1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com>
25 ***********************************************************************/
26 #include <linux/delay.h> /* For udelay */
27 #include <linux/serial_reg.h> /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
32 #include "jsm.h" /* Driver main header file */
34 static u32 jsm_offset_table
[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
37 * This function allows calls to ensure that all outstanding
38 * PCI writes have been completed, by doing a PCI read against
39 * a non-destructive, read-only location on the Neo card.
41 * In this case, we are reading the DVID (Read-only Device Identification)
42 * value of the Neo card.
44 static inline void neo_pci_posting_flush(struct jsm_board
*bd
)
46 readb(bd
->re_map_membase
+ 0x8D);
49 static void neo_set_cts_flow_control(struct jsm_channel
*ch
)
51 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
52 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
54 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Setting CTSFLOW\n");
56 /* Turn on auto CTS flow control */
57 ier
|= (UART_17158_IER_CTSDSR
);
58 efr
|= (UART_17158_EFR_ECB
| UART_17158_EFR_CTSDSR
);
60 /* Turn off auto Xon flow control */
61 efr
&= ~(UART_17158_EFR_IXON
);
63 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
64 writeb(0, &ch
->ch_neo_uart
->efr
);
66 /* Turn on UART enhanced bits */
67 writeb(efr
, &ch
->ch_neo_uart
->efr
);
69 /* Turn on table D, with 8 char hi/low watermarks */
70 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_4DELAY
), &ch
->ch_neo_uart
->fctr
);
72 /* Feed the UART our trigger levels */
73 writeb(8, &ch
->ch_neo_uart
->tfifo
);
76 writeb(ier
, &ch
->ch_neo_uart
->ier
);
79 static void neo_set_rts_flow_control(struct jsm_channel
*ch
)
81 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
82 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
84 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Setting RTSFLOW\n");
86 /* Turn on auto RTS flow control */
87 ier
|= (UART_17158_IER_RTSDTR
);
88 efr
|= (UART_17158_EFR_ECB
| UART_17158_EFR_RTSDTR
);
90 /* Turn off auto Xoff flow control */
91 ier
&= ~(UART_17158_IER_XOFF
);
92 efr
&= ~(UART_17158_EFR_IXOFF
);
94 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
95 writeb(0, &ch
->ch_neo_uart
->efr
);
97 /* Turn on UART enhanced bits */
98 writeb(efr
, &ch
->ch_neo_uart
->efr
);
100 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_4DELAY
), &ch
->ch_neo_uart
->fctr
);
101 ch
->ch_r_watermark
= 4;
103 writeb(56, &ch
->ch_neo_uart
->rfifo
);
104 ch
->ch_r_tlevel
= 56;
106 writeb(ier
, &ch
->ch_neo_uart
->ier
);
109 * From the Neo UART spec sheet:
110 * The auto RTS/DTR function must be started by asserting
111 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114 ch
->ch_mostat
|= (UART_MCR_RTS
);
118 static void neo_set_ixon_flow_control(struct jsm_channel
*ch
)
120 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
121 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
123 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Setting IXON FLOW\n");
125 /* Turn off auto CTS flow control */
126 ier
&= ~(UART_17158_IER_CTSDSR
);
127 efr
&= ~(UART_17158_EFR_CTSDSR
);
129 /* Turn on auto Xon flow control */
130 efr
|= (UART_17158_EFR_ECB
| UART_17158_EFR_IXON
);
132 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
133 writeb(0, &ch
->ch_neo_uart
->efr
);
135 /* Turn on UART enhanced bits */
136 writeb(efr
, &ch
->ch_neo_uart
->efr
);
138 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_8DELAY
), &ch
->ch_neo_uart
->fctr
);
139 ch
->ch_r_watermark
= 4;
141 writeb(32, &ch
->ch_neo_uart
->rfifo
);
142 ch
->ch_r_tlevel
= 32;
144 /* Tell UART what start/stop chars it should be looking for */
145 writeb(ch
->ch_startc
, &ch
->ch_neo_uart
->xonchar1
);
146 writeb(0, &ch
->ch_neo_uart
->xonchar2
);
148 writeb(ch
->ch_stopc
, &ch
->ch_neo_uart
->xoffchar1
);
149 writeb(0, &ch
->ch_neo_uart
->xoffchar2
);
151 writeb(ier
, &ch
->ch_neo_uart
->ier
);
154 static void neo_set_ixoff_flow_control(struct jsm_channel
*ch
)
156 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
157 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
159 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Setting IXOFF FLOW\n");
161 /* Turn off auto RTS flow control */
162 ier
&= ~(UART_17158_IER_RTSDTR
);
163 efr
&= ~(UART_17158_EFR_RTSDTR
);
165 /* Turn on auto Xoff flow control */
166 ier
|= (UART_17158_IER_XOFF
);
167 efr
|= (UART_17158_EFR_ECB
| UART_17158_EFR_IXOFF
);
169 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
170 writeb(0, &ch
->ch_neo_uart
->efr
);
172 /* Turn on UART enhanced bits */
173 writeb(efr
, &ch
->ch_neo_uart
->efr
);
