[CONNECTOR]: Initialize subsystem earlier.
[linux-2.6/verdex.git] / drivers / macintosh / therm_pm72.c
blob231146f439dddd841508b049d9aeaa14a9506468
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/config.h>
101 #include <linux/types.h>
102 #include <linux/module.h>
103 #include <linux/errno.h>
104 #include <linux/kernel.h>
105 #include <linux/delay.h>
106 #include <linux/sched.h>
107 #include <linux/slab.h>
108 #include <linux/init.h>
109 #include <linux/spinlock.h>
110 #include <linux/smp_lock.h>
111 #include <linux/wait.h>
112 #include <linux/reboot.h>
113 #include <linux/kmod.h>
114 #include <linux/i2c.h>
115 #include <asm/prom.h>
116 #include <asm/machdep.h>
117 #include <asm/io.h>
118 #include <asm/system.h>
119 #include <asm/sections.h>
120 #include <asm/of_device.h>
121 #include <asm/macio.h>
123 #include "therm_pm72.h"
125 #define VERSION "1.2b2"
127 #undef DEBUG
129 #ifdef DEBUG
130 #define DBG(args...) printk(args)
131 #else
132 #define DBG(args...) do { } while(0)
133 #endif
137 * Driver statics
140 static struct of_device * of_dev;
141 static struct i2c_adapter * u3_0;
142 static struct i2c_adapter * u3_1;
143 static struct i2c_adapter * k2;
144 static struct i2c_client * fcu;
145 static struct cpu_pid_state cpu_state[2];
146 static struct basckside_pid_params backside_params;
147 static struct backside_pid_state backside_state;
148 static struct drives_pid_state drives_state;
149 static struct dimm_pid_state dimms_state;
150 static int state;
151 static int cpu_count;
152 static int cpu_pid_type;
153 static pid_t ctrl_task;
154 static struct completion ctrl_complete;
155 static int critical_state;
156 static int rackmac;
157 static s32 dimm_output_clamp;
159 static DECLARE_MUTEX(driver_lock);
162 * We have 3 types of CPU PID control. One is "split" old style control
163 * for intake & exhaust fans, the other is "combined" control for both
164 * CPUs that also deals with the pumps when present. To be "compatible"
165 * with OS X at this point, we only use "COMBINED" on the machines that
166 * are identified as having the pumps (though that identification is at
167 * least dodgy). Ultimately, we could probably switch completely to this
168 * algorithm provided we hack it to deal with the UP case
170 #define CPU_PID_TYPE_SPLIT 0
171 #define CPU_PID_TYPE_COMBINED 1
172 #define CPU_PID_TYPE_RACKMAC 2
175 * This table describes all fans in the FCU. The "id" and "type" values
176 * are defaults valid for all earlier machines. Newer machines will
177 * eventually override the table content based on the device-tree
179 struct fcu_fan_table
181 char* loc; /* location code */
182 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
183 int id; /* id or -1 */
186 #define FCU_FAN_RPM 0
187 #define FCU_FAN_PWM 1
189 #define FCU_FAN_ABSENT_ID -1
191 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
193 struct fcu_fan_table fcu_fans[] = {
194 [BACKSIDE_FAN_PWM_INDEX] = {
195 .loc = "BACKSIDE,SYS CTRLR FAN",
196 .type = FCU_FAN_PWM,
197 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
199 [DRIVES_FAN_RPM_INDEX] = {
200 .loc = "DRIVE BAY",
201 .type = FCU_FAN_RPM,
202 .id = DRIVES_FAN_RPM_DEFAULT_ID,
204 [SLOTS_FAN_PWM_INDEX] = {
205 .loc = "SLOT,PCI FAN",
206 .type = FCU_FAN_PWM,
207 .id = SLOTS_FAN_PWM_DEFAULT_ID,
209 [CPUA_INTAKE_FAN_RPM_INDEX] = {
210 .loc = "CPU A INTAKE",
211 .type = FCU_FAN_RPM,
212 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
214 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
215 .loc = "CPU A EXHAUST",
216 .type = FCU_FAN_RPM,
217 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
219 [CPUB_INTAKE_FAN_RPM_INDEX] = {
220 .loc = "CPU B INTAKE",
221 .type = FCU_FAN_RPM,
222 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
224 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
225 .loc = "CPU B EXHAUST",
226 .type = FCU_FAN_RPM,
227 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
229 /* pumps aren't present by default, have to be looked up in the
230 * device-tree
232 [CPUA_PUMP_RPM_INDEX] = {
233 .loc = "CPU A PUMP",
234 .type = FCU_FAN_RPM,
235 .id = FCU_FAN_ABSENT_ID,
237 [CPUB_PUMP_RPM_INDEX] = {
238 .loc = "CPU B PUMP",
239 .type = FCU_FAN_RPM,
240 .id = FCU_FAN_ABSENT_ID,
242 /* Xserve fans */
243 [CPU_A1_FAN_RPM_INDEX] = {
244 .loc = "CPU A 1",
245 .type = FCU_FAN_RPM,
246 .id = FCU_FAN_ABSENT_ID,
248 [CPU_A2_FAN_RPM_INDEX] = {
249 .loc = "CPU A 2",
250 .type = FCU_FAN_RPM,
251 .id = FCU_FAN_ABSENT_ID,
253 [CPU_A3_FAN_RPM_INDEX] = {
254 .loc = "CPU A 3",
255 .type = FCU_FAN_RPM,
256 .id = FCU_FAN_ABSENT_ID,
258 [CPU_B1_FAN_RPM_INDEX] = {
259 .loc = "CPU B 1",
260 .type = FCU_FAN_RPM,
261 .id = FCU_FAN_ABSENT_ID,
263 [CPU_B2_FAN_RPM_INDEX] = {
264 .loc = "CPU B 2",
265 .type = FCU_FAN_RPM,
266 .id = FCU_FAN_ABSENT_ID,
268 [CPU_B3_FAN_RPM_INDEX] = {
269 .loc = "CPU B 3",
270 .type = FCU_FAN_RPM,
271 .id = FCU_FAN_ABSENT_ID,
276 * i2c_driver structure to attach to the host i2c controller
279 static int therm_pm72_attach(struct i2c_adapter *adapter);
280 static int therm_pm72_detach(struct i2c_adapter *adapter);
282 static struct i2c_driver therm_pm72_driver =
284 .driver = {
285 .name = "therm_pm72",
287 .attach_adapter = therm_pm72_attach,
288 .detach_adapter = therm_pm72_detach,
292 * Utility function to create an i2c_client structure and
293 * attach it to one of u3 adapters
295 static struct i2c_client *attach_i2c_chip(int id, const char *name)
297 struct i2c_client *clt;
298 struct i2c_adapter *adap;
300 if (id & 0x200)
301 adap = k2;
302 else if (id & 0x100)
303 adap = u3_1;
304 else
305 adap = u3_0;
306 if (adap == NULL)
307 return NULL;
309 clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
