[CONNECTOR]: Initialize subsystem earlier.
[linux-2.6/verdex.git] / fs / reiserfs / fix_node.c
blob5600d3d60cf7d9f467ff5fc0f0046cc0adb8070f
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 /**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
37 #include <linux/config.h>
38 #include <linux/time.h>
39 #include <linux/string.h>
40 #include <linux/reiserfs_fs.h>
41 #include <linux/buffer_head.h>
43 /* To make any changes in the tree we find a node, that contains item
44 to be changed/deleted or position in the node we insert a new item
45 to. We call this node S. To do balancing we need to decide what we
46 will shift to left/right neighbor, or to a new node, where new item
47 will be etc. To make this analysis simpler we build virtual
48 node. Virtual node is an array of items, that will replace items of
49 node S. (For instance if we are going to delete an item, virtual
50 node does not contain it). Virtual node keeps information about
51 item sizes and types, mergeability of first and last items, sizes
52 of all entries in directory item. We use this array of items when
53 calculating what we can shift to neighbors and how many nodes we
54 have to have if we do not any shiftings, if we shift to left/right
55 neighbor or to both. */
57 /* taking item number in virtual node, returns number of item, that it has in source buffer */
58 static inline int old_item_num(int new_num, int affected_item_num, int mode)
60 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
61 return new_num;
63 if (mode == M_INSERT) {
65 RFALSE(new_num == 0,
66 "vs-8005: for INSERT mode and item number of inserted item");
68 return new_num - 1;
71 RFALSE(mode != M_DELETE,
72 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
73 mode);
74 /* delete mode */
75 return new_num + 1;
78 static void create_virtual_node(struct tree_balance *tb, int h)
80 struct item_head *ih;
81 struct virtual_node *vn = tb->tb_vn;
82 int new_num;
83 struct buffer_head *Sh; /* this comes from tb->S[h] */
85 Sh = PATH_H_PBUFFER(tb->tb_path, h);
87 /* size of changed node */
88 vn->vn_size =
89 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
91 /* for internal nodes array if virtual items is not created */
92 if (h) {
93 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
94 return;
97 /* number of items in virtual node */
98 vn->vn_nr_item =
99 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
100 ((vn->vn_mode == M_DELETE) ? 1 : 0);
102 /* first virtual item */
103 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
104 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
105 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
107 /* first item in the node */
108 ih = B_N_PITEM_HEAD(Sh, 0);
110 /* define the mergeability for 0-th item (if it is not being deleted) */
111 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
112 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
113 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
115 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
116 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
117 int j;
118 struct virtual_item *vi = vn->vn_vi + new_num;
119 int is_affected =
120 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
122 if (is_affected && vn->vn_mode == M_INSERT)
123 continue;
125 /* get item number in source node */
126 j = old_item_num(new_num, vn->vn_affected_item_num,
127 vn->vn_mode);
129 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
130 vi->vi_ih = ih + j;
131 vi->vi_item = B_I_PITEM(Sh, ih + j);
132 vi->vi_uarea = vn->vn_free_ptr;
134 // FIXME: there is no check, that item operation did not
135 // consume too much memory
136 vn->vn_free_ptr +=
137 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
138 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
139 reiserfs_panic(tb->tb_sb,
140 "vs-8030: create_virtual_node: "
141 "virtual node space consumed");
143 if (!is_affected)
144 /* this is not being changed */
145 continue;
147 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
148 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
149 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
153 /* virtual inserted item is not defined yet */
154 if (vn->vn_mode == M_INSERT) {
155 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
157 RFALSE(vn->vn_ins_ih == 0,
158 "vs-8040: item header of inserted item is not specified");
159 vi->vi_item_len = tb->insert_size[0];
160 vi->vi_ih = vn->vn_ins_ih;
161 vi->vi_item = vn->vn_data;
162 vi->vi_uarea = vn->vn_free_ptr;
164 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
165 tb->insert_size[0]);
168 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
169 if (tb->CFR[0]) {
170 struct reiserfs_key *key;
172 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
173 if (op_is_left_mergeable(key, Sh->b_size)
174 && (vn->vn_mode != M_DELETE
175 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
176 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
177 VI_TYPE_RIGHT_MERGEABLE;
179 #ifdef CONFIG_REISERFS_CHECK
180 if (op_is_left_mergeable(key, Sh->b_size) &&
181 !(vn->vn_mode != M_DELETE
182 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
183 /* we delete last item and it could be merged with right neighbor's first item */
184 if (!