175 /* Turn on table D, with 8 char hi/low watermarks */
176 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_8DELAY
), &ch
->ch_neo_uart
->fctr
);
178 writeb(8, &ch
->ch_neo_uart
->tfifo
);
181 /* Tell UART what start/stop chars it should be looking for */
182 writeb(ch
->ch_startc
, &ch
->ch_neo_uart
->xonchar1
);
183 writeb(0, &ch
->ch_neo_uart
->xonchar2
);
185 writeb(ch
->ch_stopc
, &ch
->ch_neo_uart
->xoffchar1
);
186 writeb(0, &ch
->ch_neo_uart
->xoffchar2
);
188 writeb(ier
, &ch
->ch_neo_uart
->ier
);
191 static void neo_set_no_input_flow_control(struct jsm_channel
*ch
)
193 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
194 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
196 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Unsetting Input FLOW\n");
198 /* Turn off auto RTS flow control */
199 ier
&= ~(UART_17158_IER_RTSDTR
);
200 efr
&= ~(UART_17158_EFR_RTSDTR
);
202 /* Turn off auto Xoff flow control */
203 ier
&= ~(UART_17158_IER_XOFF
);
204 if (ch
->ch_c_iflag
& IXON
)
205 efr
&= ~(UART_17158_EFR_IXOFF
);
207 efr
&= ~(UART_17158_EFR_ECB
| UART_17158_EFR_IXOFF
);
209 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
210 writeb(0, &ch
->ch_neo_uart
->efr
);
212 /* Turn on UART enhanced bits */
213 writeb(efr
, &ch
->ch_neo_uart
->efr
);
215 /* Turn on table D, with 8 char hi/low watermarks */
216 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_8DELAY
), &ch
->ch_neo_uart
->fctr
);
218 ch
->ch_r_watermark
= 0;
220 writeb(16, &ch
->ch_neo_uart
->tfifo
);
221 ch
->ch_t_tlevel
= 16;
223 writeb(16, &ch
->ch_neo_uart
->rfifo
);
224 ch
->ch_r_tlevel
= 16;
226 writeb(ier
, &ch
->ch_neo_uart
->ier
);
229 static void neo_set_no_output_flow_control(struct jsm_channel
*ch
)
231 u8 ier
= readb(&ch
->ch_neo_uart
->ier
);
232 u8 efr
= readb(&ch
->ch_neo_uart
->efr
);
234 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "Unsetting Output FLOW\n");
236 /* Turn off auto CTS flow control */
237 ier
&= ~(UART_17158_IER_CTSDSR
);
238 efr
&= ~(UART_17158_EFR_CTSDSR
);
240 /* Turn off auto Xon flow control */
241 if (ch
->ch_c_iflag
& IXOFF
)
242 efr
&= ~(UART_17158_EFR_IXON
);
244 efr
&= ~(UART_17158_EFR_ECB
| UART_17158_EFR_IXON
);
246 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
247 writeb(0, &ch
->ch_neo_uart
->efr
);
249 /* Turn on UART enhanced bits */
250 writeb(efr
, &ch
->ch_neo_uart
->efr
);
252 /* Turn on table D, with 8 char hi/low watermarks */
253 writeb((UART_17158_FCTR_TRGD
| UART_17158_FCTR_RTS_8DELAY
), &ch
->ch_neo_uart
->fctr
);
255 ch
->ch_r_watermark
= 0;
257 writeb(16, &ch
->ch_neo_uart
->tfifo
);
258 ch
->ch_t_tlevel
= 16;
260 writeb(16, &ch
->ch_neo_uart
->rfifo
);
261 ch
->ch_r_tlevel
= 16;
263 writeb(ier
, &ch
->ch_neo_uart
->ier
);
266 static inline void neo_set_new_start_stop_chars(struct jsm_channel
*ch
)
269 /* if hardware flow control is set, then skip this whole thing */
270 if (ch
->ch_c_cflag
& CRTSCTS
)
273 jsm_printk(PARAM
, INFO
, &ch
->ch_bd
->pci_dev
, "start\n");
275 /* Tell UART what start/stop chars it should be looking for */
276 writeb(ch
->ch_startc
, &ch
->ch_neo_uart
->xonchar1
);
277 writeb(0, &ch
->ch_neo_uart
->xonchar2
);
279 writeb(ch
->ch_stopc
, &ch
->ch_neo_uart
->xoffchar1
);
280 writeb(0, &ch
->ch_neo_uart
->xoffchar2
);
283 static void neo_copy_data_from_uart_to_queue(struct jsm_channel
*ch
)
296 /* cache head and tail of queue */
297 head
= ch
->ch_r_head
& RQUEUEMASK
;
298 tail
= ch
->ch_r_tail
& RQUEUEMASK
;
300 /* Get our cached LSR */
301 linestatus
= ch
->ch_cached_lsr
;
302 ch
->ch_cached_lsr
= 0;
304 /* Store how much space we have left in the queue */
305 if ((qleft
= tail
- head
- 1) < 0)
306 qleft
+= RQUEUEMASK
+ 1;
309 * If the UART is not in FIFO mode, force the FIFO copy to
310 * NOT be run, by setting total to 0.
312 * On the other hand, if the UART IS in FIFO mode, then ask
313 * the UART to give us an approximation of data it has RX'ed.
315 if (!(ch
->ch_flags
& CH_FIFO_ENABLED
))
318 total
= readb(&ch
->ch_neo_uart
->rfifo
);
321 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
323 * This resolves a problem/bug with the Exar chip that sometimes
324 * returns a bogus value in the rfifo register.
325 * The count can be any where from 0-3 bytes "off".
332 * Finally, bound the copy to make sure we don't overflow
334 * The byte by byte copy loop below this loop this will
335 * deal with the queue overflow possibility.
337 total
= min(total
, qleft
);
341 * Grab the linestatus register, we need to check
342 * to see if there are any errors in the FIFO.
344 linestatus
= readb(&ch
->ch_neo_uart
->lsr
);
347 * Break out if there is a FIFO error somewhere.
348 * This will allow us to go byte by byte down below,
349 * finding the exact location of the error.
