:
3259 if (!lp->params.fdx) return -1;
3260 lp->fdx = TRUE;
3261 case SROM_100BASET:
3262 if (lp->params.fdx && !lp->fdx) return -1;
3263 lp->media = _100Mb;
3264 break;
3266 case SROM_100BASET4:
3267 lp->media = _100Mb;
3268 break;
3270 case SROM_100BASEFF:
3271 if (!lp->params.fdx) return -1;
3272 lp->fdx = TRUE;
3273 case SROM_100BASEF:
3274 if (lp->params.fdx && !lp->fdx) return -1;
3275 lp->media = _100Mb;
3276 break;
3278 case ANS:
3279 lp->media = ANS;
3280 lp->fdx = lp->params.fdx;
3281 break;
3283 default:
3284 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3285 lp->infoblock_media);
3286 return -1;
3287 break;
3290 return 0;
3293 static void
3294 de4x5_init_connection(struct net_device *dev)
3296 struct de4x5_private *lp = netdev_priv(dev);
3297 u_long iobase = dev->base_addr;
3298 u_long flags = 0;
3300 if (lp->media != lp->c_media) {
3301 de4x5_dbg_media(dev);
3302 lp->c_media = lp->media; /* Stop scrolling media messages */
3305 spin_lock_irqsave(&lp->lock, flags);
3306 de4x5_rst_desc_ring(dev);
3307 de4x5_setup_intr(dev);
3308 lp->tx_enable = YES;
3309 spin_unlock_irqrestore(&lp->lock, flags);
3310 outl(POLL_DEMAND, DE4X5_TPD);
3312 netif_wake_queue(dev);
3314 return;
3318 ** General PHY reset function. Some MII devices don't reset correctly
3319 ** since their MII address pins can float at voltages that are dependent
3320 ** on the signal pin use. Do a double reset to ensure a reset.
3322 static int
3323 de4x5_reset_phy(struct net_device *dev)
3325 struct de4x5_private *lp = netdev_priv(dev);
3326 u_long iobase = dev->base_addr;
3327 int next_tick = 0;
3329 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3330 if (lp->timeout < 0) {
3331 if (lp->useSROM) {
3332 if (lp->phy[lp->active].rst) {
3333 srom_exec(dev, lp->phy[lp->active].rst);
3334 srom_exec(dev, lp->phy[lp->active].rst);
3335 } else if (lp->rst) { /* Type 5 infoblock reset */
3336 srom_exec(dev, lp->rst);
3337 srom_exec(dev, lp->rst);
3339 } else {
3340 PHY_HARD_RESET;
3342 if (lp->useMII) {
3343 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3346 if (lp->useMII) {
3347 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, FALSE, 500);
3349 } else if (lp->chipset == DC21140) {
3350 PHY_HARD_RESET;
3353 return next_tick;
3356 static int
3357 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3359 struct de4x5_private *lp = netdev_priv(dev);
3360 u_long iobase = dev->base_addr;
3361 s32 sts, csr12;
3363 if (lp->timeout < 0) {
3364 lp->timeout = msec/100;
3365 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3366 reset_init_sia(dev, csr13, csr14, csr15);
3369 /* set up the interrupt mask */
3370 outl(irq_mask, DE4X5_IMR);
3372 /* clear all pending interrupts */
3373 sts = inl(DE4X5_STS);
3374 outl(sts, DE4X5_STS);
3376 /* clear csr12 NRA and SRA bits */
3377 if ((lp->chipset == DC21041) || lp->useSROM) {
3378 csr12 = inl(DE4X5_SISR);
3379 outl(csr12, DE4X5_SISR);
3383 sts = inl(DE4X5_STS) & ~TIMER_CB;
3385 if (!(sts & irqs) && --lp->timeout) {
3386 sts = 100 | TIMER_CB;
3387 } else {
3388 lp->timeout = -1;
3391 return sts;
3394 static int
3395 test_tp(struct net_device *dev, s32 msec)
3397 struct de4x5_private *lp = netdev_priv(dev);
3398 u_long iobase = dev->base_addr;
3399 int sisr;
3401 if (lp->timeout < 0) {
3402 lp->timeout = msec/100;
3405 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3407 if (sisr && --lp->timeout) {
3408 sisr = 100 | TIMER_CB;
3409 } else {
3410 lp->timeout = -1;
3413 return sisr;
3417 ** Samples the 100Mb Link State Signal. The sample interval is important
3418 ** because too fast a rate can give erroneous results and confuse the
3419 ** speed sense algorithm.
3421 #define SAMPLE_INTERVAL 500 /* ms */
3422 #define SAMPLE_DELAY 2000 /* ms */
3423 static int
3424 test_for_100Mb(struct net_device *dev, int msec)
3426 struct de4x5_private *lp = netdev_priv(dev);
3427 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3429 if (lp->timeout < 0) {
3430 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3431 if (msec > SAMPLE_DELAY) {
3432 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3433 gep = SAMPLE_DELAY | TIMER_CB;
3434 return gep;
3435 } else {
3436 lp->timeout = msec/SAMPLE_INTERVAL;
3440 if (lp->phy[lp->active].id || lp->useSROM) {
3441 gep = is_100_up(dev) | is_spd_100(dev);
3442 } else {
3443 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3445 if (!(gep & ret) && --lp->timeout) {
3446 gep = SAMPLE_INTERVAL | TIMER_CB;
3447 } else {
3448 lp->timeout = -1;
3451 return gep;
3454 static int
3455 wait_for_link(struct net_device *dev)
3457 struct de4x5_private *lp = netdev_priv(dev);
3459 if (lp->timeout < 0) {
3460 lp->timeout = 1;
3463 if (lp->timeout--) {
3464 return TIMER_CB;
3465 } else {
3466 lp->timeout = -1;
3469 return 0;
3476 static int
3477 test_mii_reg(struct net_device *dev, int reg, int mask, int pol, long msec)
3479 struct de4x5_private *lp = netdev_priv(dev);
3480 int test;
3481 u_long iobase = dev->base_addr;
3483 if (lp->timeout < 0) {
3484 lp->timeout = msec/100;
3487 if (pol) pol = ~0;
3488 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3489 test = (reg ^ pol) & mask;
3491 if (test && --lp->timeout) {
3492 reg = 100 | TIMER_CB;
3493 } else {
3494 lp->timeout = -1;
3497 return reg;
3500 static int
3501 is_spd_100(struct net_device *dev)
3503 struct de4x5_private *lp = netdev_priv(dev);
3504 u_long iobase = dev->base_addr;
3505 int spd;
3507 if (lp->useMII) {
3508 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3509 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3510 spd &= lp->phy[lp->active].spd.mask;
3511 } else if (!lp->useSROM) { /* de500-xa */
3512 spd = ((~gep_rd(dev)) & GEP_SLNK);
3513 } else {
3514 if ((lp->ibn == 2) || !lp->asBitValid)
3515 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3517 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3518 (lp->linkOK & ~lp->asBitValid);
3521 return spd;
3524 static int
3525 is_100_up(struct net_device *dev)
3527 struct de4x5_private *lp = netdev_priv(dev);
3528 u_long iobase = dev->base_addr;
3530 if (lp->useMII) {
3531 /* Double read for sticky bits & temporary drops */
3532 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3533 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3534 } else if (!lp->useSROM) { /* de500-xa */
3535 return ((~gep_rd(dev)) & GEP_SLNK);
3536 } else {
3537 if ((lp->ibn == 2) || !lp->asBitValid)
3538 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3540 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3541 (lp->linkOK & ~lp->asBitValid));
3545 static int
3546 is_10_up(struct net_device *dev)
3548 struct de4x5_private *lp = netdev_priv(dev);
3549 u_long iobase = dev->base_addr;
3551 if (lp->useMII) {
3552 /* Double read for sticky bits & temporary drops */
3553 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3554 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3555 } else if (!lp->useSROM) { /* de500-xa */
3556 return ((~gep_rd(dev)) & GEP_LNP);
3557 } else {
3558 if ((lp->ibn == 2) || !lp->asBitValid)
3559 return (((lp->chipset & ~0x00ff) == DC2114x) ?