185 (B_NR_ITEMS(Sh) == 1
186 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
187 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
188 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
189 print_block(Sh, 0, -1, -1);
190 reiserfs_panic(tb->tb_sb,
191 "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
192 key, vn->vn_affected_item_num,
193 vn->vn_mode, M_DELETE);
196 #endif
201 /* using virtual node check, how many items can be shifted to left
202 neighbor */
203 static void check_left(struct tree_balance *tb, int h, int cur_free)
205 int i;
206 struct virtual_node *vn = tb->tb_vn;
207 struct virtual_item *vi;
208 int d_size, ih_size;
210 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
212 /* internal level */
213 if (h > 0) {
214 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
215 return;
218 /* leaf level */
220 if (!cur_free || !vn->vn_nr_item) {
221 /* no free space or nothing to move */
222 tb->lnum[h] = 0;
223 tb->lbytes = -1;
224 return;
227 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
228 "vs-8055: parent does not exist or invalid");
230 vi = vn->vn_vi;
231 if ((unsigned int)cur_free >=
232 (vn->vn_size -
233 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
234 /* all contents of S[0] fits into L[0] */
236 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
237 "vs-8055: invalid mode or balance condition failed");
239 tb->lnum[0] = vn->vn_nr_item;
240 tb->lbytes = -1;
241 return;
244 d_size = 0, ih_size = IH_SIZE;
246 /* first item may be merge with last item in left neighbor */
247 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
248 d_size = -((int)IH_SIZE), ih_size = 0;
250 tb->lnum[0] = 0;
251 for (i = 0; i < vn->vn_nr_item;
252 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
253 d_size += vi->vi_item_len;
254 if (cur_free >= d_size) {
255 /* the item can be shifted entirely */
256 cur_free -= d_size;
257 tb->lnum[0]++;
258 continue;
261 /* the item cannot be shifted entirely, try to split it */
262 /* check whether L[0] can hold ih and at least one byte of the item body */
263 if (cur_free <= ih_size) {
264 /* cannot shift even a part of the current item */
265 tb->lbytes = -1;
266 return;
268 cur_free -= ih_size;
270 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
271 if (tb->lbytes != -1)
272 /* count partially shifted item */
273 tb->lnum[0]++;
275 break;
278 return;
281 /* using virtual node check, how many items can be shifted to right
282 neighbor */
283 static void check_right(struct tree_balance *tb, int h, int cur_free)
285 int i;
286 struct virtual_node *vn = tb->tb_vn;
287 struct virtual_item *vi;
288 int d_size, ih_size;
290 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
292 /* internal level */
293 if (h > 0) {
294 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
295 return;
298 /* leaf level */
300 if (!cur_free || !vn->vn_nr_item) {
301 /* no free space */
302 tb->rnum[h] = 0;
303 tb->rbytes = -1;
304 return;
307 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
308 "vs-8075: parent does not exist or invalid");
310 vi = vn->vn_vi + vn->vn_nr_item - 1;
311 if ((unsigned int)cur_free >=
312 (vn->vn_size -
313 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
314 /* all contents of S[0] fits into R[0] */
316 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
317 "vs-8080: invalid mode or balance condition failed");
319 tb->rnum[h] = vn->vn_nr_item;
320 tb->rbytes = -1;
321 return;
324 d_size = 0, ih_size = IH_SIZE;
326 /* last item may be merge with first item in right neighbor */
327 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
328 d_size = -(int)IH_SIZE, ih_size = 0;
330 tb->rnum[0] = 0;
331 for (i = vn->vn_nr_item - 1; i >= 0;
332 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
333 d_size += vi->vi_item_len;
334 if (cur_free >= d_size) {
335 /* the item can be shifted entirely */
336 cur_free -= d_size;
337 tb->rnum[0]++;
338 continue;
341 /* check whether R[0] can hold ih and at least one byte of the item body */
342 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
343 tb->rbytes = -1;
344 return;
347 /* R[0] can hold the header of the item and at least one byte of its body */
348 cur_free -= ih_size; /* cur_free is still > 0 */
350 tb->rbytes = op_check_right(vi, cur_free);
351 if (tb->rbytes != -1)
352 /* count partially shifted item */
353 tb->rnum[0]++;
355 break;
358 return;
362 * from - number of items, which are shifted to left neighbor entirely
363 * to - number of item, which are shifted to right neighbor entirely
364 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
365 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
366 static int get_num_ver(int mode, struct tree_balance *tb, int h,
367 int from, int from_bytes,
