2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include <linux/proc_fs.h>
36 #include <linux/pci.h>
39 #include "cpqphp_nvram.h"
40 #include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependent we are... */
46 static u16 unused_IRQ
;
49 * detect_HRT_floating_pointer
51 * find the Hot Plug Resource Table in the specified region of memory.
54 static void __iomem
*detect_HRT_floating_pointer(void __iomem
*begin
, void __iomem
*end
)
58 u8 temp1
, temp2
, temp3
, temp4
;
61 endp
= (end
- sizeof(struct hrt
) + 1);
63 for (fp
= begin
; fp
<= endp
; fp
+= 16) {
64 temp1
= readb(fp
+ SIG0
);
65 temp2
= readb(fp
+ SIG1
);
66 temp3
= readb(fp
+ SIG2
);
67 temp4
= readb(fp
+ SIG3
);
80 dbg("Discovered Hotplug Resource Table at %p\n", fp
);
85 int cpqhp_configure_device (struct controller
* ctrl
, struct pci_func
* func
)
88 struct pci_bus
*child
;
91 if (func
->pci_dev
== NULL
)
92 func
->pci_dev
= pci_find_slot(func
->bus
, PCI_DEVFN(func
->device
, func
->function
));
94 /* No pci device, we need to create it then */
95 if (func
->pci_dev
== NULL
) {
96 dbg("INFO: pci_dev still null\n");
98 num
= pci_scan_slot(ctrl
->pci_dev
->bus
, PCI_DEVFN(func
->device
, func
->function
));
100 pci_bus_add_devices(ctrl
->pci_dev
->bus
);
102 func
->pci_dev
= pci_find_slot(func
->bus
, PCI_DEVFN(func
->device
, func
->function
));
103 if (func
->pci_dev
== NULL
) {
104 dbg("ERROR: pci_dev still null\n");
109 if (func
->pci_dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
110 pci_read_config_byte(func
->pci_dev
, PCI_SECONDARY_BUS
, &bus
);
111 child
= (struct pci_bus
*) pci_add_new_bus(func
->pci_dev
->bus
, (func
->pci_dev
), bus
);
112 pci_do_scan_bus(child
);
119 int cpqhp_unconfigure_device(struct pci_func
* func
)
123 dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__
, func
->bus
, func
->device
, func
->function
);
125 for (j
=0; j
<8 ; j
++) {
126 struct pci_dev
* temp
= pci_find_slot(func
->bus
, PCI_DEVFN(func
->device
, j
));
128 pci_remove_bus_device(temp
);
133 static int PCI_RefinedAccessConfig(struct pci_bus
*bus
, unsigned int devfn
, u8 offset
, u32
*value
)
137 if (pci_bus_read_config_dword (bus
, devfn
, PCI_VENDOR_ID
, &vendID
) == -1)
139 if (vendID
== 0xffffffff)
141 return pci_bus_read_config_dword (bus
, devfn
, offset
, value
);
148 * @bus_num: bus number of PCI device
149 * @dev_num: device number of PCI device
150 * @slot: pointer to u8 where slot number will be returned
152 int cpqhp_set_irq (u8 bus_num
, u8 dev_num
, u8 int_pin
, u8 irq_num
)
156 if (cpqhp_legacy_mode
) {
157 struct pci_dev
*fakedev
;
158 struct pci_bus
*fakebus
;
161 fakedev
= kmalloc(sizeof(*fakedev
), GFP_KERNEL
);
162 fakebus
= kmalloc(sizeof(*fakebus
), GFP_KERNEL
);
163 if (!fakedev
|| !fakebus
) {
169 fakedev
->devfn
= dev_num
<< 3;
170 fakedev
->bus
= fakebus
;
171 fakebus
->number
= bus_num
;
172 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
173 __FUNCTION__
, dev_num
, bus_num
, int_pin
, irq_num
);
174 rc
= pcibios_set_irq_routing(fakedev
, int_pin
- 0x0a, irq_num
);
177 dbg("%s: rc %d\n", __FUNCTION__
, rc
);
181 // set the Edge Level Control Register (ELCR)
182 temp_word
= inb(0x4d0);
183 temp_word
|= inb(0x4d1) << 8;
185 temp_word
|= 0x01 << irq_num
;
187 // This should only be for x86 as it sets the Edge Level Control Register
188 outb((u8
) (temp_word
& 0xFF), 0x4d0);
189 outb((u8
) ((temp_word
& 0xFF00) >> 8), 0x4d1);
198 * WTF??? This function isn't in the code, yet a function calls it, but the
199 * compiler optimizes it away? strange. Here as a placeholder to keep the
202 static int PCI_ScanBusNonBridge (u8 bus
, u8 device
)
207 static int PCI_ScanBusForNonBridge(struct controller
*ctrl
, u8 bus_num
, u8
* dev_num
)
213 ctrl
->pci_bus
->number
= bus_num
;
215 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
216 //Scan for access first
217 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
219 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
220 //Yep we got one. Not a bridge ?