351 if (linestatus
& UART_17158_RX_FIFO_DATA_ERROR
)
354 /* Make sure we don't go over the end of our queue */
355 n
= min(((u32
) total
), (RQUEUESIZE
- (u32
) head
));
358 * Cut down n even further if needed, this is to fix
359 * a problem with memcpy_fromio() with the Neo on the
360 * IBM pSeries platform.
361 * 15 bytes max appears to be the magic number.
363 n
= min((u32
) n
, (u32
) 12);
366 * Since we are grabbing the linestatus register, which
367 * will reset some bits after our read, we need to ensure
368 * we don't miss our TX FIFO emptys.
370 if (linestatus
& (UART_LSR_THRE
| UART_17158_TX_AND_FIFO_CLR
))
371 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
375 /* Copy data from uart to the queue */
376 memcpy_fromio(ch
->ch_rqueue
+ head
, &ch
->ch_neo_uart
->txrxburst
, n
);
378 * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
379 * that all the data currently in the FIFO is free of
380 * breaks and parity/frame/orun errors.
382 memset(ch
->ch_equeue
+ head
, 0, n
);
384 /* Add to and flip head if needed */
385 head
= (head
+ n
) & RQUEUEMASK
;
392 * Create a mask to determine whether we should
393 * insert the character (if any) into our queue.
395 if (ch
->ch_c_iflag
& IGNBRK
)
396 error_mask
|= UART_LSR_BI
;
399 * Now cleanup any leftover bytes still in the UART.
400 * Also deal with any possible queue overflow here as well.
405 * Its possible we have a linestatus from the loop above
406 * this, so we "OR" on any extra bits.
408 linestatus
|= readb(&ch
->ch_neo_uart
->lsr
);
411 * If the chip tells us there is no more data pending to
412 * be read, we can then leave.
413 * But before we do, cache the linestatus, just in case.
415 if (!(linestatus
& UART_LSR_DR
)) {
416 ch
->ch_cached_lsr
= linestatus
;
420 /* No need to store this bit */
421 linestatus
&= ~UART_LSR_DR
;
424 * Since we are grabbing the linestatus register, which
425 * will reset some bits after our read, we need to ensure
426 * we don't miss our TX FIFO emptys.
428 if (linestatus
& (UART_LSR_THRE
| UART_17158_TX_AND_FIFO_CLR
)) {
429 linestatus
&= ~(UART_LSR_THRE
| UART_17158_TX_AND_FIFO_CLR
);
430 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
434 * Discard character if we are ignoring the error mask.
436 if (linestatus
& error_mask
) {
439 memcpy_fromio(&discard
, &ch
->ch_neo_uart
->txrxburst
, 1);
444 * If our queue is full, we have no choice but to drop some data.
445 * The assumption is that HWFLOW or SWFLOW should have stopped
446 * things way way before we got to this point.
448 * I decided that I wanted to ditch the oldest data first,
449 * I hope thats okay with everyone? Yes? Good.
452 jsm_printk(READ
, INFO
, &ch
->ch_bd
->pci_dev
,
453 "Queue full, dropping DATA:%x LSR:%x\n",
454 ch
->ch_rqueue
[tail
], ch
->ch_equeue
[tail
]);
456 ch
->ch_r_tail
= tail
= (tail
+ 1) & RQUEUEMASK
;
457 ch
->ch_err_overrun
++;
461 memcpy_fromio(ch
->ch_rqueue
+ head
, &ch
->ch_neo_uart
->txrxburst
, 1);
462 ch
->ch_equeue
[head
] = (u8
) linestatus
;
464 jsm_printk(READ
, INFO
, &ch
->ch_bd
->pci_dev
,
465 "DATA/LSR pair: %x %x\n", ch
->ch_rqueue
[head
], ch
->ch_equeue
[head
]);
467 /* Ditch any remaining linestatus value. */
470 /* Add to and flip head if needed */
471 head
= (head
+ 1) & RQUEUEMASK
;
478 * Write new final heads to channel structure.
480 ch
->ch_r_head
= head
& RQUEUEMASK
;
481 ch
->ch_e_head
= head
& EQUEUEMASK
;
485 static void neo_copy_data_from_queue_to_uart(struct jsm_channel
*ch
)
497 /* No data to write to the UART */
498 if (ch
->ch_w_tail
== ch
->ch_w_head
)
501 /* If port is "stopped", don't send any data to the UART */
502 if ((ch
->ch_flags
& CH_STOP
) || (ch
->ch_flags
& CH_BREAK_SENDING
))
505 * If FIFOs are disabled. Send data directly to txrx register
507 if (!(ch
->ch_flags
& CH_FIFO_ENABLED
)) {
508 u8 lsrbits
= readb(&ch
->ch_neo_uart
->lsr
);
510 ch
->ch_cached_lsr
|= lsrbits
;
511 if (ch
->ch_cached_lsr
& UART_LSR_THRE
) {
512 ch
->ch_cached_lsr
&= ~(UART_LSR_THRE
);
514 writeb(ch
->ch_wqueue
[ch
->ch_w_tail
], &ch
->ch_neo_uart
->txrx
);
515 jsm_printk(WRITE
, INFO
, &ch
->ch_bd
->pci_dev
,
516 "Tx data: %x\n", ch
->ch_wqueue
[ch
->ch_w_head
]);
518 ch
->ch_w_tail
&= WQUEUEMASK
;
525 * We have to do it this way, because of the EXAR TXFIFO count bug.