368 int to, int to_bytes, short *snum012, int flow)
370 int i;
371 int cur_free;
372 // int bytes;
373 int units;
374 struct virtual_node *vn = tb->tb_vn;
375 // struct virtual_item * vi;
377 int total_node_size, max_node_size, current_item_size;
378 int needed_nodes;
379 int start_item, /* position of item we start filling node from */
380 end_item, /* position of item we finish filling node by */
381 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
382 we do not include into node that is being filled */
383 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
384 we do node include into node that is being filled */
385 int split_item_positions[2]; /* these are positions in virtual item of
386 items, that are split between S[0] and
387 S1new and S1new and S2new */
389 split_item_positions[0] = -1;
390 split_item_positions[1] = -1;
392 /* We only create additional nodes if we are in insert or paste mode
393 or we are in replace mode at the internal level. If h is 0 and
394 the mode is M_REPLACE then in fix_nodes we change the mode to
395 paste or insert before we get here in the code. */
396 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
397 "vs-8100: insert_size < 0 in overflow");
399 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
401 /* snum012 [0-2] - number of items, that lay
402 to S[0], first new node and second new node */
403 snum012[3] = -1; /* s1bytes */
404 snum012[4] = -1; /* s2bytes */
406 /* internal level */
407 if (h > 0) {
408 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
409 if (i == max_node_size)
410 return 1;
411 return (i / max_node_size + 1);
414 /* leaf level */
415 needed_nodes = 1;
416 total_node_size = 0;
417 cur_free = max_node_size;
419 // start from 'from'-th item
420 start_item = from;
421 // skip its first 'start_bytes' units
422 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
424 // last included item is the 'end_item'-th one
425 end_item = vn->vn_nr_item - to - 1;
426 // do not count last 'end_bytes' units of 'end_item'-th item
427 end_bytes = (to_bytes != -1) ? to_bytes : 0;
429 /* go through all item beginning from the start_item-th item and ending by
430 the end_item-th item. Do not count first 'start_bytes' units of
431 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
433 for (i = start_item; i <= end_item; i++) {
434 struct virtual_item *vi = vn->vn_vi + i;
435 int skip_from_end = ((i == end_item) ? end_bytes : 0);
437 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
439 /* get size of current item */
440 current_item_size = vi->vi_item_len;
442 /* do not take in calculation head part (from_bytes) of from-th item */
443 current_item_size -=
444 op_part_size(vi, 0 /*from start */ , start_bytes);
446 /* do not take in calculation tail part of last item */
447 current_item_size -=
448 op_part_size(vi, 1 /*from end */ , skip_from_end);
450 /* if item fits into current node entierly */
451 if (total_node_size + current_item_size <= max_node_size) {
452 snum012[needed_nodes - 1]++;
453 total_node_size += current_item_size;
454 start_bytes = 0;
455 continue;
458 if (current_item_size > max_node_size) {
459 /* virtual item length is longer, than max size of item in
460 a node. It is impossible for direct item */
461 RFALSE(is_direct_le_ih(vi->vi_ih),
462 "vs-8110: "
463 "direct item length is %d. It can not be longer than %d",
464 current_item_size, max_node_size);
465 /* we will try to split it */
466 flow = 1;
469 if (!flow) {
470 /* as we do not split items, take new node and continue */
471 needed_nodes++;
472 i--;
473 total_node_size = 0;
474 continue;
476 // calculate number of item units which fit into node being
477 // filled
479 int free_space;
481 free_space = max_node_size - total_node_size - IH_SIZE;
482 units =
483 op_check_left(vi, free_space, start_bytes,
484 skip_from_end);
485 if (units == -1) {
486 /* nothing fits into current node, take new node and continue */
487 needed_nodes++, i--, total_node_size = 0;
488 continue;
492 /* something fits into the current node */
493 //if (snum012[3] != -1 || needed_nodes != 1)
494 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
495 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
496 start_bytes += units;
497 snum012[needed_nodes - 1 + 3] = units;
499 if (needed_nodes > 2)
500 reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: "
501 "split_item_position is out of boundary");
502 snum012[needed_nodes - 1]++;
503 split_item_positions[needed_nodes - 1] = i;
504 needed_nodes++;
505 /* continue from the same item with start_bytes != -1 */
506 start_item = i;
507 i--;
508 total_node_size = 0;
511 // sum012[4] (if it is not -1) contains number of units of which
512 // are to be in S1new, snum012[3] - to be in S0. They are supposed