221 if ((work
>> 8) != PCI_TO_PCI_BRIDGE_CLASS
) {
227 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
228 //Scan for access first
229 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
231 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
232 //Yep we got one. bridge ?
233 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
234 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(tdevice
, 0), PCI_SECONDARY_BUS
, &tbus
);
235 dbg("Recurse on bus_num %d tdevice %d\n", tbus
, tdevice
);
236 if (PCI_ScanBusNonBridge(tbus
, tdevice
) == 0)
245 static int PCI_GetBusDevHelper(struct controller
*ctrl
, u8
*bus_num
, u8
*dev_num
, u8 slot
, u8 nobridge
)
247 struct irq_routing_table
*PCIIRQRoutingInfoLength
;
252 u8 tbus
, tdevice
, tslot
;
254 PCIIRQRoutingInfoLength
= pcibios_get_irq_routing_table();
255 if (!PCIIRQRoutingInfoLength
)
258 len
= (PCIIRQRoutingInfoLength
->size
-
259 sizeof(struct irq_routing_table
)) / sizeof(struct irq_info
);
260 // Make sure I got at least one entry
262 kfree(PCIIRQRoutingInfoLength
);
266 for (loop
= 0; loop
< len
; ++loop
) {
267 tbus
= PCIIRQRoutingInfoLength
->slots
[loop
].bus
;
268 tdevice
= PCIIRQRoutingInfoLength
->slots
[loop
].devfn
;
269 tslot
= PCIIRQRoutingInfoLength
->slots
[loop
].slot
;
274 ctrl
->pci_bus
->number
= tbus
;
275 pci_bus_read_config_dword (ctrl
->pci_bus
, *dev_num
, PCI_VENDOR_ID
, &work
);
276 if (!nobridge
|| (work
== 0xffffffff)) {
277 kfree(PCIIRQRoutingInfoLength
);
281 dbg("bus_num %d devfn %d\n", *bus_num
, *dev_num
);
282 pci_bus_read_config_dword (ctrl
->pci_bus
, *dev_num
, PCI_CLASS_REVISION
, &work
);
283 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work
>> 8, PCI_TO_PCI_BRIDGE_CLASS
);
285 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
286 pci_bus_read_config_byte (ctrl
->pci_bus
, *dev_num
, PCI_SECONDARY_BUS
, &tbus
);
287 dbg("Scan bus for Non Bridge: bus %d\n", tbus
);
288 if (PCI_ScanBusForNonBridge(ctrl
, tbus
, dev_num
) == 0) {
290 kfree(PCIIRQRoutingInfoLength
);
294 kfree(PCIIRQRoutingInfoLength
);
300 kfree(PCIIRQRoutingInfoLength
);
305 int cpqhp_get_bus_dev (struct controller
*ctrl
, u8
* bus_num
, u8
* dev_num
, u8 slot
)
307 return PCI_GetBusDevHelper(ctrl
, bus_num
, dev_num
, slot
, 0); //plain (bridges allowed)
311 /* More PCI configuration routines; this time centered around hotplug controller */
317 * Reads configuration for all slots in a PCI bus and saves info.
319 * Note: For non-hot plug busses, the slot # saved is the device #
321 * returns 0 if success
323 int cpqhp_save_config(struct controller
*ctrl
, int busnumber
, int is_hot_plug
)
330 struct pci_func
*new_slot
;
342 // Decide which slots are supported
345 //*********************************
346 // is_hot_plug is the slot mask
347 //*********************************
348 FirstSupported
= is_hot_plug
>> 4;
349 LastSupported
= FirstSupported
+ (is_hot_plug
& 0x0F) - 1;
352 LastSupported
= 0x1F;
355 // Save PCI configuration space for all devices in supported slots
356 ctrl
->pci_bus
->number
= busnumber
;
357 for (device
= FirstSupported
; device
<= LastSupported
; device
++) {
359 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_VENDOR_ID
, &ID
);
361 if (ID
!= 0xFFFFFFFF) { // device in slot
362 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(device
, 0), 0x0B, &class_code
);
366 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_HEADER_TYPE
, &header_type
);
370 // If multi-function device, set max_functions to 8
371 if (header_type
& 0x80)
381 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { // P-P Bridge
382 // Recurse the subordinate bus
383 // get the subordinate bus number
384 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
388 sub_bus
= (int) secondary_bus
;
390 // Save secondary bus cfg spc
391 // with this recursive call.
