[CONNECTOR]: Initialize subsystem earlier.
[linux-2.6/verdex.git] / drivers / scsi / aacraid / dpcsup.c
blobf6bcb9486f859897464bd649a4758403a8936488
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * dpcsup.c
27 * Abstract: All DPC processing routines for the cyclone board occur here.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
43 #include "aacraid.h"
45 /**
46 * aac_response_normal - Handle command replies
47 * @q: Queue to read from
49 * This DPC routine will be run when the adapter interrupts us to let us
50 * know there is a response on our normal priority queue. We will pull off
51 * all QE there are and wake up all the waiters before exiting. We will
52 * take a spinlock out on the queue before operating on it.
55 unsigned int aac_response_normal(struct aac_queue * q)
57 struct aac_dev * dev = q->dev;
58 struct aac_entry *entry;
59 struct hw_fib * hwfib;
60 struct fib * fib;
61 int consumed = 0;
62 unsigned long flags;
64 spin_lock_irqsave(q->lock, flags);
66 * Keep pulling response QEs off the response queue and waking
67 * up the waiters until there are no more QEs. We then return
68 * back to the system. If no response was requesed we just
69 * deallocate the Fib here and continue.
71 while(aac_consumer_get(dev, q, &entry))
73 int fast;
74 u32 index = le32_to_cpu(entry->addr);
75 fast = index & 0x01;
76 fib = &dev->fibs[index >> 2];
77 hwfib = fib->hw_fib;
79 aac_consumer_free(dev, q, HostNormRespQueue);
81 * Remove this fib from the Outstanding I/O queue.
82 * But only if it has not already been timed out.
84 * If the fib has been timed out already, then just
85 * continue. The caller has already been notified that
86 * the fib timed out.
88 if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
89 list_del(&fib->queue);
90 dev->queues->queue[AdapNormCmdQueue].numpending--;
91 } else {
92 printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
93 printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
94 continue;
96 spin_unlock_irqrestore(q->lock, flags);
98 if (fast) {
100 * Doctor the fib
102 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
106 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
108 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
110 __le32 *pstatus = (__le32 *)hwfib->data;
111 if (*pstatus & cpu_to_le32(0xffff0000))
112 *pstatus = cpu_to_le32(ST_OK);
114 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
116 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
117 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
118 else
119 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
121 * NOTE: we cannot touch the fib after this
122 * call, because it may have been deallocated.
124 fib->callback(fib->callback_data, fib);
125 } else {
126 unsigned long flagv;
127 spin_lock_irqsave(&fib->event_lock, flagv);
128 fib->done = 1;
129 up(&fib->event_wait);
130 spin_unlock_irqrestore(&fib->event_lock, flagv);
131 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
133 consumed++;
134 spin_lock_irqsave(q->lock, flags);
137 if (consumed > aac_config.peak_fibs)
138 aac_config.peak_fibs = consumed;
139 if (consumed == 0)
140 aac_config.zero_fibs++;
142 spin_unlock_irqrestore(q->lock, flags);
143 return 0;
148 * aac_command_normal - handle commands
149 * @q: queue to process
151 * This DPC routine will be queued when the adapter interrupts us to
152 * let us know there is a command on our normal priority queue. We will
153 * pull off all QE there are and wake up all the waiters before exiting.
154 * We will take a spinlock out on the queue before operating on it.
157 unsigned int aac_command_normal(struct aac_queue *q)
159 struct aac_dev * dev = q->dev;
160 struct aac_entry *entry;
161 unsigned long flags;
163 spin_lock_irqsave(q->lock, flags);
166 * Keep pulling response QEs off the response queue and waking
167 * up the waiters until there are no more QEs. We then return
168 * back to the system.