513 // to be S1bytes and S2bytes correspondingly, so recalculate
514 if (snum012[4] > 0) {
515 int split_item_num;
516 int bytes_to_r, bytes_to_l;
517 int bytes_to_S1new;
519 split_item_num = split_item_positions[1];
520 bytes_to_l =
521 ((from == split_item_num
522 && from_bytes != -1) ? from_bytes : 0);
523 bytes_to_r =
524 ((end_item == split_item_num
525 && end_bytes != -1) ? end_bytes : 0);
526 bytes_to_S1new =
527 ((split_item_positions[0] ==
528 split_item_positions[1]) ? snum012[3] : 0);
530 // s2bytes
531 snum012[4] =
532 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
533 bytes_to_r - bytes_to_l - bytes_to_S1new;
535 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
536 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
537 reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not "
538 "directory or indirect item");
541 /* now we know S2bytes, calculate S1bytes */
542 if (snum012[3] > 0) {
543 int split_item_num;
544 int bytes_to_r, bytes_to_l;
545 int bytes_to_S2new;
547 split_item_num = split_item_positions[0];
548 bytes_to_l =
549 ((from == split_item_num
550 && from_bytes != -1) ? from_bytes : 0);
551 bytes_to_r =
552 ((end_item == split_item_num
553 && end_bytes != -1) ? end_bytes : 0);
554 bytes_to_S2new =
555 ((split_item_positions[0] == split_item_positions[1]
556 && snum012[4] != -1) ? snum012[4] : 0);
558 // s1bytes
559 snum012[3] =
560 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
561 bytes_to_r - bytes_to_l - bytes_to_S2new;
564 return needed_nodes;
567 #ifdef CONFIG_REISERFS_CHECK
568 extern struct tree_balance *cur_tb;
569 #endif
571 /* Set parameters for balancing.
572 * Performs write of results of analysis of balancing into structure tb,
573 * where it will later be used by the functions that actually do the balancing.
574 * Parameters:
575 * tb tree_balance structure;
576 * h current level of the node;
577 * lnum number of items from S[h] that must be shifted to L[h];
578 * rnum number of items from S[h] that must be shifted to R[h];
579 * blk_num number of blocks that S[h] will be splitted into;
580 * s012 number of items that fall into splitted nodes.
581 * lbytes number of bytes which flow to the left neighbor from the item that is not
582 * not shifted entirely
583 * rbytes number of bytes which flow to the right neighbor from the item that is not
584 * not shifted entirely
585 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
588 static void set_parameters(struct tree_balance *tb, int h, int lnum,
589 int rnum, int blk_num, short *s012, int lb, int rb)
592 tb->lnum[h] = lnum;
593 tb->rnum[h] = rnum;
594 tb->blknum[h] = blk_num;
596 if (h == 0) { /* only for leaf level */
597 if (s012 != NULL) {
598 tb->s0num = *s012++,
599 tb->s1num = *s012++, tb->s2num = *s012++;
600 tb->s1bytes = *s012++;
601 tb->s2bytes = *s012;
603 tb->lbytes = lb;
604 tb->rbytes = rb;
606 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
607 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
609 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
610 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
613 /* check, does node disappear if we shift tb->lnum[0] items to left
614 neighbor and tb->rnum[0] to the right one. */
615 static int is_leaf_removable(struct tree_balance *tb)
617 struct virtual_node *vn = tb->tb_vn;
618 int to_left, to_right;
619 int size;
620 int remain_items;
622 /* number of items, that will be shifted to left (right) neighbor
623 entirely */
624 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
625 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
626 remain_items = vn->vn_nr_item;
628 /* how many items remain in S[0] after shiftings to neighbors */
629 remain_items -= (to_left + to_right);
631 if (remain_items < 1) {
632 /* all content of node can be shifted to neighbors */
633 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
634 NULL, -1, -1);
635 return 1;
638 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
639 /* S[0] is not removable */
640 return 0;
642 /* check, whether we can divide 1 remaining item between neighbors */
644 /* get size of remaining item (in item units) */
645 size = op_unit_num(&(vn->vn_vi[to_left]));
647 if (tb->lbytes + tb->rbytes >= size) {
648 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
649 tb->lbytes, -1);
650 return 1;
653 return 0;
656 /* check whether L, S, R can be joined in one node */
657 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
659 struct virtual_node *vn = tb->tb_vn;
660 int ih_size;
661 struct buffer_head *S0;
663 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
665 ih_size = 0;
666 if (vn->vn_nr_item) {
667 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
668 ih_size += IH_SIZE;
670 if (vn->vn_vi[vn->vn_nr_item - 1].