392 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
395 ctrl
->pci_bus
->number
= busnumber
;
400 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
402 (new_slot
->function
!= (u8
) function
))
403 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
406 // Setup slot structure.
407 new_slot
= cpqhp_slot_create(busnumber
);
409 if (new_slot
== NULL
)
413 new_slot
->bus
= (u8
) busnumber
;
414 new_slot
->device
= (u8
) device
;
415 new_slot
->function
= (u8
) function
;
416 new_slot
->is_a_board
= 1;
417 new_slot
->switch_save
= 0x10;
418 // In case of unsupported board
419 new_slot
->status
= DevError
;
420 new_slot
->pci_dev
= pci_find_slot(new_slot
->bus
, (new_slot
->device
<< 3) | new_slot
->function
);
422 for (cloop
= 0; cloop
< 0x20; cloop
++) {
423 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(device
, function
), cloop
<< 2, (u32
*) & (new_slot
-> config_space
[cloop
]));
432 // this loop skips to the next present function
433 // reading in Class Code and Header type.
435 while ((function
< max_functions
)&&(!stop_it
)) {
436 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_VENDOR_ID
, &ID
);
437 if (ID
== 0xFFFFFFFF) { // nothing there.
439 } else { // Something there
440 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(device
, function
), 0x0B, &class_code
);
444 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_HEADER_TYPE
, &header_type
);
452 } while (function
< max_functions
);
453 } // End of IF (device in slot?)
454 else if (is_hot_plug
) {
455 // Setup slot structure with entry for empty slot
456 new_slot
= cpqhp_slot_create(busnumber
);
458 if (new_slot
== NULL
) {
462 new_slot
->bus
= (u8
) busnumber
;
463 new_slot
->device
= (u8
) device
;
464 new_slot
->function
= 0;
465 new_slot
->is_a_board
= 0;
466 new_slot
->presence_save
= 0;
467 new_slot
->switch_save
= 0;
476 * cpqhp_save_slot_config
478 * Saves configuration info for all PCI devices in a given slot
479 * including subordinate busses.
481 * returns 0 if success
483 int cpqhp_save_slot_config (struct controller
*ctrl
, struct pci_func
* new_slot
)
498 ctrl
->pci_bus
->number
= new_slot
->bus
;
499 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_VENDOR_ID
, &ID
);
501 if (ID
!= 0xFFFFFFFF) { // device in slot
502 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), 0x0B, &class_code
);
503 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_HEADER_TYPE
, &header_type
);
505 if (header_type
& 0x80) // Multi-function device
513 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { // PCI-PCI Bridge
514 // Recurse the subordinate bus
515 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
517 sub_bus
= (int) secondary_bus
;
519 // Save the config headers for the secondary bus.
520 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
523 ctrl
->pci_bus
->number
= new_slot
->bus
;
527 new_slot
->status
= 0;
529 for (cloop
= 0; cloop
< 0x20; cloop
++) {
530 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), cloop
<< 2, (u32
*) & (new_slot
-> config_space
[cloop
]));
537 // this loop skips to the next present function
538 // reading in the Class Code and the Header type.
540 while ((function
< max_functions
) && (!stop_it
)) {
541 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_VENDOR_ID
, &ID
);
543 if (ID
== 0xFFFFFFFF) { // nothing there.
545 } else { // Something there
546 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), 0x0B, &class_code
);
548 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_HEADER_TYPE
, &header_type
);
554 } while (function
< max_functions
);
555 } // End of IF (device in slot?)