310 if (clt == NULL)
311 return NULL;
312 memset(clt, 0, sizeof(struct i2c_client));
314 clt->addr = (id >> 1) & 0x7f;
315 clt->adapter = adap;
316 clt->driver = &therm_pm72_driver;
317 strncpy(clt->name, name, I2C_NAME_SIZE-1);
319 if (i2c_attach_client(clt)) {
320 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
321 kfree(clt);
322 return NULL;
324 return clt;
328 * Utility function to get rid of the i2c_client structure
329 * (will also detach from the adapter hopepfully)
331 static void detach_i2c_chip(struct i2c_client *clt)
333 i2c_detach_client(clt);
334 kfree(clt);
338 * Here are the i2c chip access wrappers
341 static void initialize_adc(struct cpu_pid_state *state)
343 int rc;
344 u8 buf[2];
346 /* Read ADC the configuration register and cache it. We
347 * also make sure Config2 contains proper values, I've seen
348 * cases where we got stale grabage in there, thus preventing
349 * proper reading of conv. values
352 /* Clear Config2 */
353 buf[0] = 5;
354 buf[1] = 0;
355 i2c_master_send(state->monitor, buf, 2);
357 /* Read & cache Config1 */
358 buf[0] = 1;
359 rc = i2c_master_send(state->monitor, buf, 1);
360 if (rc > 0) {
361 rc = i2c_master_recv(state->monitor, buf, 1);
362 if (rc > 0) {
363 state->adc_config = buf[0];
364 DBG("ADC config reg: %02x\n", state->adc_config);
365 /* Disable shutdown mode */
366 state->adc_config &= 0xfe;
367 buf[0] = 1;
368 buf[1] = state->adc_config;
369 rc = i2c_master_send(state->monitor, buf, 2);
372 if (rc <= 0)
373 printk(KERN_ERR "therm_pm72: Error reading ADC config"
374 " register !\n");
377 static int read_smon_adc(struct cpu_pid_state *state, int chan)
379 int rc, data, tries = 0;
380 u8 buf[2];
382 for (;;) {
383 /* Set channel */
384 buf[0] = 1;
385 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
386 rc = i2c_master_send(state->monitor, buf, 2);
387 if (rc <= 0)
388 goto error;
389 /* Wait for convertion */
390 msleep(1);
391 /* Switch to data register */
392 buf[0] = 4;
393 rc = i2c_master_send(state->monitor, buf, 1);
394 if (rc <= 0)
395 goto error;
396 /* Read result */
397 rc = i2c_master_recv(state->monitor, buf, 2);
398 if (rc < 0)
399 goto error;
400 data = ((u16)buf[0]) << 8 | (u16)buf[1];
401 return data >> 6;
402 error:
403 DBG("Error reading ADC, retrying...\n");
404 if (++tries > 10) {
405 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
406 return -1;
408 msleep(10);
412 static int read_lm87_reg(struct i2c_client * chip, int reg)
414 int rc, tries = 0;
415 u8 buf;
417 for (;;) {
418 /* Set address */
419 buf = (u8)reg;
420 rc = i2c_master_send(chip, &buf, 1);
421 if (rc <= 0)
422 goto error;
423 rc = i2c_master_recv(chip, &buf, 1);
424 if (rc <= 0)
425 goto error;
426 return (int)buf;
427 error:
428 DBG("Error reading LM87, retrying...\n");
429 if (++tries > 10) {
430 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
431 return -1;
433 msleep(10);
437 static int fan_read_reg(int reg, unsigned char *buf, int nb)
439 int tries, nr, nw;
441 buf[0] = reg;
442 tries = 0;
443 for (;;) {
444 nw = i2c_master_send(fcu, buf, 1);
445 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
446 break;
447 msleep(10);
448 ++tries;
450 if (nw <= 0) {
451 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
452 return -EIO;
454 tries = 0;
455 for (;;) {
456 nr = i2c_master_recv(fcu, buf, nb);
457 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
458 break;
459 msleep(10);
460 ++tries;
462 if (nr <= 0)
463 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
464 return nr;
467 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
469 int tries, nw;
470 unsigned char buf[16];
472 buf[0] = reg;
473 memcpy(buf+1, ptr, nb);
474 ++nb;
475 tries = 0;
476 for (;;) {
477 nw = i2c_master_send(fcu, buf, nb);
478 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
479 break;
480 msleep(10);
481 ++tries;
483 if (nw < 0)
484 printk(KERN_ERR "Failure writing to FCU: %d", nw);
485 return nw;
488 static int start_fcu(void)
490 unsigned char buf = 0xff;
491 int rc;
493 rc = fan_write_reg(0xe, &buf, 1);
494 if (rc < 0)
495 return -EIO;
496 rc = fan_write_reg(0x2e, &buf, 1);
497 if (rc < 0)
498 return -EIO;
499 return 0;
502 static int set_rpm_fan(int fan_index, int rpm)
504 unsigned char buf[2];
505 int rc, id;
507 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
508 return -EINVAL;
509 id = fcu_fans[fan_index].id;
510 if (id == FCU_FAN_ABSENT_ID)
511 return -EINVAL;
513 if (rpm < 300)
514 rpm = 300;
515 else if (rpm > 8191)
516 rpm = 8191;
517 buf[0] = rpm >> 5;
518 buf[1] = rpm << 3;
519 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
520 if (rc < 0)
521 return -EIO;
522 return 0;
525 static int get_rpm_fan(int fan_index, int programmed)
527 unsigned char failure;
528 unsigned char active;
529 unsigned char buf[2];
530 int rc, id, reg_base;
532 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
533 return -EINVAL;
534 id = fcu_fans[fan_index].id;
535 if (id == FCU_FAN_ABSENT_ID)
536 return -EINVAL;
538 rc = fan_read_reg(0xb, &failure, 1);
539 if (rc != 1)
540 return -EIO;
541 if ((failure & (1 << id)) != 0)
542 return -EFAULT;
543 rc = fan_read_reg(0xd, &active, 1);
544 if (rc != 1)
545 return -EIO;
546 if ((active & (1 << id)) == 0)
547 return -ENXIO;
549 /* Programmed value or real current speed */
550 reg_base = programmed ? 0x10 : 0x11;
551 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
552 if (rc != 2)
553 return -EIO;
555 return (buf[0] << 5) | buf[1] >> 3;
558 static int set_pwm_fan(int fan_index, int pwm)
560 unsigned char buf[2];
561 int rc, id;
563 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
564 return -EINVAL;
565 id = fcu_fans[fan_index].id;
566 if (id == FCU_FAN_ABSENT_ID)