671 vi_type & VI_TYPE_RIGHT_MERGEABLE)
672 ih_size += IH_SIZE;
673 } else {
674 /* there was only one item and it will be deleted */
675 struct item_head *ih;
677 RFALSE(B_NR_ITEMS(S0) != 1,
678 "vs-8125: item number must be 1: it is %d",
679 B_NR_ITEMS(S0));
681 ih = B_N_PITEM_HEAD(S0, 0);
682 if (tb->CFR[0]
683 && !comp_short_le_keys(&(ih->ih_key),
684 B_N_PDELIM_KEY(tb->CFR[0],
685 tb->rkey[0])))
686 if (is_direntry_le_ih(ih)) {
687 /* Directory must be in correct state here: that is
688 somewhere at the left side should exist first directory
689 item. But the item being deleted can not be that first
690 one because its right neighbor is item of the same
691 directory. (But first item always gets deleted in last
692 turn). So, neighbors of deleted item can be merged, so
693 we can save ih_size */
694 ih_size = IH_SIZE;
696 /* we might check that left neighbor exists and is of the
697 same directory */
698 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
699 "vs-8130: first directory item can not be removed until directory is not empty");
704 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
705 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
706 PROC_INFO_INC(tb->tb_sb, leaves_removable);
707 return 1;
709 return 0;
713 /* when we do not split item, lnum and rnum are numbers of entire items */
714 #define SET_PAR_SHIFT_LEFT \
715 if (h)\
717 int to_l;\
719 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
720 (MAX_NR_KEY(Sh) + 1 - lpar);\
722 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
724 else \
726 if (lset==LEFT_SHIFT_FLOW)\
727 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
728 tb->lbytes, -1);\
729 else\
730 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
731 -1, -1);\
734 #define SET_PAR_SHIFT_RIGHT \
735 if (h)\
737 int to_r;\
739 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
741 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
743 else \
745 if (rset==RIGHT_SHIFT_FLOW)\
746 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
747 -1, tb->rbytes);\
748 else\
749 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
750 -1, -1);\
753 static void free_buffers_in_tb(struct tree_balance *p_s_tb)
755 int n_counter;
757 decrement_counters_in_path(p_s_tb->tb_path);
759 for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) {
760 decrement_bcount(p_s_tb->L[n_counter]);
761 p_s_tb->L[n_counter] = NULL;
762 decrement_bcount(p_s_tb->R[n_counter]);
763 p_s_tb->R[n_counter] = NULL;
764 decrement_bcount(p_s_tb->FL[n_counter]);
765 p_s_tb->FL[n_counter] = NULL;
766 decrement_bcount(p_s_tb->FR[n_counter]);
767 p_s_tb->FR[n_counter] = NULL;
768 decrement_bcount(p_s_tb->CFL[n_counter]);
769 p_s_tb->CFL[n_counter] = NULL;
770 decrement_bcount(p_s_tb->CFR[n_counter]);
771 p_s_tb->CFR[n_counter] = NULL;
775 /* Get new buffers for storing new nodes that are created while balancing.
776 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
777 * CARRY_ON - schedule didn't occur while the function worked;
778 * NO_DISK_SPACE - no disk space.
780 /* The function is NOT SCHEDULE-SAFE! */
781 static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h)
783 struct buffer_head *p_s_new_bh,
784 *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h);
785 b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
786 int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */
787 n_retval = CARRY_ON;
788 struct super_block *p_s_sb = p_s_tb->tb_sb;
790 /* number_of_freeblk is the number of empty blocks which have been
791 acquired for use by the balancing algorithm minus the number of
792 empty blocks used in the previous levels of the analysis,
793 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
794 after empty blocks are acquired, and the balancing analysis is
795 then restarted, amount_needed is the number needed by this level
796 (n_h) of the balancing analysis.