3560 (~inl(DE4X5_SISR)&SISR_LS10):
3563 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3564 (lp->linkOK & ~lp->asBitValid));
3568 static int
3569 is_anc_capable(struct net_device *dev)
3571 struct de4x5_private *lp = netdev_priv(dev);
3572 u_long iobase = dev->base_addr;
3574 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3575 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3576 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3577 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3578 } else {
3579 return 0;
3584 ** Send a packet onto the media and watch for send errors that indicate the
3585 ** media is bad or unconnected.
3587 static int
3588 ping_media(struct net_device *dev, int msec)
3590 struct de4x5_private *lp = netdev_priv(dev);
3591 u_long iobase = dev->base_addr;
3592 int sisr;
3594 if (lp->timeout < 0) {
3595 lp->timeout = msec/100;
3597 lp->tmp = lp->tx_new; /* Remember the ring position */
3598 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3599 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3600 outl(POLL_DEMAND, DE4X5_TPD);
3603 sisr = inl(DE4X5_SISR);
3605 if ((!(sisr & SISR_NCR)) &&
3606 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3607 (--lp->timeout)) {
3608 sisr = 100 | TIMER_CB;
3609 } else {
3610 if ((!(sisr & SISR_NCR)) &&
3611 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3612 lp->timeout) {
3613 sisr = 0;
3614 } else {
3615 sisr = 1;
3617 lp->timeout = -1;
3620 return sisr;
3624 ** This function does 2 things: on Intels it kmalloc's another buffer to
3625 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3626 ** into which the packet is copied.
3628 static struct sk_buff *
3629 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3631 struct de4x5_private *lp = netdev_priv(dev);
3632 struct sk_buff *p;
3634 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
3635 struct sk_buff *ret;
3636 u_long i=0, tmp;
3638 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3639 if (!p) return NULL;
3641 p->dev = dev;
3642 tmp = virt_to_bus(p->data);
3643 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3644 skb_reserve(p, i);
3645 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3647 ret = lp->rx_skb[index];
3648 lp->rx_skb[index] = p;
3650 if ((u_long) ret > 1) {
3651 skb_put(ret, len);
3654 return ret;
3656 #else
3657 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3659 p = dev_alloc_skb(len + 2);
3660 if (!p) return NULL;
3662 p->dev = dev;
3663 skb_reserve(p, 2); /* Align */
3664 if (index < lp->rx_old) { /* Wrapped buffer */
3665 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3666 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3667 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3668 } else { /* Linear buffer */
3669 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3672 return p;
3673 #endif
3676 static void
3677 de4x5_free_rx_buffs(struct net_device *dev)
3679 struct de4x5_private *lp = netdev_priv(dev);
3680 int i;
3682 for (i=0; i<lp->rxRingSize; i++) {
3683 if ((u_long) lp->rx_skb[i] > 1) {
3684 dev_kfree_skb(lp->rx_skb[i]);
3686 lp->rx_ring[i].status = 0;
3687 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3690 return;
3693 static void
3694 de4x5_free_tx_buffs(struct net_device *dev)
3696 struct de4x5_private *lp = netdev_priv(dev);
3697 int i;
3699 for (i=0; i<lp->txRingSize; i++) {
3700 if (lp->tx_skb[i])
3701 de4x5_free_tx_buff(lp, i);
3702 lp->tx_ring[i].status = 0;
3705 /* Unload the locally queued packets */
3706 while (lp->cache.skb) {
3707 dev_kfree_skb(de4x5_get_cache(dev));
3710 return;
3714 ** When a user pulls a connection, the DECchip can end up in a
3715 ** 'running - waiting for end of transmission' state. This means that we
3716 ** have to perform a chip soft reset to ensure that we can synchronize
3717 ** the hardware and software and make any media probes using a loopback
3718 ** packet meaningful.
3720 static void
3721 de4x5_save_skbs(struct net_device *dev)
3723 struct de4x5_private *lp = netdev_priv(dev);
3724 u_long iobase = dev->base_addr;
3725 s32 omr;
3727 if (!lp->cache.save_cnt) {
3728 STOP_DE4X5;
3729 de4x5_tx(dev); /* Flush any sent skb's */
3730 de4x5_free_tx_buffs(dev);
3731 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3732 de4x5_sw_reset(dev);
3733 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3734 lp->cache.save_cnt++;
3735 START_DE4X5;
3738 return;
3741 static void
3742 de4x5_rst_desc_ring(struct net_device *dev)
3744 struct de4x5_private *lp = netdev_priv(dev);
3745 u_long iobase = dev->base_addr;
3746 int i;
3747 s32 omr;
3749 if (lp->cache.save_cnt) {
3750 STOP_DE4X5;
3751 outl(lp->dma_rings, DE4X5_RRBA);
3752 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3753 DE4X5_TRBA);
3755 lp->rx_new = lp->rx_old = 0;
3756 lp->tx_new = lp->tx_old = 0;
3758 for (i = 0; i < lp->rxRingSize; i++) {
3759 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3762 for (i = 0; i < lp->txRingSize; i++) {
3763 lp->tx_ring[i].status = cpu_to_le32(0);
3766 barrier();
3767 lp->cache.save_cnt--;
3768 START_DE4X5;
3771 return;
3774 static void
3775 de4x5_cache_state(struct net_device *dev, int flag)
3777 struct de4x5_private *lp = netdev_priv(dev);
3778 u_long iobase = dev->base_addr;
3780 switch(flag) {
3781 case DE4X5_SAVE_STATE:
3782 lp->cache.csr0 = inl(DE4X5_BMR);
3783 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3784 lp->cache.csr7 = inl(DE4X5_IMR);
3785 break;
3787 case DE4X5_RESTORE_STATE:
3788 outl(lp->cache.csr0, DE4X5_BMR);
3789 outl(lp->cache.csr6, DE4X5_OMR);
3790 outl(lp->cache.csr7, DE4X5_IMR);
3791 if (lp->chipset == DC21140) {
3792 gep_wr(lp->cache.gepc, dev);
3793 gep_wr(lp->cache.gep, dev);
3794 } else {
3795 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3796 lp->cache.csr15);
3798 break;
3801 return;
3804 static void
3805 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3807 struct de4x5_private *lp = netdev_priv(dev);
3808 struct sk_buff *p;
3810 if (lp->cache.skb) {
3811 for (p=lp->cache.skb; p->next; p=p->next);
3812 p->next = skb;
3813 } else {
3814 lp->cache.skb = skb;
3816 skb->next = NULL;
3818 return;
3821 static void
3822 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3824 struct de4x5_private *lp = netdev_priv(dev);
3825 struct sk_buff *p = lp->cache.skb;
3827 lp->cache.skb = skb;
3828 skb->next = p;
3830 return;
3833 static struct sk_buff *
3834 de4x5_get_cache(struct net_device *dev)
3836 struct de4x5_private *lp = netdev_priv(dev);
3837 struct sk_buff *p = lp->cache.skb;
3839 if (p) {
3840 lp->cache.skb = p->next;
3841 p->next = NULL;
3844 return p;
3848 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3849 ** is received and the auto-negotiation status is NWAY OK.