567 return -EINVAL;
569 if (pwm < 10)
570 pwm = 10;
571 else if (pwm > 100)
572 pwm = 100;
573 pwm = (pwm * 2559) / 1000;
574 buf[0] = pwm;
575 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
576 if (rc < 0)
577 return rc;
578 return 0;
581 static int get_pwm_fan(int fan_index)
583 unsigned char failure;
584 unsigned char active;
585 unsigned char buf[2];
586 int rc, id;
588 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
589 return -EINVAL;
590 id = fcu_fans[fan_index].id;
591 if (id == FCU_FAN_ABSENT_ID)
592 return -EINVAL;
594 rc = fan_read_reg(0x2b, &failure, 1);
595 if (rc != 1)
596 return -EIO;
597 if ((failure & (1 << id)) != 0)
598 return -EFAULT;
599 rc = fan_read_reg(0x2d, &active, 1);
600 if (rc != 1)
601 return -EIO;
602 if ((active & (1 << id)) == 0)
603 return -ENXIO;
605 /* Programmed value or real current speed */
606 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
607 if (rc != 1)
608 return -EIO;
610 return (buf[0] * 1000) / 2559;
614 * Utility routine to read the CPU calibration EEPROM data
615 * from the device-tree
617 static int read_eeprom(int cpu, struct mpu_data *out)
619 struct device_node *np;
620 char nodename[64];
621 u8 *data;
622 int len;
624 /* prom.c routine for finding a node by path is a bit brain dead
625 * and requires exact @xxx unit numbers. This is a bit ugly but
626 * will work for these machines
628 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
629 np = of_find_node_by_path(nodename);
630 if (np == NULL) {
631 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
632 return -ENODEV;
634 data = (u8 *)get_property(np, "cpuid", &len);
635 if (data == NULL) {
636 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
637 of_node_put(np);
638 return -ENODEV;
640 memcpy(out, data, sizeof(struct mpu_data));
641 of_node_put(np);
643 return 0;
646 static void fetch_cpu_pumps_minmax(void)
648 struct cpu_pid_state *state0 = &cpu_state[0];
649 struct cpu_pid_state *state1 = &cpu_state[1];
650 u16 pump_min = 0, pump_max = 0xffff;
651 u16 tmp[4];
653 /* Try to fetch pumps min/max infos from eeprom */
655 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
656 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
657 pump_min = max(pump_min, tmp[0]);
658 pump_max = min(pump_max, tmp[1]);
660 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
661 pump_min = max(pump_min, tmp[2]);
662 pump_max = min(pump_max, tmp[3]);
665 /* Double check the values, this _IS_ needed as the EEPROM on
666 * some dual 2.5Ghz G5s seem, at least, to have both min & max
667 * same to the same value ... (grrrr)
669 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
670 pump_min = CPU_PUMP_OUTPUT_MIN;
671 pump_max = CPU_PUMP_OUTPUT_MAX;
674 state0->pump_min = state1->pump_min = pump_min;
675 state0->pump_max = state1->pump_max = pump_max;
679 * Now, unfortunately, sysfs doesn't give us a nice void * we could
680 * pass around to the attribute functions, so we don't really have
681 * choice but implement a bunch of them...
683 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
684 * the input twice... I accept patches :)
686 #define BUILD_SHOW_FUNC_FIX(name, data) \
687 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
689 ssize_t r; \
690 down(&driver_lock); \
691 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
692 up(&driver_lock); \
693 return r; \
695 #define BUILD_SHOW_FUNC_INT(name, data) \
696 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
698 return sprintf(buf, "%d", data); \
701 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
702 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
703 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
704 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
705 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
707 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
708 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
709 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
710 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
711 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
713 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
714 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
716 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
717 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
719 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
721 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
722 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
723 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
724 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
725 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
727 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
728 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
729 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
730 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
731 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
733 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
734 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
736 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
737 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
739 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
742 * CPUs fans control loop
745 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
747 s32 ltemp, volts, amps;
748 int index, rc = 0;
750 /* Default (in case of error) */
751 *temp = state->cur_temp;
752 *power = state->cur_power;
754 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
755 index = (state->index == 0) ?
756 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
757 else
758 index = (state->index == 0) ?