798 Note that for systems with many processes writing, it would be
799 more layout optimal to calculate the total number needed by all
800 levels and then to run reiserfs_new_blocks to get all of them at once. */
802 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
803 the analysis or 0 if not restarted, then subtract the amount needed
804 by all of the levels of the tree below n_h. */
805 /* blknum includes S[n_h], so we subtract 1 in this calculation */
806 for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum;
807 n_counter < n_h; n_counter++)
808 n_number_of_freeblk -=
809 (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] -
810 1) : 0;
812 /* Allocate missing empty blocks. */
813 /* if p_s_Sh == 0 then we are getting a new root */
814 n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1;
815 /* Amount_needed = the amount that we need more than the amount that we have. */
816 if (n_amount_needed > n_number_of_freeblk)
817 n_amount_needed -= n_number_of_freeblk;
818 else /* If we have enough already then there is nothing to do. */
819 return CARRY_ON;
821 /* No need to check quota - is not allocated for blocks used for formatted nodes */
822 if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs,
823 n_amount_needed) == NO_DISK_SPACE)
824 return NO_DISK_SPACE;
826 /* for each blocknumber we just got, get a buffer and stick it on FEB */
827 for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
828 n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
830 RFALSE(!*p_n_blocknr,
831 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
833 p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
834 RFALSE(buffer_dirty(p_s_new_bh) ||
835 buffer_journaled(p_s_new_bh) ||
836 buffer_journal_dirty(p_s_new_bh),
837 "PAP-8140: journlaled or dirty buffer %b for the new block",
838 p_s_new_bh);
840 /* Put empty buffers into the array. */
841 RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum],
842 "PAP-8141: busy slot for new buffer");
844 set_buffer_journal_new(p_s_new_bh);
845 p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
848 if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb))
849 n_retval = REPEAT_SEARCH;
851 return n_retval;
854 /* Get free space of the left neighbor, which is stored in the parent
855 * node of the left neighbor. */
856 static int get_lfree(struct tree_balance *tb, int h)
858 struct buffer_head *l, *f;
859 int order;
861 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0)
862 return 0;
864 if (f == l)
865 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
866 else {
867 order = B_NR_ITEMS(l);
868 f = l;
871 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
874 /* Get free space of the right neighbor,
875 * which is stored in the parent node of the right neighbor.
877 static int get_rfree(struct tree_balance *tb, int h)
879 struct buffer_head *r, *f;
880 int order;
882 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0)
883 return 0;
885 if (f == r)
886 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
887 else {
888 order = 0;
889 f = r;
892 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
896 /* Check whether left neighbor is in memory. */
897 static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h)
899 struct buffer_head *p_s_father, *left;
900 struct super_block *p_s_sb = p_s_tb->tb_sb;
901 b_blocknr_t n_left_neighbor_blocknr;
902 int n_left_neighbor_position;
904 if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */
905 return 0;
907 /* Calculate father of the node to be balanced. */
908 p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
910 RFALSE(!p_s_father ||
911 !B_IS_IN_TREE(p_s_father) ||
912 !B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
913 !buffer_uptodate(p_s_father) ||
914 !buffer_uptodate(p_s_tb->FL[n_h]),
915 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
916 p_s_father, p_s_tb->FL[n_h]);
918 /* Get position of the pointer to the left neighbor into the left father. */
919 n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ?
920 p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]);
921 /* Get left neighbor block number. */
922 n_left_neighbor_blocknr =
923 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
924 /* Look for the left neighbor in the cache. */
925 if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) {
927 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
928 "vs-8170: left neighbor (%b %z) is not in the tree",
929 left, left);
930 put_bh(left);
931 return 1;
934 return 0;
937 #define LEFT_PARENTS 'l'
938 #define RIGHT_PARENTS 'r'
940 static void decrement_key(struct cpu_key *p_s_key)
942 // call item specific function for this key
943 item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
946 /* Calculate far left/right parent of the left/right neighbor of the current node, that
947 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
948 * Calculate left/right common parent of the current node and L[h]/R[h].
949 * Calculate left/right delimiting key position.