527 if (!(ch
->ch_flags
& (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
)))
531 n
= UART_17158_TX_FIFOSIZE
- ch
->ch_t_tlevel
;
533 /* cache head and tail of queue */
534 head
= ch
->ch_w_head
& WQUEUEMASK
;
535 tail
= ch
->ch_w_tail
& WQUEUEMASK
;
536 qlen
= (head
- tail
) & WQUEUEMASK
;
538 /* Find minimum of the FIFO space, versus queue length */
543 s
= ((head
>= tail
) ? head
: WQUEUESIZE
) - tail
;
549 memcpy_toio(&ch
->ch_neo_uart
->txrxburst
, ch
->ch_wqueue
+ tail
, s
);
550 /* Add and flip queue if needed */
551 tail
= (tail
+ s
) & WQUEUEMASK
;
557 /* Update the final tail */
558 ch
->ch_w_tail
= tail
& WQUEUEMASK
;
560 if (len_written
>= ch
->ch_t_tlevel
)
561 ch
->ch_flags
&= ~(CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
563 if (!jsm_tty_write(&ch
->uart_port
))
564 uart_write_wakeup(&ch
->uart_port
);
567 static void neo_parse_modem(struct jsm_channel
*ch
, u8 signals
)
569 u8 msignals
= signals
;
571 jsm_printk(MSIGS
, INFO
, &ch
->ch_bd
->pci_dev
,
572 "neo_parse_modem: port: %d msignals: %x\n", ch
->ch_portnum
, msignals
);
577 /* Scrub off lower bits. They signify delta's, which I don't care about */
580 if (msignals
& UART_MSR_DCD
)
581 ch
->ch_mistat
|= UART_MSR_DCD
;
583 ch
->ch_mistat
&= ~UART_MSR_DCD
;
585 if (msignals
& UART_MSR_DSR
)
586 ch
->ch_mistat
|= UART_MSR_DSR
;
588 ch
->ch_mistat
&= ~UART_MSR_DSR
;
590 if (msignals
& UART_MSR_RI
)
591 ch
->ch_mistat
|= UART_MSR_RI
;
593 ch
->ch_mistat
&= ~UART_MSR_RI
;
595 if (msignals
& UART_MSR_CTS
)
596 ch
->ch_mistat
|= UART_MSR_CTS
;
598 ch
->ch_mistat
&= ~UART_MSR_CTS
;
600 jsm_printk(MSIGS
, INFO
, &ch
->ch_bd
->pci_dev
,
601 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
603 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MCR_DTR
),
604 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MCR_RTS
),
605 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MSR_CTS
),
606 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MSR_DSR
),
607 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MSR_RI
),
608 !!((ch
->ch_mistat
| ch
->ch_mostat
) & UART_MSR_DCD
));
611 /* Make the UART raise any of the output signals we want up */
612 static void neo_assert_modem_signals(struct jsm_channel
*ch
)
621 writeb(out
, &ch
->ch_neo_uart
->mcr
);
623 /* flush write operation */
624 neo_pci_posting_flush(ch
->ch_bd
);
628 * Flush the WRITE FIFO on the Neo.
630 * NOTE: Channel lock MUST be held before calling this function!
632 static void neo_flush_uart_write(struct jsm_channel
*ch
)
640 writeb((UART_FCR_ENABLE_FIFO
| UART_FCR_CLEAR_XMIT
), &ch
->ch_neo_uart
->isr_fcr
);
642 for (i
= 0; i
< 10; i
++) {
644 /* Check to see if the UART feels it completely flushed the FIFO. */
645 tmp
= readb(&ch
->ch_neo_uart
->isr_fcr
);
647 jsm_printk(IOCTL
, INFO
, &ch
->ch_bd
->pci_dev
,
648 "Still flushing TX UART... i: %d\n", i
);
655 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
660 * Flush the READ FIFO on the Neo.
662 * NOTE: Channel lock MUST be held before calling this function!
664 static void neo_flush_uart_read(struct jsm_channel
*ch
)
672 writeb((UART_FCR_ENABLE_FIFO
| UART_FCR_CLEAR_RCVR
), &ch
->ch_neo_uart
->isr_fcr
);
674 for (i
= 0; i
< 10; i
++) {
676 /* Check to see if the UART feels it completely flushed the FIFO. */
677 tmp
= readb(&ch
->ch_neo_uart
->isr_fcr
);
679 jsm_printk(IOCTL
, INFO
, &ch
->ch_bd
->pci_dev
,
680 "Still flushing RX UART... i: %d\n", i
);
689 * No locks are assumed to be held when calling this function.
691 static void neo_clear_break(struct jsm_channel
*ch
, int force
)
693 unsigned long lock_flags
;
695 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
697 /* Turn break off, and unset some variables */
698 if (ch
->ch_flags
& CH_BREAK_SENDING
) {
699 u8 temp
= readb(&ch
->ch_neo_uart
->lcr
);
700 writeb((temp
& ~UART_LCR_SBC
), &ch
->ch_neo_uart
->lcr
);
702 ch
->ch_flags
&= ~(CH_BREAK_SENDING
);
703 jsm_printk(IOCTL
, INFO
, &ch
->ch_bd
->pci_dev
,
704 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies
);
706 /* flush write operation */
707 neo_pci_posting_flush(ch
->ch_bd
);
709 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
713 * Parse the ISR register.