3851 static int
3852 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3854 struct de4x5_private *lp = netdev_priv(dev);
3855 u_long iobase = dev->base_addr;
3856 s32 sts, ans;
3858 if (lp->timeout < 0) {
3859 lp->timeout = msec/100;
3860 outl(irq_mask, DE4X5_IMR);
3862 /* clear all pending interrupts */
3863 sts = inl(DE4X5_STS);
3864 outl(sts, DE4X5_STS);
3867 ans = inl(DE4X5_SISR) & SISR_ANS;
3868 sts = inl(DE4X5_STS) & ~TIMER_CB;
3870 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3871 sts = 100 | TIMER_CB;
3872 } else {
3873 lp->timeout = -1;
3876 return sts;
3879 static void
3880 de4x5_setup_intr(struct net_device *dev)
3882 struct de4x5_private *lp = netdev_priv(dev);
3883 u_long iobase = dev->base_addr;
3884 s32 imr, sts;
3886 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3887 imr = 0;
3888 UNMASK_IRQs;
3889 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3890 outl(sts, DE4X5_STS);
3891 ENABLE_IRQs;
3894 return;
3900 static void
3901 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3903 struct de4x5_private *lp = netdev_priv(dev);
3904 u_long iobase = dev->base_addr;
3906 RESET_SIA;
3907 if (lp->useSROM) {
3908 if (lp->ibn == 3) {
3909 srom_exec(dev, lp->phy[lp->active].rst);
3910 srom_exec(dev, lp->phy[lp->active].gep);
3911 outl(1, DE4X5_SICR);
3912 return;
3913 } else {
3914 csr15 = lp->cache.csr15;
3915 csr14 = lp->cache.csr14;
3916 csr13 = lp->cache.csr13;
3917 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3918 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3920 } else {
3921 outl(csr15, DE4X5_SIGR);
3923 outl(csr14, DE4X5_STRR);
3924 outl(csr13, DE4X5_SICR);
3926 mdelay(10);
3928 return;
3932 ** Create a loopback ethernet packet
3934 static void
3935 create_packet(struct net_device *dev, char *frame, int len)
3937 int i;
3938 char *buf = frame;
3940 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3941 *buf++ = dev->dev_addr[i];
3943 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3944 *buf++ = dev->dev_addr[i];
3947 *buf++ = 0; /* Packet length (2 bytes) */
3948 *buf++ = 1;
3950 return;
3954 ** Look for a particular board name in the EISA configuration space
3956 static int
3957 EISA_signature(char *name, struct device *device)
3959 int i, status = 0, siglen = sizeof(de4x5_signatures)/sizeof(c_char *);
3960 struct eisa_device *edev;
3962 *name = '\0';
3963 edev = to_eisa_device (device);
3964 i = edev->id.driver_data;
3966 if (i >= 0 && i < siglen) {
3967 strcpy (name, de4x5_signatures[i]);
3968 status = 1;
3971 return status; /* return the device name string */
3975 ** Look for a particular board name in the PCI configuration space
3977 static int
3978 PCI_signature(char *name, struct de4x5_private *lp)
3980 int i, status = 0, siglen = sizeof(de4x5_signatures)/sizeof(c_char *);
3982 if (lp->chipset == DC21040) {
3983 strcpy(name, "DE434/5");
3984 return status;
3985 } else { /* Search for a DEC name in the SROM */
3986 int i = *((char *)&lp->srom + 19) * 3;
3987 strncpy(name, (char *)&lp->srom + 26 + i, 8);
3989 name[8] = '\0';
3990 for (i=0; i<siglen; i++) {
3991 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3993 if (i == siglen) {
3994 if (dec_only) {
3995 *name = '\0';
3996 } else { /* Use chip name to avoid confusion */
3997 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3998 ((lp->chipset == DC21041) ? "DC21041" :
3999 ((lp->chipset == DC21140) ? "DC21140" :
4000 ((lp->chipset == DC21142) ? "DC21142" :
4001 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
4002 )))))));
4004 if (lp->chipset != DC21041) {
4005 lp->useSROM = TRUE; /* card is not recognisably DEC */
4007 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
4008 lp->useSROM = TRUE;
4011 return status;
4015 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
4016 ** the DC21040, else read the SROM for the other chips.
4017 ** The SROM may not be present in a multi-MAC card, so first read the
4018 ** MAC address and check for a bad address. If there is a bad one then exit
4019 ** immediately with the prior srom contents intact (the h/w address will
4020 ** be fixed up later).
4022 static void
4023 DevicePresent(struct net_device *dev, u_long aprom_addr)
4025 int i, j=0;
4026 struct de4x5_private *lp = netdev_priv(dev);
4028 if (lp->chipset == DC21040) {
4029 if (lp->bus == EISA) {
4030 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
4031 } else {
4032 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
4034 } else { /* Read new srom */
4035 u_short tmp, *p = (short *)((char *)&lp->srom + SROM_HWADD);
4036 for (i=0; i<(ETH_ALEN>>1); i++) {
4037 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
4038 *p = le16_to_cpu(tmp);
4039 j += *p++;
4041 if ((j == 0) || (j == 0x2fffd)) {
4042 return;
4045 p=(short *)&lp->srom;
4046 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
4047 tmp = srom_rd(aprom_addr, i);
4048 *p++ = le16_to_cpu(tmp);
4050 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4053 return;
4057 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4058 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4059 ** it...from depca.c.
4061 static void
4062 enet_addr_rst(u_long aprom_addr)
4064 union {
4065 struct {
4066 u32 a;
4067 u32 b;
4068 } llsig;
4069 char Sig[sizeof(u32) << 1];
4070 } dev;
4071 short sigLength=0;
4072 s8 data;
4073 int i, j;
4075 dev.llsig.a = ETH_PROM_SIG;
4076 dev.llsig.b = ETH_PROM_SIG;
4077 sigLength = sizeof(u32) << 1;
4079 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4080 data = inb(aprom_addr);
4081 if (dev.Sig[j] == data) { /* track signature */
4082 j++;
4083 } else { /* lost signature; begin search again */
4084 if (data == dev.Sig[0]) { /* rare case.... */
4085 j=1;
4086 } else {
4087 j=0;
4092 return;
4096 ** For the bad status case and no SROM, then add one to the previous
4097 ** address. However, need to add one backwards in case we have 0xff
4098 ** as one or more of the bytes. Only the last 3 bytes should be checked
4099 ** as the first three are invariant - assigned to an organisation.
4101 static int
4102 get_hw_addr(struct net_device *dev)
4104 u_long iobase = dev->base_addr;
4105 int broken, i, k, tmp, status = 0;
4106 u_short j,chksum;
4107 struct de4x5_private *lp = netdev_priv(dev);
4109 broken = de4x5_bad_srom(lp);
4111 for (i=0,k=0,j=0;j<3;j++) {
4112 k <<= 1;
4113 if (k > 0xffff) k-=0xffff;
4115 if (lp->bus == PCI) {
4116 if (lp->chipset == DC21040) {
4117 while ((tmp = inl(DE4X5_APROM)) < 0);
4118 k += (u_char) tmp;
4119 dev->dev_addr[i++] = (u_char) tmp;
4120 while ((tmp = inl(DE4X5_APROM)) < 0);
4121 k += (u_short) (tmp << 8);
4122 dev->dev_addr[i++] = (u_char) tmp;
4123 } else if (!broken) {
4124 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4125 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4126 } else if ((broken == SMC) || (broken == ACCTON)) {
4127 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4128 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4130 } else {
4131 k += (u_char) (tmp = inb(EISA_APROM));
4132 dev->dev_addr[i++] = (u_char) tmp;
4133 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4134 dev->dev_addr[i++] = (u_char) tmp;
4137 if (k > 0xffff) k-=0xffff;
4139 if (k == 0xffff) k=0;
4141 if (lp->bus == PCI) {
4142 if (lp->chipset == DC21040) {
4143 while ((tmp = inl(DE4X5_APROM)) < 0);
4144 chksum = (u_char) tmp;
4145 while ((tmp = inl(DE4X5_APROM)) < 0);
4146 chksum |= (u_short) (tmp << 8);
4147 if ((k != chksum) && (dec_only)) status = -1;
4149 } else {
4150 chksum = (u_char) inb(EISA_APROM);
4151 chksum |= (u_short) (inb(EISA_APROM) << 8);
4152 if ((k != chksum) && (dec_only)) status = -1;
4155 /* If possible, try to fix a broken card - SMC only so far */
4156 srom_repair(dev, broken);
4158 #ifdef CONFIG_PPC_MULTIPLATFORM
4160 ** If the address starts with 00 a0, we have to bit-reverse
4161 ** each byte of the address.