565 * cpqhp_save_base_addr_length
567 * Saves the length of all base address registers for the
568 * specified slot. this is for hot plug REPLACE
570 * returns 0 if success
572 int cpqhp_save_base_addr_length(struct controller
*ctrl
, struct pci_func
* func
)
582 struct pci_func
*next
;
584 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
587 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
589 while (func
!= NULL
) {
590 pci_bus
->number
= func
->bus
;
591 devfn
= PCI_DEVFN(func
->device
, func
->function
);
594 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
596 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
598 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
600 sub_bus
= (int) secondary_bus
;
602 next
= cpqhp_slot_list
[sub_bus
];
604 while (next
!= NULL
) {
605 rc
= cpqhp_save_base_addr_length(ctrl
, next
);
611 pci_bus
->number
= func
->bus
;
613 //FIXME: this loop is duplicated in the non-bridge case. The two could be rolled together
614 // Figure out IO and memory base lengths
615 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
616 temp_register
= 0xFFFFFFFF;
617 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
618 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
620 if (base
) { // If this register is implemented
623 // set base = amount of IO space requested
624 base
= base
& 0xFFFFFFFE;
630 base
= base
& 0xFFFFFFF0;
640 // Save information in slot structure
641 func
->base_length
[(cloop
- 0x10) >> 2] =
643 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
645 } // End of base register loop
648 } else if ((header_type
& 0x7F) == 0x00) { // PCI-PCI Bridge
649 // Figure out IO and memory base lengths
650 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
651 temp_register
= 0xFFFFFFFF;
652 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
653 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
655 if (base
) { // If this register is implemented
658 // base = amount of IO space requested
659 base
= base
& 0xFFFFFFFE;
665 // base = amount of memory space requested
666 base
= base
& 0xFFFFFFF0;
676 // Save information in slot structure
677 func
->base_length
[(cloop
- 0x10) >> 2] = base
;
678 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
680 } // End of base register loop
682 } else { // Some other unknown header type
685 // find the next device in this slot
686 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
694 * cpqhp_save_used_resources
696 * Stores used resource information for existing boards. this is
697 * for boards that were in the system when this driver was loaded.
698 * this function is for hot plug ADD
700 * returns 0 if success
702 int cpqhp_save_used_resources (struct controller
*ctrl
, struct pci_func
* func
)
718 struct pci_resource
*mem_node
;
719 struct pci_resource
*p_mem_node
;
720 struct pci_resource
*io_node
;
721 struct pci_resource
*bus_node
;
722 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
725 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
727 while ((func
!= NULL
) && func
->is_a_board
) {
728 pci_bus
->number
= func
->bus
;
729 devfn
= PCI_DEVFN(func
->device
, func
->function
);
731 // Save the command register
732 pci_bus_read_config_word(pci_bus
, devfn
, PCI_COMMAND
, &save_command
);
736 pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
739 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
741 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { // PCI-PCI Bridge
742 // Clear Bridge Control Register
744 pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
745 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
746 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, &temp_byte
);
748 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
752 bus_node
->base
= secondary_bus
;
753 bus_node
->length
= temp_byte
- secondary_bus
+ 1;
755 bus_node
->next
= func
->bus_head
;
756 func
->bus_head
= bus_node
;
758 // Save IO base and Limit registers
759 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, &b_base
);
760 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, &b_length
);
762 if ((b_base
<= b_length
) && (save_command
& 0x01)) {
763 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
767 io_node
->base
= (b_base
& 0xF0) << 8;
768 io_node
->length
= (b_length
- b_base
+ 0x10) << 8;
770 io_node
->next
= func
->io_head
;
771 func
->io_head
= io_node
;
774 // Save memory base and Limit registers
775 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, &w_base
);
776 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, &w_length
);
778 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
779 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
783 mem_node
->base
= w_base
<< 16;
784 mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
786 mem_node
->next
= func
->mem_head
;
787 func
->mem_head
= mem_node
;
790 // Save prefetchable memory base and Limit registers
791 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, &w_base
);
792 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, &w_length