715 static inline void neo_parse_isr(struct jsm_board
*brd
, u32 port
)
717 struct jsm_channel
*ch
;
720 unsigned long lock_flags
;
725 if (port
> brd
->maxports
)
728 ch
= brd
->channels
[port
];
732 /* Here we try to figure out what caused the interrupt to happen */
735 isr
= readb(&ch
->ch_neo_uart
->isr_fcr
);
737 /* Bail if no pending interrupt */
738 if (isr
& UART_IIR_NO_INT
)
742 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
744 isr
&= ~(UART_17158_IIR_FIFO_ENABLED
);
746 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
747 "%s:%d isr: %x\n", __FILE__
, __LINE__
, isr
);
749 if (isr
& (UART_17158_IIR_RDI_TIMEOUT
| UART_IIR_RDI
)) {
750 /* Read data from uart -> queue */
751 neo_copy_data_from_uart_to_queue(ch
);
753 /* Call our tty layer to enforce queue flow control if needed. */
754 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
755 jsm_check_queue_flow_control(ch
);
756 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
759 if (isr
& UART_IIR_THRI
) {
760 /* Transfer data (if any) from Write Queue -> UART. */
761 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
762 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
763 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
764 neo_copy_data_from_queue_to_uart(ch
);
767 if (isr
& UART_17158_IIR_XONXOFF
) {
768 cause
= readb(&ch
->ch_neo_uart
->xoffchar1
);
770 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
771 "Port %d. Got ISR_XONXOFF: cause:%x\n", port
, cause
);
774 * Since the UART detected either an XON or
775 * XOFF match, we need to figure out which
776 * one it was, so we can suspend or resume data flow.
778 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
779 if (cause
== UART_17158_XON_DETECT
) {
780 /* Is output stopped right now, if so, resume it */
781 if (brd
->channels
[port
]->ch_flags
& CH_STOP
) {
782 ch
->ch_flags
&= ~(CH_STOP
);
784 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
785 "Port %d. XON detected in incoming data\n", port
);
787 else if (cause
== UART_17158_XOFF_DETECT
) {
788 if (!(brd
->channels
[port
]->ch_flags
& CH_STOP
)) {
789 ch
->ch_flags
|= CH_STOP
;
790 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
791 "Setting CH_STOP\n");
793 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
794 "Port: %d. XOFF detected in incoming data\n", port
);
796 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
799 if (isr
& UART_17158_IIR_HWFLOW_STATE_CHANGE
) {
801 * If we get here, this means the hardware is doing auto flow control.
802 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
804 cause
= readb(&ch
->ch_neo_uart
->mcr
);
806 /* Which pin is doing auto flow? RTS or DTR? */
807 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
808 if ((cause
& 0x4) == 0) {
809 if (cause
& UART_MCR_RTS
)
810 ch
->ch_mostat
|= UART_MCR_RTS
;
812 ch
->ch_mostat
&= ~(UART_MCR_RTS
);
814 if (cause
& UART_MCR_DTR
)
815 ch
->ch_mostat
|= UART_MCR_DTR
;
817 ch
->ch_mostat
&= ~(UART_MCR_DTR
);
819 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
822 /* Parse any modem signal changes */
823 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
824 "MOD_STAT: sending to parse_modem_sigs\n");
825 neo_parse_modem(ch
, readb(&ch
->ch_neo_uart
->msr
));
829 static inline void neo_parse_lsr(struct jsm_board
*brd
, u32 port
)
831 struct jsm_channel
*ch
;
833 unsigned long lock_flags
;
838 if (port
> brd
->maxports
)
841 ch
= brd
->channels
[port
];
845 linestatus
= readb(&ch
->ch_neo_uart
->lsr
);
847 jsm_printk(INTR
, INFO
, &ch
->ch_bd
->pci_dev
,
848 "%s:%d port: %d linestatus: %x\n", __FILE__
, __LINE__
, port
, linestatus
);
850 ch
->ch_cached_lsr
|= linestatus
;
852 if (ch
->ch_cached_lsr
& UART_LSR_DR
) {
853 /* Read data from uart -> queue */
854 neo_copy_data_from_uart_to_queue(ch
);
855 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
856 jsm_check_queue_flow_control(ch
);
857 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
861 * This is a special flag. It indicates that at least 1
862 * RX error (parity, framing, or break) has happened.
863 * Mark this in our struct, which will tell me that I have
864 *to do the special RX+LSR read for this FIFO load.
866 if (linestatus
& UART_17158_RX_FIFO_DATA_ERROR
)
867 jsm_printk(INTR
, DEBUG
, &ch
->ch_bd
->pci_dev
,
868 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
869 __FILE__
, __LINE__
, port
);
872 * The next 3 tests should *NOT* happen, as the above test
873 * should encapsulate all 3... At least, thats what Exar says.
876 if (linestatus
& UART_LSR_PE
) {
878 jsm_printk(INTR
, DEBUG
, &ch
->ch_bd
->pci_dev
,
879 "%s:%d Port: %d. PAR ERR!\n", __FILE__
, __LINE__
, port
);
882 if (linestatus
& UART_LSR_FE
) {
884 jsm_printk(INTR
, DEBUG
, &ch
->ch_bd
->pci_dev
,
885 "%s:%d Port: %d. FRM ERR!\n", __FILE__
, __LINE__
, port
);
888 if (linestatus
& UART_LSR_BI
) {
890 jsm_printk(INTR
, DEBUG
, &ch
->ch_bd
->pci_dev
,
891 "%s:%d Port: %d. BRK INTR!\n", __FILE__
, __LINE__
, port
);
894 if (linestatus
& UART_LSR_OE
) {
896 * Rx Oruns. Exar says that an orun will NOT corrupt
897 * the FIFO. It will just replace the holding register
898 * with this new data byte. So basically just ignore this.
899 * Probably we should eventually have an orun stat in our driver...