4163 if ( (_machine & _MACH_Pmac) &&
4164 (dev->dev_addr[0] == 0) &&
4165 (dev->dev_addr[1] == 0xa0) )
4167 for (i = 0; i < ETH_ALEN; ++i)
4169 int x = dev->dev_addr[i];
4170 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4171 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4172 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4175 #endif /* CONFIG_PPC_MULTIPLATFORM */
4177 /* Test for a bad enet address */
4178 status = test_bad_enet(dev, status);
4180 return status;
4184 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4185 ** didn't seem to work here...?
4187 static int
4188 de4x5_bad_srom(struct de4x5_private *lp)
4190 int i, status = 0;
4192 for (i=0; i<sizeof(enet_det)/ETH_ALEN; i++) {
4193 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4194 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4195 if (i == 0) {
4196 status = SMC;
4197 } else if (i == 1) {
4198 status = ACCTON;
4200 break;
4204 return status;
4207 static int
4208 de4x5_strncmp(char *a, char *b, int n)
4210 int ret=0;
4212 for (;n && !ret;n--) {
4213 ret = *a++ - *b++;
4216 return ret;
4219 static void
4220 srom_repair(struct net_device *dev, int card)
4222 struct de4x5_private *lp = netdev_priv(dev);
4224 switch(card) {
4225 case SMC:
4226 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4227 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4228 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4229 lp->useSROM = TRUE;
4230 break;
4233 return;
4237 ** Assume that the irq's do not follow the PCI spec - this is seems
4238 ** to be true so far (2 for 2).
4240 static int
4241 test_bad_enet(struct net_device *dev, int status)
4243 struct de4x5_private *lp = netdev_priv(dev);
4244 int i, tmp;
4246 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4247 if ((tmp == 0) || (tmp == 0x5fa)) {
4248 if ((lp->chipset == last.chipset) &&
4249 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4250 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4251 for (i=ETH_ALEN-1; i>2; --i) {
4252 dev->dev_addr[i] += 1;
4253 if (dev->dev_addr[i] != 0) break;
4255 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4256 if (!an_exception(lp)) {
4257 dev->irq = last.irq;
4260 status = 0;
4262 } else if (!status) {
4263 last.chipset = lp->chipset;
4264 last.bus = lp->bus_num;
4265 last.irq = dev->irq;
4266 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4269 return status;
4273 ** List of board exceptions with correctly wired IRQs
4275 static int
4276 an_exception(struct de4x5_private *lp)
4278 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4279 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4280 return -1;
4283 return 0;
4287 ** SROM Read
4289 static short
4290 srom_rd(u_long addr, u_char offset)
4292 sendto_srom(SROM_RD | SROM_SR, addr);
4294 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4295 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4296 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4298 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4301 static void
4302 srom_latch(u_int command, u_long addr)
4304 sendto_srom(command, addr);
4305 sendto_srom(command | DT_CLK, addr);
4306 sendto_srom(command, addr);
4308 return;
4311 static void
4312 srom_command(u_int command, u_long addr)
4314 srom_latch(command, addr);
4315 srom_latch(command, addr);
4316 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4318 return;
4321 static void
4322 srom_address(u_int command, u_long addr, u_char offset)
4324 int i, a;
4326 a = offset << 2;
4327 for (i=0; i<6; i++, a <<= 1) {
4328 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4330 udelay(1);
4332 i = (getfrom_srom(addr) >> 3) & 0x01;
4334 return;
4337 static short
4338 srom_data(u_int command, u_long addr)
4340 int i;
4341 short word = 0;
4342 s32 tmp;
4344 for (i=0; i<16; i++) {
4345 sendto_srom(command | DT_CLK, addr);
4346 tmp = getfrom_srom(addr);
4347 sendto_srom(command, addr);
4349 word = (word << 1) | ((tmp >> 3) & 0x01);
4352 sendto_srom(command & 0x0000ff00, addr);
4354 return word;
4358 static void
4359 srom_busy(u_int command, u_long addr)
4361 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4363 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4364 mdelay(1);
4367 sendto_srom(command & 0x0000ff00, addr);
4369 return;
4373 static void
4374 sendto_srom(u_int command, u_long addr)
4376 outl(command, addr);
4377 udelay(1);
4379 return;
4382 static int
4383 getfrom_srom(u_long addr)
4385 s32 tmp;
4387 tmp = inl(addr);
4388 udelay(1);
4390 return tmp;
4393 static int
4394 srom_infoleaf_info(struct net_device *dev)
4396 struct de4x5_private *lp = netdev_priv(dev);
4397 int i, count;
4398 u_char *p;
4400 /* Find the infoleaf decoder function that matches this chipset */
4401 for (i=0; i<INFOLEAF_SIZE; i++) {
4402 if (lp->chipset == infoleaf_array[i].chipset) break;
4404 if (i == INFOLEAF_SIZE) {
4405 lp->useSROM = FALSE;
4406 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4407 dev->name);
4408 return -ENXIO;
4411 lp->infoleaf_fn = infoleaf_array[i].fn;
4413 /* Find the information offset that this function should use */
4414 count = *((u_char *)&lp->srom + 19);
4415 p = (u_char *)&lp->srom + 26;
4417 if (count > 1) {
4418 for (i=count; i; --i, p+=3) {
4419 if (lp->device == *p) break;
4421 if (i == 0) {
4422 lp->useSROM = FALSE;
4423 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4424 dev->name, lp->device);
4425 return -ENXIO;
4429 lp->infoleaf_offset = TWIDDLE(p+1);
4431 return 0;
4435 ** This routine loads any type 1 or 3 MII info into the mii device
4436 ** struct and executes any type 5 code to reset PHY devices for this
4437 ** controller.
4438 ** The info for the MII devices will be valid since the index used
4439 ** will follow the discovery process from MII address 1-31 then 0.
4441 static void
4442 srom_init(struct net_device *dev)
4444 struct de4x5_private *lp = netdev_priv(dev);
4445 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4446 u_char count;
4448 p+=2;
4449 if (lp->chipset == DC21140) {
4450 lp->cache.gepc = (*p++ | GEP_CTRL);
4451 gep_wr(lp->cache.gepc, dev);
4454 /* Block count */
4455 count = *p++;
4457 /* Jump the infoblocks to find types */
4458 for (;count; --count) {
4459 if (*p < 128) {
4460 p += COMPACT_LEN;
4461 } else if (*(p+1) == 5) {
4462 type5_infoblock(dev, 1, p);
4463 p += ((*p & BLOCK_LEN) + 1);
4464 } else if (*(p+1) == 4) {
4465 p += ((*p & BLOCK_LEN) + 1);
4466 } else if (*(p+1) == 3) {
4467 type3_infoblock(dev, 1, p);
4468 p += ((*p & BLOCK_LEN) + 1);
4469 } else if (*(p+1) == 2) {
4470 p += ((*p & BLOCK_LEN) + 1);
4471 } else if (*(p+1) == 1) {
4472 type1_infoblock(dev, 1, p);
4473 p += ((*p & BLOCK_LEN) + 1);
4474 } else {
4475 p += ((*p & BLOCK_LEN) + 1);
4479 return;
4483 ** A generic routine that writes GEP control, data and reset information
4484 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4486 static void
4487 srom_exec(struct net_device *dev, u_char *p)
4489 struct de4x5_private *lp = netdev_priv(dev);
4490 u_long iobase = dev->base_addr;
4491 u_char count = (p ? *p++ : 0);
4492 u_short *w = (u_short *)p;
4494 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4496 if (lp->chipset != DC21140) RESET_SIA;
4498 while (count--) {
4499 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4500 *p++ : TWIDDLE(w++)), dev);
4501 mdelay(2); /* 2ms per action */
4504 if (lp->chipset != DC21140) {
4505 outl(lp->cache.csr14, DE4X5_STRR);
4506 outl(lp->cache.csr13, DE4X5_SICR);
4509 return;
4513 ** Basically this function is a NOP since it will never be called,
4514 ** unless I implement the DC21041 SROM functions. There's no need
4515 ** since the existing code will be satisfactory for all boards.