);
794 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
795 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
799 p_mem_node
->base
= w_base
<< 16;
800 p_mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
802 p_mem_node
->next
= func
->p_mem_head
;
803 func
->p_mem_head
= p_mem_node
;
805 // Figure out IO and memory base lengths
806 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
807 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &save_base
);
809 temp_register
= 0xFFFFFFFF;
810 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
811 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
813 temp_register
= base
;
815 if (base
) { // If this register is implemented
816 if (((base
& 0x03L
) == 0x01)
817 && (save_command
& 0x01)) {
819 // set temp_register = amount of IO space requested
820 temp_register
= base
& 0xFFFFFFFE;
821 temp_register
= (~temp_register
) + 1;
823 io_node
= kmalloc(sizeof(*io_node
),
829 save_base
& (~0x03L
);
830 io_node
->length
= temp_register
;
832 io_node
->next
= func
->io_head
;
833 func
->io_head
= io_node
;
835 if (((base
& 0x0BL
) == 0x08)
836 && (save_command
& 0x02)) {
837 // prefetchable memory base
838 temp_register
= base
& 0xFFFFFFF0;
839 temp_register
= (~temp_register
) + 1;
841 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
846 p_mem_node
->base
= save_base
& (~0x0FL
);
847 p_mem_node
->length
= temp_register
;
849 p_mem_node
->next
= func
->p_mem_head
;
850 func
->p_mem_head
= p_mem_node
;
852 if (((base
& 0x0BL
) == 0x00)
853 && (save_command
& 0x02)) {
854 // prefetchable memory base
855 temp_register
= base
& 0xFFFFFFF0;
856 temp_register
= (~temp_register
) + 1;
858 mem_node
= kmalloc(sizeof(*mem_node
),
863 mem_node
->base
= save_base
& (~0x0FL
);
864 mem_node
->length
= temp_register
;
866 mem_node
->next
= func
->mem_head
;
867 func
->mem_head
= mem_node
;
871 } // End of base register loop
872 } else if ((header_type
& 0x7F) == 0x00) { // Standard header
873 // Figure out IO and memory base lengths
874 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
875 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &save_base
);
877 temp_register
= 0xFFFFFFFF;
878 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
879 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
881 temp_register
= base
;
883 if (base
) { // If this register is implemented
884 if (((base
& 0x03L
) == 0x01)
885 && (save_command
& 0x01)) {
887 // set temp_register = amount of IO space requested
888 temp_register
= base
& 0xFFFFFFFE;
889 temp_register
= (~temp_register
) + 1;
891 io_node
= kmalloc(sizeof(*io_node
),
896 io_node
->base
= save_base
& (~0x01L
);
897 io_node
->length
= temp_register
;
899 io_node
->next
= func
->io_head
;
900 func
->io_head
= io_node
;
902 if (((base
& 0x0BL
) == 0x08)
903 && (save_command
& 0x02)) {
904 // prefetchable memory base
905 temp_register
= base
& 0xFFFFFFF0;
906 temp_register
= (~temp_register
) + 1;
908 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
913 p_mem_node
->base
= save_base
& (~0x0FL
);
914 p_mem_node
->length
= temp_register
;
916 p_mem_node
->next
= func
->p_mem_head
;
917 func
->p_mem_head
= p_mem_node
;
919 if (((base
& 0x0BL
) == 0x00)
920 && (save_command
& 0x02)) {
921 // prefetchable memory base
922 temp_register
= base
& 0xFFFFFFF0;
923 temp_register
= (~temp_register
) + 1;
925 mem_node
= kmalloc(sizeof(*mem_node
),
930 mem_node
->base
= save_base
& (~0x0FL
);
931 mem_node
->length
= temp_register
;
933 mem_node
->next
= func
->mem_head
;
934 func
->mem_head
= mem_node
;
938 } // End of base register loop
939 } else { // Some other unknown header type
942 // find the next device in this slot
943 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
951 * cpqhp_configure_board
953 * Copies saved configuration information to one slot.
954 * this is called recursively for bridge devices.
955 * this is for hot plug REPLACE!
957 * returns 0 if success
959 int cpqhp_configure_board(struct controller
*ctrl
, struct pci_func
* func
)
965 struct pci_func
*next
;
969 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
972 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
974 while (func
!= NULL
) {
975 pci_bus
->number
= func
->bus
;
976 devfn
= PCI_DEVFN(func
->device
, func
->function
);
978 // Start at the top of config space so that the control
979 // registers are programmed last
980 for (cloop
= 0x3C; cloop
> 0; cloop
-= 4) {
981 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, func
->config_space
[cloop
>> 2]);
984 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
986 // If this is a bridge device, restore subordinate devices
987 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { // PCI-PCI Bridge
988 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
990 sub_bus
= (int) secondary_bus
;
992 next
= cpqhp_slot_list
[sub_bus
];
994 while (next
!= NULL
) {
995 rc
= cpqhp_configure_board(ctrl
, next
);
1003 // Check all the base Address Registers to make sure
1004 // they are the same. If not, the board is different.
