[XFRM]: skb_cow_data() does not set proper owner for new skbs.
[linux-2.6/verdex.git] / drivers / oprofile / buffer_sync.c
blob55720dc6ec43feb06b3b1edecb8aca6716cea578
1 /**
2 * @file buffer_sync.c
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
19 * objects.
22 #include <linux/mm.h>
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
28 #include <linux/fs.h>
30 #include "oprofile_stats.h"
31 #include "event_buffer.h"
32 #include "cpu_buffer.h"
33 #include "buffer_sync.h"
35 static LIST_HEAD(dying_tasks);
36 static LIST_HEAD(dead_tasks);
37 static cpumask_t marked_cpus = CPU_MASK_NONE;
38 static DEFINE_SPINLOCK(task_mortuary);
39 static void process_task_mortuary(void);
42 /* Take ownership of the task struct and place it on the
43 * list for processing. Only after two full buffer syncs
44 * does the task eventually get freed, because by then
45 * we are sure we will not reference it again.
47 static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
49 struct task_struct * task = data;
50 spin_lock(&task_mortuary);
51 list_add(&task->tasks, &dying_tasks);
52 spin_unlock(&task_mortuary);
53 return NOTIFY_OK;
57 /* The task is on its way out. A sync of the buffer means we can catch
58 * any remaining samples for this task.
60 static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
62 /* To avoid latency problems, we only process the current CPU,
63 * hoping that most samples for the task are on this CPU
65 sync_buffer(_smp_processor_id());
66 return 0;
70 /* The task is about to try a do_munmap(). We peek at what it's going to
71 * do, and if it's an executable region, process the samples first, so
72 * we don't lose any. This does not have to be exact, it's a QoI issue
73 * only.
75 static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
77 unsigned long addr = (unsigned long)data;
78 struct mm_struct * mm = current->mm;
79 struct vm_area_struct * mpnt;
81 down_read(&mm->mmap_sem);
83 mpnt = find_vma(mm, addr);
84 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
85 up_read(&mm->mmap_sem);
86 /* To avoid latency problems, we only process the current CPU,
87 * hoping that most samples for the task are on this CPU
89 sync_buffer(_smp_processor_id());
90 return 0;
93 up_read(&mm->mmap_sem);
94 return 0;
98 /* We need to be told about new modules so we don't attribute to a previously
99 * loaded module, or drop the samples on the floor.
101 static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
103 #ifdef CONFIG_MODULES
104 if (val != MODULE_STATE_COMING)
105 return 0;
107 /* FIXME: should we process all CPU buffers ? */
108 down(&buffer_sem);
109 add_event_entry(ESCAPE_CODE);
110 add_event_entry(MODULE_LOADED_CODE);
111 up(&buffer_sem);
112 #endif
113 return 0;
117 static struct notifier_block task_free_nb = {
118 .notifier_call = task_free_notify,
121 static struct notifier_block task_exit_nb = {
122 .notifier_call = task_exit_notify,
125 static struct notifier_block munmap_nb = {
126 .notifier_call = munmap_notify,
129 static struct notifier_block module_load_nb = {
130 .notifier_call = module_load_notify,
134 static void end_sync(void)
136 end_cpu_work();
137 /* make sure we don't leak task structs */
138 process_task_mortuary();
139 process_task_mortuary();
143 int sync_start(void)
145 int err;
147 start_cpu_work();
149 err = task_handoff_register(&task_free_nb);
150 if (err)
151 goto out1;
152 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
153 if (err)
154 goto out2;
155 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
156 if (err)
157 goto out3;
158 err = register_module_notifier(&module_load_nb);
159 if (err)
160 goto out4;
162 out:
163 return err;
164 out4:
165 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
166 out3:
167 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
168 out2:
169 task_handoff_unregister(&task_free_nb);
170 out1:
171 end_sync();
172 goto out;
176 void sync_stop(void)
178 unregister_module_notifier(&module_load_nb);
179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
180 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
181 task_handoff_unregister(&task_free_nb);
182 end_sync();
186 /* Optimisation. We can manage without taking the dcookie sem
187 * because we cannot reach this code without at least one
188 * dcookie user still being registered (namely, the reader
189 * of the event buffer). */
190 static inline unsigned long fast_get_dcookie(struct dentry * dentry,
191 struct vfsmount * vfsmnt)
193 unsigned long cookie;
195 if (dentry->d_cookie)
196 return (unsigned long)dentry;
197 get_dcookie(dentry, vfsmnt, &cookie);
198 return cookie;
202 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
203 * which corresponds loosely to "application name". This is
204 * not strictly necessary but allows oprofile to associate
205 * shared-library samples with particular applications
207 static unsigned long get_exec_dcookie(struct mm_struct * mm)
209 unsigned long cookie = 0;
210 struct vm_area_struct * vma;
212 if (!mm)
213 goto out;
215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
216 if (!vma->vm_file)
217 continue;
218 if (!(vma->vm_flags & VM_EXECUTABLE))
219 continue;
220 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
221 vma->vm_file->f_vfsmnt);
222 break;
225 out:
226 return cookie;
230 /* Convert the EIP value of a sample into a persistent dentry/offset
231 * pair that can then be added to the global event buffer. We make
232 * sure to do this lookup before a mm->mmap modification happens so
233 * we don't lose track.