4517 static int
4518 dc21041_infoleaf(struct net_device *dev)
4520 return DE4X5_AUTOSENSE_MS;
4523 static int
4524 dc21140_infoleaf(struct net_device *dev)
4526 struct de4x5_private *lp = netdev_priv(dev);
4527 u_char count = 0;
4528 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4529 int next_tick = DE4X5_AUTOSENSE_MS;
4531 /* Read the connection type */
4532 p+=2;
4534 /* GEP control */
4535 lp->cache.gepc = (*p++ | GEP_CTRL);
4537 /* Block count */
4538 count = *p++;
4540 /* Recursively figure out the info blocks */
4541 if (*p < 128) {
4542 next_tick = dc_infoblock[COMPACT](dev, count, p);
4543 } else {
4544 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4547 if (lp->tcount == count) {
4548 lp->media = NC;
4549 if (lp->media != lp->c_media) {
4550 de4x5_dbg_media(dev);
4551 lp->c_media = lp->media;
4553 lp->media = INIT;
4554 lp->tcount = 0;
4555 lp->tx_enable = FALSE;
4558 return next_tick & ~TIMER_CB;
4561 static int
4562 dc21142_infoleaf(struct net_device *dev)
4564 struct de4x5_private *lp = netdev_priv(dev);
4565 u_char count = 0;
4566 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4567 int next_tick = DE4X5_AUTOSENSE_MS;
4569 /* Read the connection type */
4570 p+=2;
4572 /* Block count */
4573 count = *p++;
4575 /* Recursively figure out the info blocks */
4576 if (*p < 128) {
4577 next_tick = dc_infoblock[COMPACT](dev, count, p);
4578 } else {
4579 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4582 if (lp->tcount == count) {
4583 lp->media = NC;
4584 if (lp->media != lp->c_media) {
4585 de4x5_dbg_media(dev);
4586 lp->c_media = lp->media;
4588 lp->media = INIT;
4589 lp->tcount = 0;
4590 lp->tx_enable = FALSE;
4593 return next_tick & ~TIMER_CB;
4596 static int
4597 dc21143_infoleaf(struct net_device *dev)
4599 struct de4x5_private *lp = netdev_priv(dev);
4600 u_char count = 0;
4601 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4602 int next_tick = DE4X5_AUTOSENSE_MS;
4604 /* Read the connection type */
4605 p+=2;
4607 /* Block count */
4608 count = *p++;
4610 /* Recursively figure out the info blocks */
4611 if (*p < 128) {
4612 next_tick = dc_infoblock[COMPACT](dev, count, p);
4613 } else {
4614 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4616 if (lp->tcount == count) {
4617 lp->media = NC;
4618 if (lp->media != lp->c_media) {
4619 de4x5_dbg_media(dev);
4620 lp->c_media = lp->media;
4622 lp->media = INIT;
4623 lp->tcount = 0;
4624 lp->tx_enable = FALSE;
4627 return next_tick & ~TIMER_CB;
4631 ** The compact infoblock is only designed for DC21140[A] chips, so
4632 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4634 static int
4635 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4637 struct de4x5_private *lp = netdev_priv(dev);
4638 u_char flags, csr6;
4640 /* Recursively figure out the info blocks */
4641 if (--count > lp->tcount) {
4642 if (*(p+COMPACT_LEN) < 128) {
4643 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4644 } else {
4645 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4649 if ((lp->media == INIT) && (lp->timeout < 0)) {
4650 lp->ibn = COMPACT;
4651 lp->active = 0;
4652 gep_wr(lp->cache.gepc, dev);
4653 lp->infoblock_media = (*p++) & COMPACT_MC;
4654 lp->cache.gep = *p++;
4655 csr6 = *p++;
4656 flags = *p++;
4658 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4659 lp->defMedium = (flags & 0x40) ? -1 : 0;
4660 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4661 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4662 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4663 lp->useMII = FALSE;
4665 de4x5_switch_mac_port(dev);
4668 return dc21140m_autoconf(dev);
4672 ** This block describes non MII media for the DC21140[A] only.
4674 static int
4675 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4677 struct de4x5_private *lp = netdev_priv(dev);
4678 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4680 /* Recursively figure out the info blocks */
4681 if (--count > lp->tcount) {
4682 if (*(p+len) < 128) {
4683 return dc_infoblock[COMPACT](dev, count, p+len);
4684 } else {
4685 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4689 if ((lp->media == INIT) && (lp->timeout < 0)) {
4690 lp->ibn = 0;
4691 lp->active = 0;
4692 gep_wr(lp->cache.gepc, dev);
4693 p+=2;
4694 lp->infoblock_media = (*p++) & BLOCK0_MC;
4695 lp->cache.gep = *p++;
4696 csr6 = *p++;
4697 flags = *p++;
4699 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4700 lp->defMedium = (flags & 0x40) ? -1 : 0;
4701 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4702 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4703 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4704 lp->useMII = FALSE;
4706 de4x5_switch_mac_port(dev);
4709 return dc21140m_autoconf(dev);
4712 /* These functions are under construction! */
4714 static int
4715 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4717 struct de4x5_private *lp = netdev_priv(dev);
4718 u_char len = (*p & BLOCK_LEN)+1;
4720 /* Recursively figure out the info blocks */
4721 if (--count > lp->tcount) {
4722 if (*(p+len) < 128) {
4723 return dc_infoblock[COMPACT](dev, count, p+len);
4724 } else {
4725 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4729 p += 2;
4730 if (lp->state == INITIALISED) {
4731 lp->ibn = 1;
4732 lp->active = *p++;
4733 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4734 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4735 lp->phy[lp->active].mc = TWIDDLE(p); p += 2;
4736 lp->phy[lp->active].ana = TWIDDLE(p); p += 2;
4737 lp->phy[lp->active].fdx = TWIDDLE(p); p += 2;
4738 lp->phy[lp->active].ttm = TWIDDLE(p);
4739 return 0;
4740 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4741 lp->ibn = 1;
4742 lp->active = *p;
4743 lp->infoblock_csr6 = OMR_MII_100;
4744 lp->useMII = TRUE;
4745 lp->infoblock_media = ANS;
4747 de4x5_switch_mac_port(dev);
4750 return dc21140m_autoconf(dev);
4753 static int
4754 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4756 struct de4x5_private *lp = netdev_priv(dev);
4757 u_char len = (*p & BLOCK_LEN)+1;
4759 /* Recursively figure out the info blocks */
4760 if (--count > lp->tcount) {
4761 if (*(p+len) < 128) {
4762 return dc_infoblock[COMPACT](dev, count, p+len);
4763 } else {
4764 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4768 if ((lp->media == INIT) && (lp->timeout < 0)) {
4769 lp->ibn = 2;
4770 lp->active = 0;
4771 p += 2;
4772 lp->infoblock_media = (*p) & MEDIA_CODE;
4774 if ((*p++) & EXT_FIELD) {
4775 lp->cache.csr13 = TWIDDLE(p); p += 2;
4776 lp->cache.csr14 = TWIDDLE(p); p += 2;
4777 lp->cache.csr15 = TWIDDLE(p); p += 2;
4778 } else {
4779 lp->cache.csr13 = CSR13;
4780 lp->cache.csr14 = CSR14;
4781 lp->cache.csr15 = CSR15;
4783 lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2;
4784 lp->cache.gep = ((s32)(TWIDDLE(p)) << 16);
4785 lp->infoblock_csr6 = OMR_SIA;
4786 lp->useMII = FALSE;
4788 de4x5_switch_mac_port(dev);
4791 return dc2114x_autoconf(dev);
4794 static int
4795 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4797 struct de4x5_private *lp = netdev_priv(dev);
4798 u_char len = (*p & BLOCK_LEN)+1;
4800 /* Recursively figure out the info blocks */
4801 if (--count > lp->tcount) {
4802 if (*(p+len) < 128) {
4803 return dc_infoblock[COMPACT](dev, count, p+len);
4804 } else {
4805 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4809 p += 2;
4810 if (lp->state == INITIALISED) {
4811 lp->ibn = 3;
4812 lp->active = *p++;
4813 if (MOTO_SROM_BUG) lp->active = 0;
4814 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4815 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4816 lp->phy[lp->active].mc = TWIDDLE(p); p += 2;
4817 lp->phy[lp->active].ana = TWIDDLE(p); p += 2;
4818 lp->phy[lp->active].fdx = TWIDDLE(p); p += 2;
4819 lp->phy[lp->active].ttm = TWIDDLE(p); p += 2;
4820 lp->phy[lp->active].mci = *p;
4821 return 0;
4822 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4823 lp->ibn = 3;
4824 lp->active = *p;
4825 if (MOTO_SROM_BUG) lp->active = 0;
4826 lp->infoblock_csr6 = OMR_MII_100;
4827 lp->useMII = TRUE;
4828 lp->infoblock_media = ANS;
4830 de4x5_switch_mac_port(dev);
4833 return dc2114x_autoconf(dev);
4836 static int
4837 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4839 struct de4x5_private *lp = netdev_priv(dev);
4840 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4842 /* Recursively figure out the info blocks */
4843 if (--count > lp->tcount) {
4844 if (*(p+len) < 128) {
4845 return dc_infoblock[COMPACT](dev, count, p+len);
4846 } else {
4847 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4851 if ((lp->media == INIT) && (lp->timeout < 0)) {
4852 lp->ibn = 4;
4853 lp->active = 0;
4854 p+=2;
4855 lp->infoblock_media = (*p++) & MEDIA_CODE;
4856 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4857 lp->cache.csr14 = CSR14;
4858 lp->cache.csr15 = CSR15;
4859 lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2;
4860 lp->cache.gep = ((s32)(TWIDDLE(p)) << 16); p += 2;
4861 csr6 = *p++;
4862 flags = *p++;
4864 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4865 lp->defMedium = (flags & 0x40) ? -1 : 0;
4866 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4867 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4868 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4869 lp->useMII = FALSE;
4871 de4x5_switch_mac_port(dev);
4874 return dc2114x_autoconf(dev);
4878 ** This block type provides information for resetting external devices
4879 ** (chips) through the General Purpose Register.