1006 for (cloop
= 16; cloop
< 40; cloop
+= 4) {
1007 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &temp
);
1009 if (temp
!= func
->config_space
[cloop
>> 2]) {
1010 dbg("Config space compare failure!!! offset = %x\n", cloop
);
1011 dbg("bus = %x, device = %x, function = %x\n", func
->bus
, func
->device
, func
->function
);
1012 dbg("temp = %x, config space = %x\n\n", temp
, func
->config_space
[cloop
>> 2]);
1018 func
->configured
= 1;
1020 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1028 * cpqhp_valid_replace
1030 * this function checks to see if a board is the same as the
1031 * one it is replacing. this check will detect if the device's
1032 * vendor or device id's are the same
1034 * returns 0 if the board is the same nonzero otherwise
1036 int cpqhp_valid_replace(struct controller
*ctrl
, struct pci_func
* func
)
1042 u32 temp_register
= 0;
1045 struct pci_func
*next
;
1047 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
1050 if (!func
->is_a_board
)
1051 return(ADD_NOT_SUPPORTED
);
1053 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1055 while (func
!= NULL
) {
1056 pci_bus
->number
= func
->bus
;
1057 devfn
= PCI_DEVFN(func
->device
, func
->function
);
1059 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_VENDOR_ID
, &temp_register
);
1061 // No adapter present
1062 if (temp_register
== 0xFFFFFFFF)
1063 return(NO_ADAPTER_PRESENT
);
1065 if (temp_register
!= func
->config_space
[0])
1066 return(ADAPTER_NOT_SAME
);
1068 // Check for same revision number and class code
1069 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_CLASS_REVISION
, &temp_register
);
1071 // Adapter not the same
1072 if (temp_register
!= func
->config_space
[0x08 >> 2])
1073 return(ADAPTER_NOT_SAME
);
1076 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
1078 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { // PCI-PCI Bridge
1079 // In order to continue checking, we must program the
1080 // bus registers in the bridge to respond to accesses
1081 // for it's subordinate bus(es)
1083 temp_register
= func
->config_space
[0x18 >> 2];
1084 pci_bus_write_config_dword (pci_bus
, devfn
, PCI_PRIMARY_BUS
, temp_register
);
1086 secondary_bus
= (temp_register
>> 8) & 0xFF;
1088 next
= cpqhp_slot_list
[secondary_bus
];
1090 while (next
!= NULL
) {
1091 rc
= cpqhp_valid_replace(ctrl
, next
);
1099 // Check to see if it is a standard config header
1100 else if ((header_type
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
1101 // Check subsystem vendor and ID
1102 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_SUBSYSTEM_VENDOR_ID
, &temp_register
);
1104 if (temp_register
!= func
->config_space
[0x2C >> 2]) {
1105 // If it's a SMART-2 and the register isn't filled
1106 // in, ignore the difference because
1107 // they just have an old rev of the firmware
1109 if (!((func
->config_space
[0] == 0xAE100E11)
1110 && (temp_register
== 0x00L
)))
1111 return(ADAPTER_NOT_SAME
);
1113 // Figure out IO and memory base lengths
1114 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
1115 temp_register
= 0xFFFFFFFF;
1116 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
1117 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
1118 if (base
) { // If this register is implemented
1121 // set base = amount of IO space requested
1122 base
= base
& 0xFFFFFFFE;
1128 base
= base
& 0xFFFFFFF0;
1138 // Check information in slot structure
1139 if (func
->base_length
[(cloop
- 0x10) >> 2] != base
)
1140 return(ADAPTER_NOT_SAME
);
1142 if (func
->base_type
[(cloop
- 0x10) >> 2] != type
)
1143 return(ADAPTER_NOT_SAME
);
1145 } // End of base register loop
1147 } // End of (type 0 config space) else
1149 // this is not a type 0 or 1 config space header so
1150 // we don't know how to do it
1151 return(DEVICE_TYPE_NOT_SUPPORTED
);
1154 // Get the next function
1155 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1164 * cpqhp_find_available_resources
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1170 * returns 0 if success
1172 int cpqhp_find_available_resources(struct controller
*ctrl
, void __iomem
*rom_start
)
1177 void __iomem
*one_slot
;
1178 void __iomem