901 ch
->ch_err_overrun
++;
902 jsm_printk(INTR
, DEBUG
, &ch
->ch_bd
->pci_dev
,
903 "%s:%d Port: %d. Rx Overrun!\n", __FILE__
, __LINE__
, port
);
906 if (linestatus
& UART_LSR_THRE
) {
907 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
908 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
909 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
911 /* Transfer data (if any) from Write Queue -> UART. */
912 neo_copy_data_from_queue_to_uart(ch
);
914 else if (linestatus
& UART_17158_TX_AND_FIFO_CLR
) {
915 spin_lock_irqsave(&ch
->ch_lock
, lock_flags
);
916 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
917 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags
);
919 /* Transfer data (if any) from Write Queue -> UART. */
920 neo_copy_data_from_queue_to_uart(ch
);
926 * Send any/all changes to the line to the UART.
928 static void neo_param(struct jsm_channel
*ch
)
935 struct jsm_board
*bd
;
942 * If baud rate is zero, flush queues, and set mval to drop DTR.
944 if ((ch
->ch_c_cflag
& (CBAUD
)) == 0) {
945 ch
->ch_r_head
= ch
->ch_r_tail
= 0;
946 ch
->ch_e_head
= ch
->ch_e_tail
= 0;
947 ch
->ch_w_head
= ch
->ch_w_tail
= 0;
949 neo_flush_uart_write(ch
);
950 neo_flush_uart_read(ch
);
952 ch
->ch_flags
|= (CH_BAUD0
);
953 ch
->ch_mostat
&= ~(UART_MCR_RTS
| UART_MCR_DTR
);
954 neo_assert_modem_signals(ch
);
958 } else if (ch
->ch_custom_speed
) {
959 baud
= ch
->ch_custom_speed
;
960 if (ch
->ch_flags
& CH_BAUD0
)
961 ch
->ch_flags
&= ~(CH_BAUD0
);
966 const u64 bauds
[4][16] = {
970 600, 1200, 1800, 2400,
971 4800, 9600, 19200, 38400 },
973 0, 57600, 115200, 230400,
974 460800, 150, 200, 921600,
975 600, 1200, 1800, 2400,
976 4800, 9600, 19200, 38400 },
978 0, 57600, 76800, 115200,
979 131657, 153600, 230400, 460800,
980 921600, 1200, 1800, 2400,
981 4800, 9600, 19200, 38400 },
983 0, 57600, 115200, 230400,
984 460800, 150, 200, 921600,
985 600, 1200, 1800, 2400,
986 4800, 9600, 19200, 38400 }
989 baud
= C_BAUD(ch
->uart_port
.info
->tty
) & 0xff;
991 if (ch
->ch_c_cflag
& CBAUDEX
)
996 if ((iindex
>= 0) && (iindex
< 4) && (jindex
>= 0) && (jindex
< 16))
997 baud
= bauds
[iindex
][jindex
];
999 jsm_printk(IOCTL
, DEBUG
, &ch
->ch_bd
->pci_dev
,
1000 "baud indices were out of range (%d)(%d)",
1008 if (ch
->ch_flags
& CH_BAUD0
)
1009 ch
->ch_flags
&= ~(CH_BAUD0
);
1012 if (ch
->ch_c_cflag
& PARENB
)
1013 lcr
|= UART_LCR_PARITY
;
1015 if (!(ch
->ch_c_cflag
& PARODD
))
1016 lcr
|= UART_LCR_EPAR
;
1019 * Not all platforms support mark/space parity,
1020 * so this will hide behind an ifdef.
1023 if (ch
->ch_c_cflag
& CMSPAR
)
1024 lcr
|= UART_LCR_SPAR
;
1027 if (ch
->ch_c_cflag
& CSTOPB
)
1028 lcr
|= UART_LCR_STOP
;
1030 switch (ch
->ch_c_cflag
& CSIZE
) {
1032 lcr
|= UART_LCR_WLEN5
;
1035 lcr
|= UART_LCR_WLEN6
;
1038 lcr
|= UART_LCR_WLEN7
;
1042 lcr
|= UART_LCR_WLEN8
;
1046 ier
= readb(&ch
->ch_neo_uart
->ier
);
1047 uart_lcr
= readb(&ch
->ch_neo_uart
->lcr
);
1052 quot
= ch
->ch_bd
->bd_dividend
/ baud
;
1055 ch
->ch_old_baud
= baud
;
1056 writeb(UART_LCR_DLAB
, &ch
->ch_neo_uart
->lcr
);
1057 writeb((quot
& 0xff), &ch
->ch_neo_uart
->txrx
);
1058 writeb((quot
>> 8), &ch
->ch_neo_uart
->ier
);
1059 writeb(lcr
, &ch
->ch_neo_uart
->lcr
);
1062 if (uart_lcr
!= lcr
)
1063 writeb(lcr
, &ch
->ch_neo_uart
->lcr
);
1065 if (ch
->ch_c_cflag
& CREAD
)
1066 ier
|= (UART_IER_RDI
| UART_IER_RLSI
);
1068 ier
|= (UART_IER_THRI
| UART_IER_MSI
);
1070 writeb(ier
, &ch
->ch_neo_uart
->ier
);
1072 /* Set new start/stop chars */
1073 neo_set_new_start_stop_chars(ch
);
1075 if (ch
->ch_c_cflag
& CRTSCTS
)
1076 neo_set_cts_flow_control(ch
);
1077 else if (ch
->ch_c_iflag
& IXON
) {
1078 /* If start/stop is set to disable, then we should disable flow control */
1079 if ((ch
->ch_startc
== __DISABLED_CHAR
) || (ch
->ch_stopc
== __DISABLED_CHAR
))
1080 neo_set_no_output_flow_control(ch
);
1082 neo_set_ixon_flow_control(ch
);
1085 neo_set_no_output_flow_control(ch
);
1087 if (ch
->ch_c_cflag
& CRTSCTS
)
1088 neo_set_rts_flow_control(ch
);
1089 else if (ch
->ch_c_iflag
& IXOFF
) {
1090 /* If start/stop is set to disable, then we should disable flow control */
1091 if ((ch
->ch_startc
== __DISABLED_CHAR
) || (ch
->ch_stopc
== __DISABLED_CHAR
))
1092 neo_set_no_input_flow_control(ch
);
1094 neo_set_ixoff_flow_control(ch
);
1097 neo_set_no_input_flow_control(ch
);
1099 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1100 * Not exactly elegant, but this is needed because of the Exar chip's
1101 * delay on firing off the RX FIFO interrupt on slower baud rates.