4881 static int
4882 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4884 struct de4x5_private *lp = netdev_priv(dev);
4885 u_char len = (*p & BLOCK_LEN)+1;
4887 /* Recursively figure out the info blocks */
4888 if (--count > lp->tcount) {
4889 if (*(p+len) < 128) {
4890 return dc_infoblock[COMPACT](dev, count, p+len);
4891 } else {
4892 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4896 /* Must be initializing to run this code */
4897 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4898 p+=2;
4899 lp->rst = p;
4900 srom_exec(dev, lp->rst);
4903 return DE4X5_AUTOSENSE_MS;
4907 ** MII Read/Write
4910 static int
4911 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4913 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4914 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4915 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4916 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4917 mii_address(phyreg, ioaddr); /* PHY Register to read */
4918 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4920 return mii_rdata(ioaddr); /* Read data */
4923 static void
4924 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4926 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4927 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4928 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4929 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4930 mii_address(phyreg, ioaddr); /* PHY Register to write */
4931 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4932 data = mii_swap(data, 16); /* Swap data bit ordering */
4933 mii_wdata(data, 16, ioaddr); /* Write data */
4935 return;
4938 static int
4939 mii_rdata(u_long ioaddr)
4941 int i;
4942 s32 tmp = 0;
4944 for (i=0; i<16; i++) {
4945 tmp <<= 1;
4946 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4949 return tmp;
4952 static void
4953 mii_wdata(int data, int len, u_long ioaddr)
4955 int i;
4957 for (i=0; i<len; i++) {
4958 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4959 data >>= 1;
4962 return;
4965 static void
4966 mii_address(u_char addr, u_long ioaddr)
4968 int i;
4970 addr = mii_swap(addr, 5);
4971 for (i=0; i<5; i++) {
4972 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4973 addr >>= 1;
4976 return;
4979 static void
4980 mii_ta(u_long rw, u_long ioaddr)
4982 if (rw == MII_STWR) {
4983 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4984 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4985 } else {
4986 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4989 return;
4992 static int
4993 mii_swap(int data, int len)
4995 int i, tmp = 0;
4997 for (i=0; i<len; i++) {
4998 tmp <<= 1;
4999 tmp |= (data & 1);
5000 data >>= 1;
5003 return tmp;
5006 static void
5007 sendto_mii(u32 command, int data, u_long ioaddr)
5009 u32 j;
5011 j = (data & 1) << 17;
5012 outl(command | j, ioaddr);
5013 udelay(1);
5014 outl(command | MII_MDC | j, ioaddr);
5015 udelay(1);
5017 return;
5020 static int
5021 getfrom_mii(u32 command, u_long ioaddr)
5023 outl(command, ioaddr);
5024 udelay(1);
5025 outl(command | MII_MDC, ioaddr);
5026 udelay(1);
5028 return ((inl(ioaddr) >> 19) & 1);
5032 ** Here's 3 ways to calculate the OUI from the ID registers.
5034 static int
5035 mii_get_oui(u_char phyaddr, u_long ioaddr)
5038 union {
5039 u_short reg;
5040 u_char breg[2];
5041 } a;
5042 int i, r2, r3, ret=0;*/
5043 int r2, r3;
5045 /* Read r2 and r3 */
5046 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
5047 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
5048 /* SEEQ and Cypress way * /
5049 / * Shuffle r2 and r3 * /
5050 a.reg=0;
5051 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5052 r2 = ((r2>>2)&0x3fff);
5054 / * Bit reverse r3 * /
5055 for (i=0;i<8;i++) {
5056 ret<<=1;
5057 ret |= (r3&1);
5058 r3>>=1;
5061 / * Bit reverse r2 * /
5062 for (i=0;i<16;i++) {
5063 a.reg<<=1;
5064 a.reg |= (r2&1);
5065 r2>>=1;
5068 / * Swap r2 bytes * /
5069 i=a.breg[0];
5070 a.breg[0]=a.breg[1];
5071 a.breg[1]=i;
5073 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5074 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5075 return r2; /* (I did it) My way */
5079 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5081 static int
5082 mii_get_phy(struct net_device *dev)
5084 struct de4x5_private *lp = netdev_priv(dev);
5085 u_long iobase = dev->base_addr;
5086 int i, j, k, n, limit=sizeof(phy_info)/sizeof(struct phy_table);
5087 int id;
5089 lp->active = 0;
5090 lp->useMII = TRUE;
5092 /* Search the MII address space for possible PHY devices */
5093 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
5094 lp->phy[lp->active].addr = i;
5095 if (i==0) n++; /* Count cycles */
5096 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5097 id = mii_get_oui(i, DE4X5_MII);
5098 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5099 for (j=0; j<limit; j++) { /* Search PHY table */
5100 if (id != phy_info[j].id) continue; /* ID match? */
5101 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5102 if (k < DE4X5_MAX_PHY) {
5103 memcpy((char *)&lp->phy[k],
5104 (char *)&phy_info[j], sizeof(struct phy_table));
5105 lp->phy[k].addr = i;
5106 lp->mii_cnt++;
5107 lp->active++;
5108 } else {
5109 goto purgatory; /* Stop the search */
5111 break;
5113 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5114 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5115 lp->phy[k].addr = i;
5116 lp->phy[k].id = id;
5117 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5118 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5119 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5120 lp->mii_cnt++;
5121 lp->active++;
5122 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name);
5123 j = de4x5_debug;
5124 de4x5_debug |= DEBUG_MII;
5125 de4x5_dbg_mii(dev, k);
5126 de4x5_debug = j;
5127 printk("\n");
5130 purgatory:
5131 lp->active = 0;
5132 if (lp->phy[0].id) { /* Reset the PHY devices */
5133 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
5134 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5135 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5137 de4x5_dbg_mii(dev, k);
5140 if (!lp->mii_cnt) lp->useMII = FALSE;
5142 return lp->mii_cnt;
5145 static char *
5146 build_setup_frame(struct net_device *dev, int mode)
5148 struct de4x5_private *lp = netdev_priv(dev);
5149 int i;
5150 char *pa = lp->setup_frame;
5152 /* Initialise the setup frame */
5153 if (mode == ALL) {
5154 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5157 if (lp->setup_f == HASH_PERF) {
5158 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5159 *(pa + i) = dev->dev_addr[i]; /* Host address */
5160 if (i & 0x01) pa += 2;
5162 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5163 } else {
5164 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5165 *(pa + (i&1)) = dev->dev_addr[i];
5166 if (i & 0x01) pa += 4;
5168 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5169 *(pa + (i&1)) = (char) 0xff;
5170 if (i & 0x01) pa += 4;
5174 return pa; /* Points to the next entry */
5177 static void
5178 enable_ast(struct net_device *dev, u32 time_out)