*rom_resource_table
;
1179 struct pci_func
*func
= NULL
;
1182 struct pci_resource
*mem_node
;
1183 struct pci_resource
*p_mem_node
;
1184 struct pci_resource
*io_node
;
1185 struct pci_resource
*bus_node
;
1187 rom_resource_table
= detect_HRT_floating_pointer(rom_start
, rom_start
+0xffff);
1188 dbg("rom_resource_table = %p\n", rom_resource_table
);
1190 if (rom_resource_table
== NULL
) {
1193 // Sum all resources and setup resource maps
1194 unused_IRQ
= readl(rom_resource_table
+ UNUSED_IRQ
);
1195 dbg("unused_IRQ = %x\n", unused_IRQ
);
1198 while (unused_IRQ
) {
1199 if (unused_IRQ
& 1) {
1200 cpqhp_disk_irq
= temp
;
1203 unused_IRQ
= unused_IRQ
>> 1;
1207 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq
);
1208 unused_IRQ
= unused_IRQ
>> 1;
1211 while (unused_IRQ
) {
1212 if (unused_IRQ
& 1) {
1213 cpqhp_nic_irq
= temp
;
1216 unused_IRQ
= unused_IRQ
>> 1;
1220 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq
);
1221 unused_IRQ
= readl(rom_resource_table
+ PCIIRQ
);
1225 if (!cpqhp_nic_irq
) {
1226 cpqhp_nic_irq
= ctrl
->cfgspc_irq
;
1229 if (!cpqhp_disk_irq
) {
1230 cpqhp_disk_irq
= ctrl
->cfgspc_irq
;
1233 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq
, cpqhp_nic_irq
);
1235 rc
= compaq_nvram_load(rom_start
, ctrl
);
1239 one_slot
= rom_resource_table
+ sizeof (struct hrt
);
1241 i
= readb(rom_resource_table
+ NUMBER_OF_ENTRIES
);
1242 dbg("number_of_entries = %d\n", i
);
1244 if (!readb(one_slot
+ SECONDARY_BUS
))
1247 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1249 while (i
&& readb(one_slot
+ SECONDARY_BUS
)) {
1250 u8 dev_func
= readb(one_slot
+ DEV_FUNC
);
1251 u8 primary_bus
= readb(one_slot
+ PRIMARY_BUS
);
1252 u8 secondary_bus
= readb(one_slot
+ SECONDARY_BUS
);
1253 u8 max_bus
= readb(one_slot
+ MAX_BUS
);
1254 u16 io_base
= readw(one_slot
+ IO_BASE
);
1255 u16 io_length
= readw(one_slot
+ IO_LENGTH
);
1256 u16 mem_base
= readw(one_slot
+ MEM_BASE
);
1257 u16 mem_length
= readw(one_slot
+ MEM_LENGTH
);
1258 u16 pre_mem_base
= readw(one_slot
+ PRE_MEM_BASE
);
1259 u16 pre_mem_length
= readw(one_slot
+ PRE_MEM_LENGTH
);
1261 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1262 dev_func
, io_base
, io_length
, mem_base
, mem_length
, pre_mem_base
, pre_mem_length
,
1263 primary_bus
, secondary_bus
, max_bus
);
1265 // If this entry isn't for our controller's bus, ignore it
1266 if (primary_bus
!= ctrl
->bus
) {
1268 one_slot
+= sizeof (struct slot_rt
);
1271 // find out if this entry is for an occupied slot
1272 ctrl
->pci_bus
->number
= primary_bus
;
1273 pci_bus_read_config_dword (ctrl
->pci_bus
, dev_func
, PCI_VENDOR_ID
, &temp_dword
);
1274 dbg("temp_D_word = %x\n", temp_dword
);
1276 if (temp_dword
!= 0xFFFFFFFF) {
1278 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, 0);
1280 while (func
&& (func
->function
!= (dev_func
& 0x07))) {
1281 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func
, primary_bus
, dev_func
>> 3, index
);
1282 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, index
++);
1285 // If we can't find a match, skip this table entry
1288 one_slot
+= sizeof (struct slot_rt
);
1291 // this may not work and shouldn't be used
1292 if (secondary_bus
!= primary_bus
)
1304 // If we've got a valid IO base, use it
1306 temp_dword
= io_base
+ io_length
;
1308 if ((io_base
) && (temp_dword
< 0x10000)) {
1309 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
1313 io_node
->base
= io_base
;
1314 io_node
->length
= io_length
;
1316 dbg("found io_node(base, length) = %x, %x\n",
1317 io_node
->base
, io_node
->length
);
1318 dbg("populated slot =%d \n", populated_slot
);
1319 if (!populated_slot
) {
1320 io_node
->next
= ctrl
->io_head
;
1321 ctrl
->io_head
= io_node
;
1323 io_node
->next
= func
->io_head
;
1324 func
->io_head
= io_node
;
1328 // If we've got a valid memory base, use it
1329 temp_dword
= mem_base
+ mem_length
;
1330 if ((mem_base
) && (temp_dword
< 0x10000)) {
1331 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
1335 mem_node
->base
= mem_base
<< 16;
1337 mem_node
->length
= mem_length
<< 16;
1339 dbg("found mem_node(base, length) = %x, %x\n",
1340 mem_node
->base
, mem_node