1104 writeb(1, &ch
->ch_neo_uart
->rfifo
);
1105 ch
->ch_r_tlevel
= 1;
1108 neo_assert_modem_signals(ch
);
1110 /* Get current status of the modem signals now */
1111 neo_parse_modem(ch
, readb(&ch
->ch_neo_uart
->msr
));
1118 * Neo specific interrupt handler.
1120 static irqreturn_t
neo_intr(int irq
, void *voidbrd
, struct pt_regs
*regs
)
1122 struct jsm_board
*brd
= (struct jsm_board
*) voidbrd
;
1123 struct jsm_channel
*ch
;
1129 unsigned long lock_flags
;
1130 unsigned long lock_flags2
;
1131 int outofloop_count
= 0;
1135 /* Lock out the slow poller from running on this board. */
1136 spin_lock_irqsave(&brd
->bd_intr_lock
, lock_flags
);
1139 * Read in "extended" IRQ information from the 32bit Neo register.
1140 * Bits 0-7: What port triggered the interrupt.
1141 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1143 uart_poll
= readl(brd
->re_map_membase
+ UART_17158_POLL_ADDR_OFFSET
);
1145 jsm_printk(INTR
, INFO
, &brd
->pci_dev
,
1146 "%s:%d uart_poll: %x\n", __FILE__
, __LINE__
, uart_poll
);
1149 jsm_printk(INTR
, INFO
, &brd
->pci_dev
,
1150 "Kernel interrupted to me, but no pending interrupts...\n");
1151 spin_unlock_irqrestore(&brd
->bd_intr_lock
, lock_flags
);
1155 /* At this point, we have at least SOMETHING to service, dig further... */
1159 /* Loop on each port */
1160 while (((uart_poll
& 0xff) != 0) && (outofloop_count
< 0xff)){
1165 /* Check current port to see if it has interrupt pending */
1166 if ((tmp
& jsm_offset_table
[current_port
]) != 0) {
1167 port
= current_port
;
1168 type
= tmp
>> (8 + (port
* 3));
1175 jsm_printk(INTR
, INFO
, &brd
->pci_dev
,
1176 "%s:%d port: %x type: %x\n", __FILE__
, __LINE__
, port
, type
);
1178 /* Remove this port + type from uart_poll */
1179 uart_poll
&= ~(jsm_offset_table
[port
]);
1182 /* If no type, just ignore it, and move onto next port */
1183 jsm_printk(INTR
, ERR
, &brd
->pci_dev
,
1184 "Interrupt with no type! port: %d\n", port
);
1188 /* Switch on type of interrupt we have */
1191 case UART_17158_RXRDY_TIMEOUT
:
1193 * RXRDY Time-out is cleared by reading data in the
1194 * RX FIFO until it falls below the trigger level.
1197 /* Verify the port is in range. */
1198 if (port
> brd
->nasync
)
1201 ch
= brd
->channels
[port
];
1202 neo_copy_data_from_uart_to_queue(ch
);
1204 /* Call our tty layer to enforce queue flow control if needed. */
1205 spin_lock_irqsave(&ch
->ch_lock
, lock_flags2
);
1206 jsm_check_queue_flow_control(ch
);
1207 spin_unlock_irqrestore(&ch
->ch_lock
, lock_flags2
);
1211 case UART_17158_RX_LINE_STATUS
:
1213 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1215 neo_parse_lsr(brd
, port
);
1218 case UART_17158_TXRDY
:
1220 * TXRDY interrupt clears after reading ISR register for the UART channel.
1224 * Yes, this is odd...
1225 * Why would I check EVERY possibility of type of
1226 * interrupt, when we know its TXRDY???
1227 * Becuz for some reason, even tho we got triggered for TXRDY,
1228 * it seems to be occassionally wrong. Instead of TX, which
1229 * it should be, I was getting things like RXDY too. Weird.
1231 neo_parse_isr(brd
, port
);
1234 case UART_17158_MSR
:
1236 * MSR or flow control was seen.
1238 neo_parse_isr(brd
, port
);
1243 * The UART triggered us with a bogus interrupt type.
1244 * It appears the Exar chip, when REALLY bogged down, will throw
1245 * these once and awhile.
1246 * Its harmless, just ignore it and move on.
1248 jsm_printk(INTR
, ERR
, &brd
->pci_dev
,
1249 "%s:%d Unknown Interrupt type: %x\n", __FILE__
, __LINE__
, type
);
1254 spin_unlock_irqrestore(&brd
->bd_intr_lock
, lock_flags
);
1256 jsm_printk(INTR
, INFO
, &brd
->pci_dev
, "finish.\n");
1261 * Neo specific way of turning off the receiver.
1262 * Used as a way to enforce queue flow control when in
1263 * hardware flow control mode.