5180 timeout(dev, (void *)&de4x5_ast, (u_long)dev, time_out);
5182 return;
5185 static void
5186 disable_ast(struct net_device *dev)
5188 struct de4x5_private *lp = netdev_priv(dev);
5190 del_timer(&lp->timer);
5192 return;
5195 static long
5196 de4x5_switch_mac_port(struct net_device *dev)
5198 struct de4x5_private *lp = netdev_priv(dev);
5199 u_long iobase = dev->base_addr;
5200 s32 omr;
5202 STOP_DE4X5;
5204 /* Assert the OMR_PS bit in CSR6 */
5205 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5206 OMR_FDX));
5207 omr |= lp->infoblock_csr6;
5208 if (omr & OMR_PS) omr |= OMR_HBD;
5209 outl(omr, DE4X5_OMR);
5211 /* Soft Reset */
5212 RESET_DE4X5;
5214 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5215 if (lp->chipset == DC21140) {
5216 gep_wr(lp->cache.gepc, dev);
5217 gep_wr(lp->cache.gep, dev);
5218 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5219 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5222 /* Restore CSR6 */
5223 outl(omr, DE4X5_OMR);
5225 /* Reset CSR8 */
5226 inl(DE4X5_MFC);
5228 return omr;
5231 static void
5232 gep_wr(s32 data, struct net_device *dev)
5234 struct de4x5_private *lp = netdev_priv(dev);
5235 u_long iobase = dev->base_addr;
5237 if (lp->chipset == DC21140) {
5238 outl(data, DE4X5_GEP);
5239 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5240 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5243 return;
5246 static int
5247 gep_rd(struct net_device *dev)
5249 struct de4x5_private *lp = netdev_priv(dev);
5250 u_long iobase = dev->base_addr;
5252 if (lp->chipset == DC21140) {
5253 return inl(DE4X5_GEP);
5254 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5255 return (inl(DE4X5_SIGR) & 0x000fffff);
5258 return 0;
5261 static void
5262 timeout(struct net_device *dev, void (*fn)(u_long data), u_long data, u_long msec)
5264 struct de4x5_private *lp = netdev_priv(dev);
5265 int dt;
5267 /* First, cancel any pending timer events */
5268 del_timer(&lp->timer);
5270 /* Convert msec to ticks */
5271 dt = (msec * HZ) / 1000;
5272 if (dt==0) dt=1;
5274 /* Set up timer */
5275 init_timer(&lp->timer);
5276 lp->timer.expires = jiffies + dt;
5277 lp->timer.function = fn;
5278 lp->timer.data = data;
5279 add_timer(&lp->timer);
5281 return;
5284 static void
5285 yawn(struct net_device *dev, int state)
5287 struct de4x5_private *lp = netdev_priv(dev);
5288 u_long iobase = dev->base_addr;
5290 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5292 if(lp->bus == EISA) {
5293 switch(state) {
5294 case WAKEUP:
5295 outb(WAKEUP, PCI_CFPM);
5296 mdelay(10);
5297 break;
5299 case SNOOZE:
5300 outb(SNOOZE, PCI_CFPM);
5301 break;
5303 case SLEEP:
5304 outl(0, DE4X5_SICR);
5305 outb(SLEEP, PCI_CFPM);
5306 break;
5308 } else {
5309 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5310 switch(state) {
5311 case WAKEUP:
5312 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5313 mdelay(10);
5314 break;
5316 case SNOOZE:
5317 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5318 break;
5320 case SLEEP:
5321 outl(0, DE4X5_SICR);
5322 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5323 break;
5327 return;
5330 static void
5331 de4x5_parse_params(struct net_device *dev)
5333 struct de4x5_private *lp = netdev_priv(dev);
5334 char *p, *q, t;
5336 lp->params.fdx = 0;
5337 lp->params.autosense = AUTO;
5339 if (args == NULL) return;
5341 if ((p = strstr(args, dev->name))) {
5342 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5343 t = *q;
5344 *q = '\0';
5346 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5348 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5349 if (strstr(p, "TP")) {
5350 lp->params.autosense = TP;
5351 } else if (strstr(p, "TP_NW")) {
5352 lp->params.autosense = TP_NW;
5353 } else if (strstr(p, "BNC")) {
5354 lp->params.autosense = BNC;
5355 } else if (strstr(p, "AUI")) {
5356 lp->params.autosense = AUI;
5357 } else if (strstr(p, "BNC_AUI")) {
5358 lp->params.autosense = BNC;
5359 } else if (strstr(p, "10Mb")) {
5360 lp->params.autosense = _10Mb;
5361 } else if (strstr(p, "100Mb")) {
5362 lp->params.autosense = _100Mb;
5363 } else if (strstr(p, "AUTO")) {
5364 lp->params.autosense = AUTO;
5367 *q = t;
5370 return;
5373 static void
5374 de4x5_dbg_open(struct net_device *dev)
5376 struct de4x5_private *lp = netdev_priv(dev);
5377 int i;
5379 if (de4x5_debug & DEBUG_OPEN) {
5380 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5381 printk("\tphysical address: ");
5382 for (i=0;i<6;i++) {
5383 printk("%2.2x:",(short)dev->dev_addr[i]);
5385 printk("\n");
5386 printk("Descriptor head addresses:\n");
5387 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5388 printk("Descriptor addresses:\nRX: ");
5389 for (i=0;i<lp->rxRingSize-1;i++){
5390 if (i < 3) {
5391 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5394 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5395 printk("TX: ");
5396 for (i=0;i<lp->txRingSize-1;i++){
5397 if (i < 3) {
5398 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5401 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5402 printk("Descriptor buffers:\nRX: ");
5403 for (i=0;i<lp->rxRingSize-1;i++){
5404 if (i < 3) {
5405 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5408 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5409 printk("TX: ");
5410 for (i=0;i<lp->txRingSize-1;i++){
5411 if (i < 3) {
5412 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5415 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5416 printk("Ring size: \nRX: %d\nTX: %d\n",
5417 (short)lp->rxRingSize,
5418 (short)lp->txRingSize);
5421 return;
5424 static void
5425 de4x5_dbg_mii(struct net_device *dev, int k)
5427 struct de4x5_private *lp = netdev_priv(dev);
5428 u_long iobase = dev->base_addr;
5430 if (de4x5_debug & DEBUG_MII) {
5431 printk("\nMII device address: %d\n", lp->phy[k].addr);
5432 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5433 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5434 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5435 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5436 if (lp->phy[k].id != BROADCOM_T4) {
5437 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5438 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5440 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5441 if (lp->phy[k].id != BROADCOM_T4) {
5442 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5443 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5444 } else {
5445 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5449 return;
5452 static void
5453 de4x5_dbg_media(struct net_device *dev)
5455 struct de4x5_private *lp = netdev_priv(dev);
5457 if (lp->media != lp->c_media) {
5458 if (de4x5_debug & DEBUG_MEDIA) {
5459 printk("%s: media is %s%s\n", dev->name,
5460 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5461 (lp->media == TP ? "TP" :
5462 (lp->media == ANS ? "TP/Nway" :
5463 (lp->media == BNC ? "BNC" :
5464 (lp->media == AUI ? "AUI" :
5465 (lp->media == BNC_AUI ? "BNC/AUI" :
5466 (lp->media == EXT_SIA ? "EXT SIA" :
5467 (lp->media == _100Mb ? "100Mb/s" :
5468 (lp->media == _10Mb ? "10Mb/s" :
5469 "???"