759 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
761 /* Read current fan status */
762 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
763 if (rc < 0) {
764 /* XXX What do we do now ? Nothing for now, keep old value, but
765 * return error upstream
767 DBG(" cpu %d, fan reading error !\n", state->index);
768 } else {
769 state->rpm = rc;
770 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
773 /* Get some sensor readings and scale it */
774 ltemp = read_smon_adc(state, 1);
775 if (ltemp == -1) {
776 /* XXX What do we do now ? */
777 state->overtemp++;
778 if (rc == 0)
779 rc = -EIO;
780 DBG(" cpu %d, temp reading error !\n", state->index);
781 } else {
782 /* Fixup temperature according to diode calibration
784 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
785 state->index,
786 ltemp, state->mpu.mdiode, state->mpu.bdiode);
787 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
788 state->last_temp = *temp;
789 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
793 * Read voltage & current and calculate power
795 volts = read_smon_adc(state, 3);
796 amps = read_smon_adc(state, 4);
798 /* Scale voltage and current raw sensor values according to fixed scales
799 * obtained in Darwin and calculate power from I and V
801 volts *= ADC_CPU_VOLTAGE_SCALE;
802 amps *= ADC_CPU_CURRENT_SCALE;
803 *power = (((u64)volts) * ((u64)amps)) >> 16;
804 state->voltage = volts;
805 state->current_a = amps;
806 state->last_power = *power;
808 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
809 state->index, FIX32TOPRINT(state->current_a),
810 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
812 return 0;
815 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
817 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
818 s64 integ_p, deriv_p, prop_p, sum;
819 int i;
821 /* Calculate power target value (could be done once for all)
822 * and convert to a 16.16 fp number
824 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
825 DBG(" power target: %d.%03d, error: %d.%03d\n",
826 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
828 /* Store temperature and power in history array */
829 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
830 state->temp_history[state->cur_temp] = temp;
831 state->cur_power = (state->cur_power + 1) % state->count_power;
832 state->power_history[state->cur_power] = power;
833 state->error_history[state->cur_power] = power_target - power;
835 /* If first loop, fill the history table */
836 if (state->first) {
837 for (i = 0; i < (state->count_power - 1); i++) {
838 state->cur_power = (state->cur_power + 1) % state->count_power;
839 state->power_history[state->cur_power] = power;
840 state->error_history[state->cur_power] = power_target - power;
842 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
843 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
844 state->temp_history[state->cur_temp] = temp;
846 state->first = 0;
849 /* Calculate the integral term normally based on the "power" values */
850 sum = 0;
851 integral = 0;
852 for (i = 0; i < state->count_power; i++)
853 integral += state->error_history[i];
854 integral *= CPU_PID_INTERVAL;
855 DBG(" integral: %08x\n", integral);
857 /* Calculate the adjusted input (sense value).
858 * G_r is 12.20
859 * integ is 16.16
860 * so the result is 28.36
862 * input target is mpu.ttarget, input max is mpu.tmax
864 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
865 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
866 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
867 adj_in_target = (state->mpu.ttarget << 16);
868 if (adj_in_target > sval)
869 adj_in_target = sval;
870 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
871 state->mpu.ttarget);
873 /* Calculate the derivative term */
874 derivative = state->temp_history[state->cur_temp] -
875 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
876 % CPU_TEMP_HISTORY_SIZE];
877 derivative /= CPU_PID_INTERVAL;
878 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
879 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
880 sum += deriv_p;
882 /* Calculate the proportional term */
883 proportional = temp - adj_in_target;
884 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
885 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
886 sum += prop_p;
888 /* Scale sum */
889 sum >>= 36;
891 DBG(" sum: %d\n", (int)sum);
892 state->rpm += (s32)sum;
895 static void do_monitor_cpu_combined(void)
897 struct cpu_pid_state *state0 = &cpu_state[0];
898 struct cpu_pid_state *state1 = &cpu_state[1];
899 s32 temp0, power0, temp1, power1;
900 s32 temp_combi, power_combi;
901 int rc, intake, pump;
903 rc = do_read_one_cpu_values(state0, &temp0, &power0);
904 if (rc < 0) {
905 /* XXX What do we do now ? */
907 state1->overtemp = 0;
908 rc = do_read_one_cpu_values(state1, &temp1, &power1);
909 if (rc < 0) {
910 /* XXX What do we do now ? */
912 if (state1->overtemp)
913 state0->overtemp++;
915 temp_combi = max(temp0, temp1);
916 power_combi = max(power0, power1);
918 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
919 * full blown immediately and try to trigger a shutdown
921 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
922 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
923 temp_combi >> 16);
924 state0->overtemp += CPU_MAX_OVERTEMP / 4;
925 } else if (temp_combi > (state0->mpu.tmax << 16))
926 state0->overtemp++;
927 else
928 state0->overtemp = 0;
929 if (state0->overtemp >= CPU_MAX_OVERTEMP)
930 critical_state = 1;
931 if (state0->overtemp > 0) {
932 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
933 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
934 pump = state0->pump_max;
935 goto do_set_fans;
938 /* Do the PID */
939 do_cpu_pid(state0, temp_combi, power_combi);
941 /* Range check */
942 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
943 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
945 /* Calculate intake fan speed */
946 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
947 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
948 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
949 state0->intake_rpm = intake;
951 /* Calculate pump speed */
952 pump = (state0->rpm * state0->pump_max) /
953 state0->mpu.rmaxn_exhaust_fan;
954 pump = min(pump, state0->pump_max);
955 pump = max(pump, state0->pump_min);
957 do_set_fans:
958 /* We copy values from state 0 to state 1 for /sysfs */
959 state1->rpm = state0->rpm;
960 state1->intake_rpm = state0->intake_rpm;
962 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
963 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
965 /* We should check for errors, shouldn't we ? But then, what
966 * do we do once the error occurs ? For FCU notified fan
967 * failures (-EFAULT) we probably want to notify userland
968 * some way...
970 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
971 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
972 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
973 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
975 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
976 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
977 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
978 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
981 static void do_monitor_cpu_split(struct cpu_pid_state *state)
983 s32 temp, power;
984 int rc, intake;
986 /* Read current fan status */
987 rc = do_read_one_cpu_values(state, &temp, &power);
988 if (rc < 0) {
989 /* XXX What do we do now ? */
992 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
993 * full blown immediately and try to trigger a shutdown
995 if (temp >= ((state->mpu.tmax + 8) << 16)) {
996 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
997 " (%d) !\n",
998 state->index, temp >> 16);
999 state->overtemp += CPU_MAX_OVERTEMP / 4;
1000 } else if (temp > (state->mpu.tmax << 16))
1001 state->overtemp++;
1002 else
1003 state->overtemp = 0;
1004 if (state->overtemp >= CPU_MAX_OVERTEMP)
1005 critical_state = 1;
1006 if (state->overtemp > 0) {
1007 state->rpm = state->mpu.rmaxn_exhaust_fan;
1008 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1009 goto do_set_fans;
1012 /* Do the PID */
1013 do_cpu_pid(state, temp, power);
1015 /* Range check */
1016 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1017 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1019 /* Calculate intake fan */
1020 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1021 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1022 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1023 state->intake_rpm = intake;
1025 do_set_fans:
1026 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1027 state->index, (int)state->rpm, intake, state->overtemp);
1029 /* We should check for errors, shouldn't we ? But then, what
1030 * do we do once the error occurs ? For FCU notified fan
1031 * failures (-EFAULT) we probably want to notify userland
1032 * some way...