950 * Returns: PATH_INCORRECT - path in the tree is not correct;
951 SCHEDULE_OCCURRED - schedule occurred while the function worked;
952 * CARRY_ON - schedule didn't occur while the function worked;
954 static int get_far_parent(struct tree_balance *p_s_tb,
955 int n_h,
956 struct buffer_head **pp_s_father,
957 struct buffer_head **pp_s_com_father, char c_lr_par)
959 struct buffer_head *p_s_parent;
960 INITIALIZE_PATH(s_path_to_neighbor_father);
961 struct path *p_s_path = p_s_tb->tb_path;
962 struct cpu_key s_lr_father_key;
963 int n_counter,
964 n_position = INT_MAX,
965 n_first_last_position = 0,
966 n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
968 /* Starting from F[n_h] go upwards in the tree, and look for the common
969 ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
971 n_counter = n_path_offset;
973 RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET,
974 "PAP-8180: invalid path length");
976 for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
977 /* Check whether parent of the current buffer in the path is really parent in the tree. */
978 if (!B_IS_IN_TREE
979 (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
980 return REPEAT_SEARCH;
981 /* Check whether position in the parent is correct. */
982 if ((n_position =
983 PATH_OFFSET_POSITION(p_s_path,
984 n_counter - 1)) >
985 B_NR_ITEMS(p_s_parent))
986 return REPEAT_SEARCH;
987 /* Check whether parent at the path really points to the child. */
988 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
989 PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
990 return REPEAT_SEARCH;
991 /* Return delimiting key if position in the parent is not equal to first/last one. */
992 if (c_lr_par == RIGHT_PARENTS)
993 n_first_last_position = B_NR_ITEMS(p_s_parent);
994 if (n_position != n_first_last_position) {
995 *pp_s_com_father = p_s_parent;
996 get_bh(*pp_s_com_father);
997 /*(*pp_s_com_father = p_s_parent)->b_count++; */
998 break;
1002 /* if we are in the root of the tree, then there is no common father */
1003 if (n_counter == FIRST_PATH_ELEMENT_OFFSET) {
1004 /* Check whether first buffer in the path is the root of the tree. */
1005 if (PATH_OFFSET_PBUFFER
1006 (p_s_tb->tb_path,
1007 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1008 SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1009 *pp_s_father = *pp_s_com_father = NULL;
1010 return CARRY_ON;
1012 return REPEAT_SEARCH;
1015 RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1016 "PAP-8185: (%b %z) level too small",
1017 *pp_s_com_father, *pp_s_com_father);
1019 /* Check whether the common parent is locked. */
1021 if (buffer_locked(*pp_s_com_father)) {
1022 __wait_on_buffer(*pp_s_com_father);
1023 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1024 decrement_bcount(*pp_s_com_father);
1025 return REPEAT_SEARCH;
1029 /* So, we got common parent of the current node and its left/right neighbor.
1030 Now we are geting the parent of the left/right neighbor. */
1032 /* Form key to get parent of the left/right neighbor. */
1033 le_key2cpu_key(&s_lr_father_key,
1034 B_N_PDELIM_KEY(*pp_s_com_father,
1035 (c_lr_par ==
1036 LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] =
1037 n_position -
1038 1) : (p_s_tb->rkey[n_h -
1039 1] =
1040 n_position)));
1042 if (c_lr_par == LEFT_PARENTS)
1043 decrement_key(&s_lr_father_key);
1045 if (search_by_key
1046 (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1047 n_h + 1) == IO_ERROR)
1048 // path is released
1049 return IO_ERROR;
1051 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1052 decrement_counters_in_path(&s_path_to_neighbor_father);
1053 decrement_bcount(*pp_s_com_father);
1054 return REPEAT_SEARCH;
1057 *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1059 RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
1060 "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1061 RFALSE(s_path_to_neighbor_father.path_length <
1062 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1064 s_path_to_neighbor_father.path_length--;
1065 decrement_counters_in_path(&s_path_to_neighbor_father);
1066 return CARRY_ON;
1069 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1070 * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1071 * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1072 * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1073 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1074 * CARRY_ON - schedule didn't occur while the function worked;
1076 static int get_parents(struct tree_balance *p_s_tb, int n_h)
1078 struct path *p_s_path = p_s_tb->tb_path;
1079 int n_position,
1080 n_ret_value,
1081 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1082 struct buffer_head *p_s_curf, *p_s_curcf;
1084 /* Current node is the root of the tree or will be root of the tree */
1085 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1086 /* The root can not have parents.