170 while(aac_consumer_get(dev, q, &entry))
172 struct fib fibctx;
173 struct hw_fib * hw_fib;
174 u32 index;
175 struct fib *fib = &fibctx;
177 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
178 hw_fib = &dev->aif_base_va[index];
181 * Allocate a FIB at all costs. For non queued stuff
182 * we can just use the stack so we are happy. We need
183 * a fib object in order to manage the linked lists
185 if (dev->aif_thread)
186 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
187 fib = &fibctx;
189 memset(fib, 0, sizeof(struct fib));
190 INIT_LIST_HEAD(&fib->fiblink);
191 fib->type = FSAFS_NTC_FIB_CONTEXT;
192 fib->size = sizeof(struct fib);
193 fib->hw_fib = hw_fib;
194 fib->data = hw_fib->data;
195 fib->dev = dev;
198 if (dev->aif_thread && fib != &fibctx) {
199 list_add_tail(&fib->fiblink, &q->cmdq);
200 aac_consumer_free(dev, q, HostNormCmdQueue);
201 wake_up_interruptible(&q->cmdready);
202 } else {
203 aac_consumer_free(dev, q, HostNormCmdQueue);
204 spin_unlock_irqrestore(q->lock, flags);
206 * Set the status of this FIB
208 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
209 aac_fib_adapter_complete(fib, sizeof(u32));
210 spin_lock_irqsave(q->lock, flags);
213 spin_unlock_irqrestore(q->lock, flags);
214 return 0;
219 * aac_intr_normal - Handle command replies
220 * @dev: Device
221 * @index: completion reference
223 * This DPC routine will be run when the adapter interrupts us to let us
224 * know there is a response on our normal priority queue. We will pull off
225 * all QE there are and wake up all the waiters before exiting.
228 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
230 u32 index = le32_to_cpu(Index);
232 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
233 if ((index & 0x00000002L)) {
234 struct hw_fib * hw_fib;
235 struct fib * fib;
236 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
237 unsigned long flags;
239 if (index == 0xFFFFFFFEL) /* Special Case */
240 return 0; /* Do nothing */
242 * Allocate a FIB. For non queued stuff we can just use
243 * the stack so we are happy. We need a fib object in order to
244 * manage the linked lists.
246 if ((!dev->aif_thread)
247 || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
248 return 1;
249 if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
250 kfree (fib);
251 return 1;
253 memset(hw_fib, 0, sizeof(struct hw_fib));
254 memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
255 memset(fib, 0, sizeof(struct fib));
256 INIT_LIST_HEAD(&fib->fiblink);
257 fib->type = FSAFS_NTC_FIB_CONTEXT;
258 fib->size = sizeof(struct fib);
259 fib->hw_fib = hw_fib;
260 fib->data = hw_fib->data;
261 fib->dev = dev;
263 spin_lock_irqsave(q->lock, flags);
264 list_add_tail(&fib->fiblink, &q->cmdq);
265 wake_up_interruptible(&q->cmdready);
266 spin_unlock_irqrestore(q->lock, flags);
267 return 1;
268 } else {
269 int fast = index & 0x01;
270 struct fib * fib = &dev->fibs[index >> 2];
271 struct hw_fib * hwfib = fib->hw_fib;
274 * Remove this fib from the Outstanding I/O queue.
275 * But only if it has not already been timed out.
277 * If the fib has been timed out already, then just
278 * continue. The caller has already been notified that
279 * the fib timed out.
281 if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
282 printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
283 printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
284 return 0;
287 list_del(&fib->queue);
288 dev->queues->queue[AdapNormCmdQueue].numpending--;
290 if (fast) {
292 * Doctor the fib
294 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
295 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
298 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
300 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
302 u32 *pstatus = (u32 *)hwfib->data;
303 if (*pstatus & cpu_to_le32(0xffff0000))
304 *pstatus = cpu_to_le32(ST_OK);
306 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
308 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
309 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
310 else
311 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
313 * NOTE: we cannot touch the fib after this
314 * call, because it may have been deallocated.
316 fib->callback(fib->callback_data, fib);
317 } else {
318 unsigned long flagv;
319 dprintk((KERN_INFO "event_wait up\n"));
320 spin_lock_irqsave(&fib->event_lock, flagv);
321 fib->done = 1;
322 up(&fib->event_wait);
323 spin_unlock_irqrestore(&fib->event_lock, flagv);
324 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
326 return 0;