1034 if (state->index == 0) {
1035 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1036 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1037 } else {
1038 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1039 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1043 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1045 s32 temp, power, fan_min;
1046 int rc;
1048 /* Read current fan status */
1049 rc = do_read_one_cpu_values(state, &temp, &power);
1050 if (rc < 0) {
1051 /* XXX What do we do now ? */
1054 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1055 * full blown immediately and try to trigger a shutdown
1057 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1058 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1059 " (%d) !\n",
1060 state->index, temp >> 16);
1061 state->overtemp = CPU_MAX_OVERTEMP / 4;
1062 } else if (temp > (state->mpu.tmax << 16))
1063 state->overtemp++;
1064 else
1065 state->overtemp = 0;
1066 if (state->overtemp >= CPU_MAX_OVERTEMP)
1067 critical_state = 1;
1068 if (state->overtemp > 0) {
1069 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1070 goto do_set_fans;
1073 /* Do the PID */
1074 do_cpu_pid(state, temp, power);
1076 /* Check clamp from dimms */
1077 fan_min = dimm_output_clamp;
1078 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1080 state->rpm = max(state->rpm, (int)fan_min);
1081 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1082 state->intake_rpm = state->rpm;
1084 do_set_fans:
1085 DBG("** CPU %d RPM: %d overtemp: %d\n",
1086 state->index, (int)state->rpm, state->overtemp);
1088 /* We should check for errors, shouldn't we ? But then, what
1089 * do we do once the error occurs ? For FCU notified fan
1090 * failures (-EFAULT) we probably want to notify userland
1091 * some way...
1093 if (state->index == 0) {
1094 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1095 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1096 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1097 } else {
1098 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1099 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1100 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1105 * Initialize the state structure for one CPU control loop
1107 static int init_cpu_state(struct cpu_pid_state *state, int index)
1109 state->index = index;
1110 state->first = 1;
1111 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1112 state->overtemp = 0;
1113 state->adc_config = 0x00;
1116 if (index == 0)
1117 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1118 else if (index == 1)
1119 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1120 if (state->monitor == NULL)
1121 goto fail;
1123 if (read_eeprom(index, &state->mpu))
1124 goto fail;
1126 state->count_power = state->mpu.tguardband;
1127 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1128 printk(KERN_WARNING "Warning ! too many power history slots\n");
1129 state->count_power = CPU_POWER_HISTORY_SIZE;
1131 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1133 if (index == 0) {
1134 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1135 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1136 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1137 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1138 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1139 } else {
1140 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1141 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1142 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1143 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1144 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1147 return 0;
1148 fail:
1149 if (state->monitor)
1150 detach_i2c_chip(state->monitor);
1151 state->monitor = NULL;
1153 return -ENODEV;
1157 * Dispose of the state data for one CPU control loop
1159 static void dispose_cpu_state(struct cpu_pid_state *state)
1161 if (state->monitor == NULL)
1162 return;
1164 if (state->index == 0) {
1165 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1166 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1167 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1168 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1169 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1170 } else {
1171 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1172 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1173 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1174 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1175 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1178 detach_i2c_chip(state->monitor);
1179 state->monitor = NULL;
1183 * Motherboard backside & U3 heatsink fan control loop
1185 static void do_monitor_backside(struct backside_pid_state *state)
1187 s32 temp, integral, derivative, fan_min;
1188 s64 integ_p, deriv_p, prop_p, sum;
1189 int i, rc;
1191 if (--state->ticks != 0)
1192 return;
1193 state->ticks = backside_params.interval;
1195 DBG("backside:\n");
1197 /* Check fan status */
1198 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1199 if (rc < 0) {
1200 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1201 /* XXX What do we do now ? */
1202 } else
1203 state->pwm = rc;
1204 DBG(" current pwm: %d\n", state->pwm);
1206 /* Get some sensor readings */
1207 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1208 state->last_temp = temp;
1209 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1210 FIX32TOPRINT(backside_params.input_target));
1212 /* Store temperature and error in history array */
1213 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1214 state->sample_history[state->cur_sample] = temp;
1215 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1217 /* If first loop, fill the history table */
1218 if (state->first) {
1219 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1220 state->cur_sample = (state->cur_sample + 1) %
1221 BACKSIDE_PID_HISTORY_SIZE;
1222 state->sample_history[state->cur_sample] = temp;
1223 state->error_history[state->cur_sample] =
1224 temp - backside_params.input_target;
1226 state->first = 0;
1229 /* Calculate the integral term */
1230 sum = 0;
1231 integral = 0;
1232 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1233 integral += state->error_history[i];
1234 integral *= backside_params.interval;
1235 DBG(" integral: %08x\n", integral);
1236 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1237 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1238 sum += integ_p;
1240 /* Calculate the derivative term */
1241 derivative = state->error_history[state->cur_sample] -
1242 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1243 % BACKSIDE_PID_HISTORY_SIZE];
1244 derivative /= backside_params.interval;
1245 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1246 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1247 sum += deriv_p;
1249 /* Calculate the proportional term */
1250 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1251 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1252 sum += prop_p;
1254 /* Scale sum */
1255 sum >>= 36;
1257 DBG(" sum: %d\n", (int)sum);
1258 if (backside_params.additive)
1259 state->pwm += (s32)sum;
1260 else
1261 state->pwm = sum;
1263 /* Check for clamp */
1264 fan_min = (dimm_output_clamp * 100) / 14000;
1265 fan_min = max(fan_min, backside_params.output_min);
1267 state->pwm = max(state->pwm, fan_min);
1268 state->pwm = min(state->pwm, backside_params.output_max);
1270 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1271 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1275 * Initialize the state structure for the backside fan control loop
1277 static int init_backside_state(struct backside_pid_state *state)
1279 struct device_node *u3;
1280 int u3h = 1; /* conservative by default */
1283 * There are different PID params for machines with U3 and machines
1284 * with U3H, pick the right ones now