1265 static void neo_disable_receiver(struct jsm_channel
*ch
)
1267 u8 tmp
= readb(&ch
->ch_neo_uart
->ier
);
1268 tmp
&= ~(UART_IER_RDI
);
1269 writeb(tmp
, &ch
->ch_neo_uart
->ier
);
1271 /* flush write operation */
1272 neo_pci_posting_flush(ch
->ch_bd
);
1277 * Neo specific way of turning on the receiver.
1278 * Used as a way to un-enforce queue flow control when in
1279 * hardware flow control mode.
1281 static void neo_enable_receiver(struct jsm_channel
*ch
)
1283 u8 tmp
= readb(&ch
->ch_neo_uart
->ier
);
1284 tmp
|= (UART_IER_RDI
);
1285 writeb(tmp
, &ch
->ch_neo_uart
->ier
);
1287 /* flush write operation */
1288 neo_pci_posting_flush(ch
->ch_bd
);
1291 static void neo_send_start_character(struct jsm_channel
*ch
)
1296 if (ch
->ch_startc
!= __DISABLED_CHAR
) {
1298 writeb(ch
->ch_startc
, &ch
->ch_neo_uart
->txrx
);
1300 /* flush write operation */
1301 neo_pci_posting_flush(ch
->ch_bd
);
1305 static void neo_send_stop_character(struct jsm_channel
*ch
)
1310 if (ch
->ch_stopc
!= __DISABLED_CHAR
) {
1311 ch
->ch_xoff_sends
++;
1312 writeb(ch
->ch_stopc
, &ch
->ch_neo_uart
->txrx
);
1314 /* flush write operation */
1315 neo_pci_posting_flush(ch
->ch_bd
);
1322 static void neo_uart_init(struct jsm_channel
*ch
)
1324 writeb(0, &ch
->ch_neo_uart
->ier
);
1325 writeb(0, &ch
->ch_neo_uart
->efr
);
1326 writeb(UART_EFR_ECB
, &ch
->ch_neo_uart
->efr
);
1328 /* Clear out UART and FIFO */
1329 readb(&ch
->ch_neo_uart
->txrx
);
1330 writeb((UART_FCR_ENABLE_FIFO
|UART_FCR_CLEAR_RCVR
|UART_FCR_CLEAR_XMIT
), &ch
->ch_neo_uart
->isr_fcr
);
1331 readb(&ch
->ch_neo_uart
->lsr
);
1332 readb(&ch
->ch_neo_uart
->msr
);
1334 ch
->ch_flags
|= CH_FIFO_ENABLED
;
1336 /* Assert any signals we want up */
1337 writeb(ch
->ch_mostat
, &ch
->ch_neo_uart
->mcr
);
1341 * Make the UART completely turn off.
1343 static void neo_uart_off(struct jsm_channel
*ch
)
1345 /* Turn off UART enhanced bits */
1346 writeb(0, &ch
->ch_neo_uart
->efr
);
1348 /* Stop all interrupts from occurring. */
1349 writeb(0, &ch
->ch_neo_uart
->ier
);
1352 static u32
neo_get_uart_bytes_left(struct jsm_channel
*ch
)
1355 u8 lsr
= readb(&ch
->ch_neo_uart
->lsr
);
1357 /* We must cache the LSR as some of the bits get reset once read... */
1358 ch
->ch_cached_lsr
|= lsr
;
1360 /* Determine whether the Transmitter is empty or not */
1361 if (!(lsr
& UART_LSR_TEMT
))
1364 ch
->ch_flags
|= (CH_TX_FIFO_EMPTY
| CH_TX_FIFO_LWM
);
1371 /* Channel lock MUST be held by the calling function! */
1372 static void neo_send_break(struct jsm_channel
*ch
)
1375 * Set the time we should stop sending the break.
1376 * If we are already sending a break, toss away the existing
1377 * time to stop, and use this new value instead.
1380 /* Tell the UART to start sending the break */
1381 if (!(ch
->ch_flags
& CH_BREAK_SENDING
)) {
1382 u8 temp
= readb(&ch
->ch_neo_uart
->lcr
);
1383 writeb((temp
| UART_LCR_SBC
), &ch
->ch_neo_uart
->lcr
);
1384 ch
->ch_flags
|= (CH_BREAK_SENDING
);
1386 /* flush write operation */
1387 neo_pci_posting_flush(ch
->ch_bd
);
1392 * neo_send_immediate_char.
1394 * Sends a specific character as soon as possible to the UART,
1395 * jumping over any bytes that might be in the write queue.
1397 * The channel lock MUST be held by the calling function.
1399 static void neo_send_immediate_char(struct jsm_channel
*ch
, unsigned char c
)
1404 writeb(c
, &ch
->ch_neo_uart
->txrx
);
1406 /* flush write operation */
1407 neo_pci_posting_flush(ch
->ch_bd
);
1410 struct board_ops jsm_neo_ops
= {
1412 .uart_init
= neo_uart_init
,
1413 .uart_off
= neo_uart_off
,
1415 .assert_modem_signals
= neo_assert_modem_signals
,
1416 .flush_uart_write
= neo_flush_uart_write
,
1417 .flush_uart_read
= neo_flush_uart_read
,
1418 .disable_receiver
= neo_disable_receiver
,
1419 .enable_receiver
= neo_enable_receiver
,
1420 .send_break
= neo_send_break
,
1421 .clear_break
= neo_clear_break
,
1422 .send_start_character
= neo_send_start_character
,
1423 .send_stop_character
= neo_send_stop_character
,
1424 .copy_data_from_queue_to_uart
= neo_copy_data_from_queue_to_uart
,
1425 .get_uart_bytes_left
= neo_get_uart_bytes_left
,
1426 .send_immediate_char
= neo_send_immediate_char