->length
);
1341 dbg("populated slot =%d \n", populated_slot
);
1342 if (!populated_slot
) {
1343 mem_node
->next
= ctrl
->mem_head
;
1344 ctrl
->mem_head
= mem_node
;
1346 mem_node
->next
= func
->mem_head
;
1347 func
->mem_head
= mem_node
;
1351 // If we've got a valid prefetchable memory base, and
1352 // the base + length isn't greater than 0xFFFF
1353 temp_dword
= pre_mem_base
+ pre_mem_length
;
1354 if ((pre_mem_base
) && (temp_dword
< 0x10000)) {
1355 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
1359 p_mem_node
->base
= pre_mem_base
<< 16;
1361 p_mem_node
->length
= pre_mem_length
<< 16;
1362 dbg("found p_mem_node(base, length) = %x, %x\n",
1363 p_mem_node
->base
, p_mem_node
->length
);
1364 dbg("populated slot =%d \n", populated_slot
);
1366 if (!populated_slot
) {
1367 p_mem_node
->next
= ctrl
->p_mem_head
;
1368 ctrl
->p_mem_head
= p_mem_node
;
1370 p_mem_node
->next
= func
->p_mem_head
;
1371 func
->p_mem_head
= p_mem_node
;
1375 // If we've got a valid bus number, use it
1376 // The second condition is to ignore bus numbers on
1377 // populated slots that don't have PCI-PCI bridges
1378 if (secondary_bus
&& (secondary_bus
!= primary_bus
)) {
1379 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
1383 bus_node
->base
= secondary_bus
;
1384 bus_node
->length
= max_bus
- secondary_bus
+ 1;
1385 dbg("found bus_node(base, length) = %x, %x\n",
1386 bus_node
->base
, bus_node
->length
);
1387 dbg("populated slot =%d \n", populated_slot
);
1388 if (!populated_slot
) {
1389 bus_node
->next
= ctrl
->bus_head
;
1390 ctrl
->bus_head
= bus_node
;
1392 bus_node
->next
= func
->bus_head
;
1393 func
->bus_head
= bus_node
;
1398 one_slot
+= sizeof (struct slot_rt
);
1401 // If all of the following fail, we don't have any resources for
1404 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1405 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1406 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1407 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1414 * cpqhp_return_board_resources
1416 * this routine returns all resources allocated to a board to
1417 * the available pool.
1419 * returns 0 if success
1421 int cpqhp_return_board_resources(struct pci_func
* func
, struct resource_lists
* resources
)
1424 struct pci_resource
*node
;
1425 struct pci_resource
*t_node
;
1426 dbg("%s\n", __FUNCTION__
);
1431 node
= func
->io_head
;
1432 func
->io_head
= NULL
;
1434 t_node
= node
->next
;
1435 return_resource(&(resources
->io_head
), node
);
1439 node
= func
->mem_head
;
1440 func
->mem_head
= NULL
;
1442 t_node
= node
->next
;
1443 return_resource(&(resources
->mem_head
), node
);
1447 node
= func
->p_mem_head
;
1448 func
->p_mem_head
= NULL
;
1450 t_node
= node
->next
;
1451 return_resource(&(resources
->p_mem_head
), node
);
1455 node
= func
->bus_head
;
1456 func
->bus_head
= NULL
;
1458 t_node
= node
->next
;
1459 return_resource(&(resources
->bus_head
), node
);
1463 rc
|= cpqhp_resource_sort_and_combine(&(resources
->mem_head
));
1464 rc
|= cpqhp_resource_sort_and_combine(&(resources
->p_mem_head
));
1465 rc
|= cpqhp_resource_sort_and_combine(&(resources
->io_head
));
1466 rc
|= cpqhp_resource_sort_and_combine(&(resources
->bus_head
));
1473 * cpqhp_destroy_resource_list
1475 * Puts node back in the resource list pointed to by head
1477 void cpqhp_destroy_resource_list (struct resource_lists
* resources
)
1479 struct pci_resource
*res
, *tres
;
1481 res
= resources
->io_head
;
1482 resources
->io_head
= NULL
;
1490 res
= resources
->mem_head
;
1491 resources
->mem_head
= NULL
;
1499 res
= resources
->p_mem_head
;
1500 resources
->p_mem_head
= NULL
;
1508 res
= resources
->bus_head
;
1509 resources
->bus_head
= NULL
;
1520 * cpqhp_destroy_board_resources
1522 * Puts node back in the resource list pointed to by head
1524 void cpqhp_destroy_board_resources (struct pci_func
* func
)
1526 struct pci_resource
*res
, *tres
;
1528 res
= func
->io_head
;
1529 func
->io_head
= NULL
;
1537 res
= func
->mem_head
;
1538 func
->mem_head
= NULL
;
1546 res
= func
->p_mem_head
;
1547 func
->p_mem_head
= NULL
;
1555 res
= func
->bus_head
;
1556 func
->bus_head
= NULL
;