1286 u3 = of_find_node_by_path("/u3@0,f8000000");
1287 if (u3 != NULL) {
1288 u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
1289 if (vers)
1290 if (((*vers) & 0x3f) < 0x34)
1291 u3h = 0;
1292 of_node_put(u3);
1295 if (rackmac) {
1296 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1297 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1298 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1299 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1300 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1301 backside_params.G_r = BACKSIDE_PID_G_r;
1302 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1303 backside_params.additive = 0;
1304 } else if (u3h) {
1305 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1306 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1307 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1308 backside_params.interval = BACKSIDE_PID_INTERVAL;
1309 backside_params.G_p = BACKSIDE_PID_G_p;
1310 backside_params.G_r = BACKSIDE_PID_G_r;
1311 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1312 backside_params.additive = 1;
1313 } else {
1314 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1315 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1316 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1317 backside_params.interval = BACKSIDE_PID_INTERVAL;
1318 backside_params.G_p = BACKSIDE_PID_G_p;
1319 backside_params.G_r = BACKSIDE_PID_G_r;
1320 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1321 backside_params.additive = 1;
1324 state->ticks = 1;
1325 state->first = 1;
1326 state->pwm = 50;
1328 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1329 if (state->monitor == NULL)
1330 return -ENODEV;
1332 device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1333 device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1335 return 0;
1339 * Dispose of the state data for the backside control loop
1341 static void dispose_backside_state(struct backside_pid_state *state)
1343 if (state->monitor == NULL)
1344 return;
1346 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1347 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1349 detach_i2c_chip(state->monitor);
1350 state->monitor = NULL;
1354 * Drives bay fan control loop
1356 static void do_monitor_drives(struct drives_pid_state *state)
1358 s32 temp, integral, derivative;
1359 s64 integ_p, deriv_p, prop_p, sum;
1360 int i, rc;
1362 if (--state->ticks != 0)
1363 return;
1364 state->ticks = DRIVES_PID_INTERVAL;
1366 DBG("drives:\n");
1368 /* Check fan status */
1369 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1370 if (rc < 0) {
1371 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1372 /* XXX What do we do now ? */
1373 } else
1374 state->rpm = rc;
1375 DBG(" current rpm: %d\n", state->rpm);
1377 /* Get some sensor readings */
1378 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
1379 state->last_temp = temp;
1380 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1381 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1383 /* Store temperature and error in history array */
1384 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1385 state->sample_history[state->cur_sample] = temp;
1386 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1388 /* If first loop, fill the history table */
1389 if (state->first) {
1390 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1391 state->cur_sample = (state->cur_sample + 1) %
1392 DRIVES_PID_HISTORY_SIZE;
1393 state->sample_history[state->cur_sample] = temp;
1394 state->error_history[state->cur_sample] =
1395 temp - DRIVES_PID_INPUT_TARGET;
1397 state->first = 0;
1400 /* Calculate the integral term */
1401 sum = 0;
1402 integral = 0;
1403 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1404 integral += state->error_history[i];
1405 integral *= DRIVES_PID_INTERVAL;
1406 DBG(" integral: %08x\n", integral);
1407 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1408 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1409 sum += integ_p;
1411 /* Calculate the derivative term */
1412 derivative = state->error_history[state->cur_sample] -
1413 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1414 % DRIVES_PID_HISTORY_SIZE];
1415 derivative /= DRIVES_PID_INTERVAL;
1416 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1417 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1418 sum += deriv_p;
1420 /* Calculate the proportional term */
1421 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1422 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1423 sum += prop_p;
1425 /* Scale sum */
1426 sum >>= 36;
1428 DBG(" sum: %d\n", (int)sum);
1429 state->rpm += (s32)sum;
1431 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1432 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1434 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1435 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1439 * Initialize the state structure for the drives bay fan control loop
1441 static int init_drives_state(struct drives_pid_state *state)
1443 state->ticks = 1;
1444 state->first = 1;
1445 state->rpm = 1000;
1447 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1448 if (state->monitor == NULL)
1449 return -ENODEV;
1451 device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1452 device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1454 return 0;
1458 * Dispose of the state data for the drives control loop
1460 static void dispose_drives_state(struct drives_pid_state *state)
1462 if (state->monitor == NULL)
1463 return;
1465 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1466 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1468 detach_i2c_chip(state->monitor);
1469 state->monitor = NULL;
1473 * DIMMs temp control loop
1475 static void do_monitor_dimms(struct dimm_pid_state *state)
1477 s32 temp, integral, derivative, fan_min;
1478 s64 integ_p, deriv_p, prop_p, sum;
1479 int i;
1481 if (--state->ticks != 0)
1482 return;
1483 state->ticks = DIMM_PID_INTERVAL;
1485 DBG("DIMM:\n");
1487 DBG(" current value: %d\n", state->output);
1489 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1490 if (temp < 0)
1491 return;
1492 temp <<= 16;
1493 state->last_temp = temp;
1494 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1495 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1497 /* Store temperature and error in history array */
1498 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1499 state->sample_history[state->cur_sample] = temp;
1500 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1502 /* If first loop, fill the history table */
1503 if (state->first) {
1504 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1505 state->cur_sample = (state->cur_sample + 1) %
1506 DIMM_PID_HISTORY_SIZE;
1507 state->sample_history[state->cur_sample] = temp;
1508 state->error_history[state->cur_sample] =
1509 temp - DIMM_PID_INPUT_TARGET;
1511 state->first = 0;
1514 /* Calculate the integral term */
1515 sum = 0;
1516 integral = 0;
1517 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1518 integral += state->error_history[i];
1519 integral *= DIMM_PID_INTERVAL;
1520 DBG(" integral: %08x\n", integral);
1521 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1522 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1523 sum += integ_p;
1525 /* Calculate the derivative term */
1526 derivative = state->error_history[state->cur_sample] -
1527 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1528 % DIMM_PID_HISTORY_SIZE];
1529 derivative /= DIMM_PID_INTERVAL;
1530 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1531 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1532 sum += deriv_p;
1534 /* Calculate the proportional term */
1535 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1536 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1537 sum += prop_p;
1539 /* Scale sum */
1540 sum >>= 36;
1542 DBG(" sum: %d\n", (int)sum);
1543 state->output = (s32)sum;