235 static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
237 unsigned long cookie = 0;
238 struct vm_area_struct * vma;
240 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
242 if (!vma->vm_file)
243 continue;
245 if (addr < vma->vm_start || addr >= vma->vm_end)
246 continue;
248 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
249 vma->vm_file->f_vfsmnt);
250 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - vma->vm_start;
251 break;
254 return cookie;
258 static unsigned long last_cookie = ~0UL;
260 static void add_cpu_switch(int i)
262 add_event_entry(ESCAPE_CODE);
263 add_event_entry(CPU_SWITCH_CODE);
264 add_event_entry(i);
265 last_cookie = ~0UL;
268 static void add_kernel_ctx_switch(unsigned int in_kernel)
270 add_event_entry(ESCAPE_CODE);
271 if (in_kernel)
272 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
273 else
274 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
277 static void
278 add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
280 add_event_entry(ESCAPE_CODE);
281 add_event_entry(CTX_SWITCH_CODE);
282 add_event_entry(task->pid);
283 add_event_entry(cookie);
284 /* Another code for daemon back-compat */
285 add_event_entry(ESCAPE_CODE);
286 add_event_entry(CTX_TGID_CODE);
287 add_event_entry(task->tgid);
291 static void add_cookie_switch(unsigned long cookie)
293 add_event_entry(ESCAPE_CODE);
294 add_event_entry(COOKIE_SWITCH_CODE);
295 add_event_entry(cookie);
299 static void add_trace_begin(void)
301 add_event_entry(ESCAPE_CODE);
302 add_event_entry(TRACE_BEGIN_CODE);
306 static void add_sample_entry(unsigned long offset, unsigned long event)
308 add_event_entry(offset);
309 add_event_entry(event);
313 static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
315 unsigned long cookie;
316 off_t offset;
318 cookie = lookup_dcookie(mm, s->eip, &offset);
320 if (!cookie) {
321 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
322 return 0;
325 if (cookie != last_cookie) {
326 add_cookie_switch(cookie);
327 last_cookie = cookie;
330 add_sample_entry(offset, s->event);
332 return 1;
336 /* Add a sample to the global event buffer. If possible the
337 * sample is converted into a persistent dentry/offset pair
338 * for later lookup from userspace.
340 static int
341 add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
343 if (in_kernel) {
344 add_sample_entry(s->eip, s->event);
345 return 1;
346 } else if (mm) {
347 return add_us_sample(mm, s);
348 } else {
349 atomic_inc(&oprofile_stats.sample_lost_no_mm);
351 return 0;
355 static void release_mm(struct mm_struct * mm)
357 if (!mm)
358 return;
359 up_read(&mm->mmap_sem);
360 mmput(mm);
364 static struct mm_struct * take_tasks_mm(struct task_struct * task)
366 struct mm_struct * mm = get_task_mm(task);
367 if (mm)
368 down_read(&mm->mmap_sem);
369 return mm;
373 static inline int is_code(unsigned long val)
375 return val == ESCAPE_CODE;
379 /* "acquire" as many cpu buffer slots as we can */
380 static unsigned long get_slots(struct oprofile_cpu_buffer * b)
382 unsigned long head = b->head_pos;
383 unsigned long tail = b->tail_pos;
386 * Subtle. This resets the persistent last_task
387 * and in_kernel values used for switching notes.