5470 ))))))))), (lp->fdx?" full duplex.":"."));
5472 lp->c_media = lp->media;
5475 return;
5478 static void
5479 de4x5_dbg_srom(struct de4x5_srom *p)
5481 int i;
5483 if (de4x5_debug & DEBUG_SROM) {
5484 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5485 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5486 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5487 printk("SROM version: %02x\n", (u_char)(p->version));
5488 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5490 printk("Hardware Address: ");
5491 for (i=0;i<ETH_ALEN-1;i++) {
5492 printk("%02x:", (u_char)*(p->ieee_addr+i));
5494 printk("%02x\n", (u_char)*(p->ieee_addr+i));
5495 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5496 for (i=0; i<64; i++) {
5497 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5501 return;
5504 static void
5505 de4x5_dbg_rx(struct sk_buff *skb, int len)
5507 int i, j;
5509 if (de4x5_debug & DEBUG_RX) {
5510 printk("R: %02x:%02x:%02x:%02x:%02x:%02x <- %02x:%02x:%02x:%02x:%02x:%02x len/SAP:%02x%02x [%d]\n",
5511 (u_char)skb->data[0],
5512 (u_char)skb->data[1],
5513 (u_char)skb->data[2],
5514 (u_char)skb->data[3],
5515 (u_char)skb->data[4],
5516 (u_char)skb->data[5],
5517 (u_char)skb->data[6],
5518 (u_char)skb->data[7],
5519 (u_char)skb->data[8],
5520 (u_char)skb->data[9],
5521 (u_char)skb->data[10],
5522 (u_char)skb->data[11],
5523 (u_char)skb->data[12],
5524 (u_char)skb->data[13],
5525 len);
5526 for (j=0; len>0;j+=16, len-=16) {
5527 printk(" %03x: ",j);
5528 for (i=0; i<16 && i<len; i++) {
5529 printk("%02x ",(u_char)skb->data[i+j]);
5531 printk("\n");
5535 return;
5539 ** Perform IOCTL call functions here. Some are privileged operations and the
5540 ** effective uid is checked in those cases. In the normal course of events
5541 ** this function is only used for my testing.
5543 static int
5544 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5546 struct de4x5_private *lp = netdev_priv(dev);
5547 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5548 u_long iobase = dev->base_addr;
5549 int i, j, status = 0;
5550 s32 omr;
5551 union {
5552 u8 addr[144];
5553 u16 sval[72];
5554 u32 lval[36];
5555 } tmp;
5556 u_long flags = 0;
5558 switch(ioc->cmd) {
5559 case DE4X5_GET_HWADDR: /* Get the hardware address */
5560 ioc->len = ETH_ALEN;
5561 for (i=0; i<ETH_ALEN; i++) {
5562 tmp.addr[i] = dev->dev_addr[i];
5564 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5565 break;
5567 case DE4X5_SET_HWADDR: /* Set the hardware address */
5568 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5569 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5570 if (netif_queue_stopped(dev))
5571 return -EBUSY;
5572 netif_stop_queue(dev);
5573 for (i=0; i<ETH_ALEN; i++) {
5574 dev->dev_addr[i] = tmp.addr[i];
5576 build_setup_frame(dev, PHYS_ADDR_ONLY);
5577 /* Set up the descriptor and give ownership to the card */
5578 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5579 SETUP_FRAME_LEN, (struct sk_buff *)1);
5580 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5581 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5582 netif_wake_queue(dev); /* Unlock the TX ring */
5583 break;
5585 case DE4X5_SET_PROM: /* Set Promiscuous Mode */
5586 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5587 omr = inl(DE4X5_OMR);
5588 omr |= OMR_PR;
5589 outl(omr, DE4X5_OMR);
5590 dev->flags |= IFF_PROMISC;
5591 break;
5593 case DE4X5_CLR_PROM: /* Clear Promiscuous Mode */
5594 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5595 omr = inl(DE4X5_OMR);
5596 omr &= ~OMR_PR;
5597 outl(omr, DE4X5_OMR);
5598 dev->flags &= ~IFF_PROMISC;
5599 break;
5601 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5602 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5603 printk("%s: Boo!\n", dev->name);
5604 break;
5606 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5607 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5608 omr = inl(DE4X5_OMR);
5609 omr |= OMR_PM;
5610 outl(omr, DE4X5_OMR);
5611 break;
5613 case DE4X5_GET_STATS: /* Get the driver statistics */
5615 struct pkt_stats statbuf;
5616 ioc->len = sizeof(statbuf);
5617 spin_lock_irqsave(&lp->lock, flags);
5618 memcpy(&statbuf, &lp->pktStats, ioc->len);
5619 spin_unlock_irqrestore(&lp->lock, flags);
5620 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5621 return -EFAULT;
5622 break;
5624 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5625 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5626 spin_lock_irqsave(&lp->lock, flags);
5627 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5628 spin_unlock_irqrestore(&lp->lock, flags);
5629 break;
5631 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5632 tmp.addr[0] = inl(DE4X5_OMR);
5633 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5634 break;
5636 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5637 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5638 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5639 outl(tmp.addr[0], DE4X5_OMR);
5640 break;
5642 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5643 j = 0;
5644 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5645 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5646 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5647 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5648 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5649 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5650 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5651 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5652 ioc->len = j;
5653 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5654 break;
5656 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5658 case DE4X5_DUMP:
5659 j = 0;
5660 tmp.addr[j++] = dev->irq;
5661 for (i=0; i<ETH_ALEN; i++) {
5662 tmp.addr[j++] = dev->dev_addr[i];
5664 tmp.addr[j++] = lp->rxRingSize;
5665 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5666 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5668 for (i=0;i<lp->rxRingSize-1;i++){
5669 if (i < 3) {
5670 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5673 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5674 for (i=0;i<lp->txRingSize-1;i++){
5675 if (i < 3) {
5676 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5679 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5681 for (i=0;i<lp->rxRingSize-1;i++){
5682 if (i < 3) {
5683 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5686 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5687 for (i=0;i<lp->txRingSize-1;i++){
5688 if (i < 3) {
5689 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5692 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5694 for (i=0;i<lp->rxRingSize;i++){
5695 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5697 for (i=0;i<lp->txRingSize;i++){
5698 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5701 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5702 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5703 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5704 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5705 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5706 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5707 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5708 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5709 tmp.lval[j>>2] = lp->chipset; j+=4;
5710 if (lp->chipset == DC21140) {
5711 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5712 } else {
5713 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5714 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5715 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5716 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5718 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5719 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5720 tmp.lval[j>>2] = lp->active; j+=4;
5721 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5722 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5723 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5724 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5725 if (lp->phy[lp->active].id != BROADCOM_T4) {
5726 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5727 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5729 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5730 if (lp->phy[lp->active].id != BROADCOM_T4) {
5731 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5732 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5733 } else {
5734 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5738 tmp.addr[j++] = lp->txRingSize;
5739 tmp.addr[j++] = netif_queue_stopped(dev);
5741 ioc->len = j;
5742 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5743 break;
5746 default:
5747 return -EOPNOTSUPP;
5750 return status;
5753 static int __init de4x5_module_init (void)
5755 int err = 0;
5757 #ifdef CONFIG_PCI
5758 err = pci_module_init (&de4x5_pci_driver);
5759 #endif
5760 #ifdef CONFIG_EISA
5761 err |= eisa_driver_register (&de4x5_eisa_driver);
5762 #endif
5764 return err;
5767 static void __exit de4x5_module_exit (void)
5769 #ifdef CONFIG_PCI
5770 pci_unregister_driver (&de4x5_pci_driver);
5771 #endif
5772 #ifdef CONFIG_EISA
5773 eisa_driver_unregister (&de4x5_eisa_driver);
5774 #endif
5777 module_init (de4x5_module_init);
5778 module_exit (de4x5_module_exit);