1544 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1545 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1546 dimm_output_clamp = state->output;
1548 DBG("** DIMM clamp value: %d\n", (int)state->output);
1550 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1551 fan_min = (dimm_output_clamp * 100) / 14000;
1552 fan_min = max(fan_min, backside_params.output_min);
1553 if (backside_state.pwm < fan_min) {
1554 backside_state.pwm = fan_min;
1555 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1556 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1561 * Initialize the state structure for the DIMM temp control loop
1563 static int init_dimms_state(struct dimm_pid_state *state)
1565 state->ticks = 1;
1566 state->first = 1;
1567 state->output = 4000;
1569 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1570 if (state->monitor == NULL)
1571 return -ENODEV;
1573 device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1575 return 0;
1579 * Dispose of the state data for the drives control loop
1581 static void dispose_dimms_state(struct dimm_pid_state *state)
1583 if (state->monitor == NULL)
1584 return;
1586 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1588 detach_i2c_chip(state->monitor);
1589 state->monitor = NULL;
1592 static int call_critical_overtemp(void)
1594 char *argv[] = { critical_overtemp_path, NULL };
1595 static char *envp[] = { "HOME=/",
1596 "TERM=linux",
1597 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1598 NULL };
1600 return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1605 * Here's the kernel thread that calls the various control loops
1607 static int main_control_loop(void *x)
1609 daemonize("kfand");
1611 DBG("main_control_loop started\n");
1613 down(&driver_lock);
1615 if (start_fcu() < 0) {
1616 printk(KERN_ERR "kfand: failed to start FCU\n");
1617 up(&driver_lock);
1618 goto out;
1621 /* Set the PCI fan once for now */
1622 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1624 /* Initialize ADCs */
1625 initialize_adc(&cpu_state[0]);
1626 if (cpu_state[1].monitor != NULL)
1627 initialize_adc(&cpu_state[1]);
1629 up(&driver_lock);
1631 while (state == state_attached) {
1632 unsigned long elapsed, start;
1634 start = jiffies;
1636 down(&driver_lock);
1638 /* First, we always calculate the new DIMMs state on an Xserve */
1639 if (rackmac)
1640 do_monitor_dimms(&dimms_state);
1642 /* Then, the CPUs */
1643 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1644 do_monitor_cpu_combined();
1645 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1646 do_monitor_cpu_rack(&cpu_state[0]);
1647 if (cpu_state[1].monitor != NULL)
1648 do_monitor_cpu_rack(&cpu_state[1]);
1649 // better deal with UP
1650 } else {
1651 do_monitor_cpu_split(&cpu_state[0]);
1652 if (cpu_state[1].monitor != NULL)
1653 do_monitor_cpu_split(&cpu_state[1]);
1654 // better deal with UP
1656 /* Then, the rest */
1657 do_monitor_backside(&backside_state);
1658 if (!rackmac)
1659 do_monitor_drives(&drives_state);
1660 up(&driver_lock);
1662 if (critical_state == 1) {
1663 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1664 printk(KERN_WARNING "Attempting to shut down...\n");
1665 if (call_critical_overtemp()) {
1666 printk(KERN_WARNING "Can't call %s, power off now!\n",
1667 critical_overtemp_path);
1668 machine_power_off();
1671 if (critical_state > 0)
1672 critical_state++;
1673 if (critical_state > MAX_CRITICAL_STATE) {
1674 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1675 machine_power_off();
1678 // FIXME: Deal with signals
1679 elapsed = jiffies - start;
1680 if (elapsed < HZ)
1681 schedule_timeout_interruptible(HZ - elapsed);
1684 out:
1685 DBG("main_control_loop ended\n");
1687 ctrl_task = 0;
1688 complete_and_exit(&ctrl_complete, 0);
1692 * Dispose the control loops when tearing down
1694 static void dispose_control_loops(void)
1696 dispose_cpu_state(&cpu_state[0]);
1697 dispose_cpu_state(&cpu_state[1]);
1698 dispose_backside_state(&backside_state);
1699 dispose_drives_state(&drives_state);
1700 dispose_dimms_state(&dimms_state);
1704 * Create the control loops. U3-0 i2c bus is up, so we can now
1705 * get to the various sensors
1707 static int create_control_loops(void)
1709 struct device_node *np;
1711 /* Count CPUs from the device-tree, we don't care how many are
1712 * actually used by Linux
1714 cpu_count = 0;
1715 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1716 cpu_count++;
1718 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1720 /* Decide the type of PID algorithm to use based on the presence of
1721 * the pumps, though that may not be the best way, that is good enough
1722 * for now
1724 if (rackmac)
1725 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1726 else if (machine_is_compatible("PowerMac7,3")
1727 && (cpu_count > 1)
1728 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1729 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1730 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1731 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1732 } else
1733 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1735 /* Create control loops for everything. If any fail, everything
1736 * fails
1738 if (init_cpu_state(&cpu_state[0], 0))
1739 goto fail;
1740 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1741 fetch_cpu_pumps_minmax();
1743 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1744 goto fail;
1745 if (init_backside_state(&backside_state))
1746 goto fail;
1747 if (rackmac && init_dimms_state(&dimms_state))
1748 goto fail;
1749 if (!rackmac && init_drives_state(&drives_state))
1750 goto fail;
1752 DBG("all control loops up !\n");
1754 return 0;
1756 fail:
1757 DBG("failure creating control loops, disposing\n");
1759 dispose_control_loops();
1761 return -ENODEV;
1765 * Start the control loops after everything is up, that is create
1766 * the thread that will make them run
1768 static void start_control_loops(void)
1770 init_completion(&ctrl_complete);
1772 ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1776 * Stop the control loops when tearing down
1778 static void stop_control_loops(void)
1780 if (ctrl_task != 0)
1781 wait_for_completion(&ctrl_complete);
1785 * Attach to the i2c FCU after detecting U3-1 bus
1787 static int attach_fcu(void)
1789 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1790 if (fcu == NULL)
1791 return -ENODEV;
1793 DBG("FCU attached\n");
1795 return 0;
1799 * Detach from the i2c FCU when tearing down
1801 static void detach_fcu(void)
1803 if (fcu)
1804 detach_i2c_chip(fcu);
1805 fcu = NULL;
1809 * Attach to the i2c controller. We probe the various chips based
1810 * on the device-tree nodes and build everything for the driver to
1811 * run, we then kick the driver monitoring thread
1813 static int therm_pm72_attach(struct i2c_adapter *adapter)
1815 down(&driver_lock);
1817 /* Check state */
1818 if (state == state_detached)
1819 state = state_attaching;
1820 if (state != state_attaching) {
1821 up(&driver_lock);
1822 return 0;
1825 /* Check if we are looking for one of these */
1826 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1827 u3_0 = adapter;
1828 DBG("found U3-0\n");
1829 if (k2 || !rackmac)
1830 if (create_control_loops())
1831 u3_0 = NULL;
1832 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1833 u3_1 = adapter;
1834 DBG("found U3-1, attaching FCU\n");
1835 if (attach_fcu())
1836 u3_1 = NULL;
1837 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1838 k2 = adapter;
1839 DBG("Found K2\n");
1840 if (u3_0 && rackmac)
1841 if (create_control_loops())
1842 k2 = NULL;
1844 /* We got all we need, start control loops */
1845 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1846 DBG("everything up, starting control loops\n");
1847 state = state_attached;
1848 start_control_loops();
1850 up(&driver_lock);
1852 return 0;
1856 * Called on every adapter when the driver or the i2c controller
1857 * is going away.