388 * BUT, there is a small window between reading
389 * head_pos, and this call, that means samples
390 * can appear at the new head position, but not
391 * be prefixed with the notes for switching
392 * kernel mode or a task switch. This small hole
393 * can lead to mis-attribution or samples where
394 * we don't know if it's in the kernel or not,
395 * at the start of an event buffer.
397 cpu_buffer_reset(b);
399 if (head >= tail)
400 return head - tail;
402 return head + (b->buffer_size - tail);
406 static void increment_tail(struct oprofile_cpu_buffer * b)
408 unsigned long new_tail = b->tail_pos + 1;
410 rmb();
412 if (new_tail < b->buffer_size)
413 b->tail_pos = new_tail;
414 else
415 b->tail_pos = 0;
419 /* Move tasks along towards death. Any tasks on dead_tasks
420 * will definitely have no remaining references in any
421 * CPU buffers at this point, because we use two lists,
422 * and to have reached the list, it must have gone through
423 * one full sync already.
425 static void process_task_mortuary(void)
427 struct list_head * pos;
428 struct list_head * pos2;
429 struct task_struct * task;
431 spin_lock(&task_mortuary);
433 list_for_each_safe(pos, pos2, &dead_tasks) {
434 task = list_entry(pos, struct task_struct, tasks);
435 list_del(&task->tasks);
436 free_task(task);
439 list_for_each_safe(pos, pos2, &dying_tasks) {
440 task = list_entry(pos, struct task_struct, tasks);
441 list_del(&task->tasks);
442 list_add_tail(&task->tasks, &dead_tasks);
445 spin_unlock(&task_mortuary);
449 static void mark_done(int cpu)
451 int i;
453 cpu_set(cpu, marked_cpus);
455 for_each_online_cpu(i) {
456 if (!cpu_isset(i, marked_cpus))
457 return;
460 /* All CPUs have been processed at least once,
461 * we can process the mortuary once
463 process_task_mortuary();
465 cpus_clear(marked_cpus);
469 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
470 * traversal, the code switch to sb_sample_start at first kernel enter/exit
471 * switch so we need a fifth state and some special handling in sync_buffer()
473 typedef enum {
474 sb_bt_ignore = -2,
475 sb_buffer_start,
476 sb_bt_start,
477 sb_sample_start,
478 } sync_buffer_state;
480 /* Sync one of the CPU's buffers into the global event buffer.
481 * Here we need to go through each batch of samples punctuated
482 * by context switch notes, taking the task's mmap_sem and doing
483 * lookup in task->mm->mmap to convert EIP into dcookie/offset
484 * value.
486 void sync_buffer(int cpu)
488 struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
489 struct mm_struct *mm = NULL;
490 struct task_struct * new;
491 unsigned long cookie = 0;
492 int in_kernel = 1;
493 unsigned int i;
494 sync_buffer_state state = sb_buffer_start;
495 unsigned long available;
497 down(&buffer_sem);
499 add_cpu_switch(cpu);
501 /* Remember, only we can modify tail_pos */
503 available = get_slots(cpu_buf);
505 for (i = 0; i < available; ++i) {
506 struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
508 if (is_code(s->eip)) {
509 if (s->event <= CPU_IS_KERNEL) {
510 /* kernel/userspace switch */
511 in_kernel = s->event;
512 if (state == sb_buffer_start)
513 state = sb_sample_start;
514 add_kernel_ctx_switch(s->event);
515 } else if (s->event == CPU_TRACE_BEGIN) {
516 state = sb_bt_start;
517 add_trace_begin();
518 } else {
519 struct mm_struct * oldmm = mm;
521 /* userspace context switch */
522 new = (struct task_struct *)s->event;
524 release_mm(oldmm);
525 mm = take_tasks_mm(new);
526 if (mm != oldmm)
527 cookie = get_exec_dcookie(mm);
528 add_user_ctx_switch(new, cookie);
530 } else {
531 if (state >= sb_bt_start &&
532 !add_sample(mm, s, in_kernel)) {
533 if (state == sb_bt_start) {
534 state = sb_bt_ignore;
535 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
540 increment_tail(cpu_buf);
542 release_mm(mm);
544 mark_done(cpu);
546 up(&buffer_sem);