1859 static int therm_pm72_detach(struct i2c_adapter *adapter)
1861 down(&driver_lock);
1863 if (state != state_detached)
1864 state = state_detaching;
1866 /* Stop control loops if any */
1867 DBG("stopping control loops\n");
1868 up(&driver_lock);
1869 stop_control_loops();
1870 down(&driver_lock);
1872 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1873 DBG("lost U3-0, disposing control loops\n");
1874 dispose_control_loops();
1875 u3_0 = NULL;
1878 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1879 DBG("lost U3-1, detaching FCU\n");
1880 detach_fcu();
1881 u3_1 = NULL;
1883 if (u3_0 == NULL && u3_1 == NULL)
1884 state = state_detached;
1886 up(&driver_lock);
1888 return 0;
1891 static int fan_check_loc_match(const char *loc, int fan)
1893 char tmp[64];
1894 char *c, *e;
1896 strlcpy(tmp, fcu_fans[fan].loc, 64);
1898 c = tmp;
1899 for (;;) {
1900 e = strchr(c, ',');
1901 if (e)
1902 *e = 0;
1903 if (strcmp(loc, c) == 0)
1904 return 1;
1905 if (e == NULL)
1906 break;
1907 c = e + 1;
1909 return 0;
1912 static void fcu_lookup_fans(struct device_node *fcu_node)
1914 struct device_node *np = NULL;
1915 int i;
1917 /* The table is filled by default with values that are suitable
1918 * for the old machines without device-tree informations. We scan
1919 * the device-tree and override those values with whatever is
1920 * there
1923 DBG("Looking up FCU controls in device-tree...\n");
1925 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
1926 int type = -1;
1927 char *loc;
1928 u32 *reg;
1930 DBG(" control: %s, type: %s\n", np->name, np->type);
1932 /* Detect control type */
1933 if (!strcmp(np->type, "fan-rpm-control") ||
1934 !strcmp(np->type, "fan-rpm"))
1935 type = FCU_FAN_RPM;
1936 if (!strcmp(np->type, "fan-pwm-control") ||
1937 !strcmp(np->type, "fan-pwm"))
1938 type = FCU_FAN_PWM;
1939 /* Only care about fans for now */
1940 if (type == -1)
1941 continue;
1943 /* Lookup for a matching location */
1944 loc = (char *)get_property(np, "location", NULL);
1945 reg = (u32 *)get_property(np, "reg", NULL);
1946 if (loc == NULL || reg == NULL)
1947 continue;
1948 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
1950 for (i = 0; i < FCU_FAN_COUNT; i++) {
1951 int fan_id;
1953 if (!fan_check_loc_match(loc, i))
1954 continue;
1955 DBG(" location match, index: %d\n", i);
1956 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
1957 if (type != fcu_fans[i].type) {
1958 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
1959 "in device-tree for %s\n", np->full_name);
1960 break;
1962 if (type == FCU_FAN_RPM)
1963 fan_id = ((*reg) - 0x10) / 2;
1964 else
1965 fan_id = ((*reg) - 0x30) / 2;
1966 if (fan_id > 7) {
1967 printk(KERN_WARNING "therm_pm72: Can't parse "
1968 "fan ID in device-tree for %s\n", np->full_name);
1969 break;
1971 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
1972 fcu_fans[i].id = fan_id;
1976 /* Now dump the array */
1977 printk(KERN_INFO "Detected fan controls:\n");
1978 for (i = 0; i < FCU_FAN_COUNT; i++) {
1979 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
1980 continue;
1981 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
1982 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
1983 fcu_fans[i].id, fcu_fans[i].loc);
1987 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
1989 state = state_detached;
1991 /* Lookup the fans in the device tree */
1992 fcu_lookup_fans(dev->node);
1994 /* Add the driver */
1995 return i2c_add_driver(&therm_pm72_driver);
1998 static int fcu_of_remove(struct of_device* dev)
2000 i2c_del_driver(&therm_pm72_driver);
2002 return 0;
2005 static struct of_device_id fcu_match[] =
2008 .type = "fcu",
2013 static struct of_platform_driver fcu_of_platform_driver =
2015 .name = "temperature",
2016 .match_table = fcu_match,
2017 .probe = fcu_of_probe,
2018 .remove = fcu_of_remove
2022 * Check machine type, attach to i2c controller
2024 static int __init therm_pm72_init(void)
2026 struct device_node *np;
2028 rackmac = machine_is_compatible("RackMac3,1");
2030 if (!machine_is_compatible("PowerMac7,2") &&
2031 !machine_is_compatible("PowerMac7,3") &&
2032 !rackmac)
2033 return -ENODEV;
2035 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2037 np = of_find_node_by_type(NULL, "fcu");
2038 if (np == NULL) {
2039 /* Some machines have strangely broken device-tree */
2040 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2041 if (np == NULL) {
2042 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2043 return -ENODEV;
2046 of_dev = of_platform_device_create(np, "temperature", NULL);
2047 if (of_dev == NULL) {
2048 printk(KERN_ERR "Can't register FCU platform device !\n");
2049 return -ENODEV;
2052 of_register_driver(&fcu_of_platform_driver);
2054 return 0;
2057 static void __exit therm_pm72_exit(void)
2059 of_unregister_driver(&fcu_of_platform_driver);
2061 if (of_dev)
2062 of_device_unregister(of_dev);
2065 module_init(therm_pm72_init);
2066 module_exit(therm_pm72_exit);
2068 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2069 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2070 MODULE_LICENSE("GPL");