1087 Release nodes which previously were obtained as parents of the current node neighbors. */
1088 decrement_bcount(p_s_tb->FL[n_h]);
1089 decrement_bcount(p_s_tb->CFL[n_h]);
1090 decrement_bcount(p_s_tb->FR[n_h]);
1091 decrement_bcount(p_s_tb->CFR[n_h]);
1092 p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] =
1093 p_s_tb->CFR[n_h] = NULL;
1094 return CARRY_ON;
1097 /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1098 if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
1099 /* Current node is not the first child of its parent. */
1100 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1101 p_s_curf = p_s_curcf =
1102 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1103 get_bh(p_s_curf);
1104 get_bh(p_s_curf);
1105 p_s_tb->lkey[n_h] = n_position - 1;
1106 } else {
1107 /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1108 Calculate current common parent of L[n_path_offset] and the current node. Note that
1109 CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1110 Calculate lkey[n_path_offset]. */
1111 if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1112 &p_s_curcf,
1113 LEFT_PARENTS)) != CARRY_ON)
1114 return n_ret_value;
1117 decrement_bcount(p_s_tb->FL[n_h]);
1118 p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
1119 decrement_bcount(p_s_tb->CFL[n_h]);
1120 p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
1122 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1123 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1124 "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1126 /* Get parent FR[n_h] of R[n_h]. */
1128 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1129 if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
1130 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1131 Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1132 not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1133 if ((n_ret_value =
1134 get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf,
1135 RIGHT_PARENTS)) != CARRY_ON)
1136 return n_ret_value;
1137 } else {
1138 /* Current node is not the last child of its parent F[n_h]. */
1139 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1140 p_s_curf = p_s_curcf =
1141 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1142 get_bh(p_s_curf);
1143 get_bh(p_s_curf);
1144 p_s_tb->rkey[n_h] = n_position;
1147 decrement_bcount(p_s_tb->FR[n_h]);
1148 p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */
1150 decrement_bcount(p_s_tb->CFR[n_h]);
1151 p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */
1153 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1154 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1155 "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1157 return CARRY_ON;
1160 /* it is possible to remove node as result of shiftings to
1161 neighbors even when we insert or paste item. */
1162 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1163 struct tree_balance *tb, int h)
1165 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1166 int levbytes = tb->insert_size[h];
1167 struct item_head *ih;
1168 struct reiserfs_key *r_key = NULL;
1170 ih = B_N_PITEM_HEAD(Sh, 0);
1171 if (tb->CFR[h])
1172 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1174 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1175 /* shifting may merge items which might save space */
1177 ((!h
1178 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1180 ((!h && r_key
1181 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1182 + ((h) ? KEY_SIZE : 0)) {
1183 /* node can not be removed */
1184 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1185 if (!h)
1186 tb->s0num =
1187 B_NR_ITEMS(Sh) +
1188 ((mode == M_INSERT) ? 1 : 0);
1189 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1190 return NO_BALANCING_NEEDED;
1193 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1194 return !NO_BALANCING_NEEDED;
1197 /* Check whether current node S[h] is balanced when increasing its size by
1198 * Inserting or Pasting.
1199 * Calculate parameters for balancing for current level h.
1200 * Parameters:
1201 * tb tree_balance structure;
1202 * h current level of the node;
1203 * inum item number in S[h];
1204 * mode i - insert, p - paste;
1205 * Returns: 1 - schedule occurred;
1206 * 0 - balancing for higher levels needed;
1207 * -1 - no balancing for higher levels needed;
1208 * -2 - no disk space.
1210 /* ip means Inserting or Pasting */
1211 static int ip_check_balance(struct tree_balance *tb, int h)
1213 struct virtual_node *vn = tb->tb_vn;
1214 int levbytes, /* Number of bytes that must be inserted into (value
1215 is negative if bytes are deleted) buffer which
1216 contains node being balanced. The mnemonic is
1217 that the attempted change in node space used level
1218 is levbytes bytes. */
1219 n_ret_value;
1221 int lfree, sfree, rfree /* free space in L, S and R */ ;
1223 /* nver is short for number of vertixes, and lnver is the number if
1224 we shift to the left, rnver is the number if we shift to the
1225 right, and lrnver is the number if we shift in both directions.
1226 The goal is to minimize first the number of vertixes, and second,
1227 the number of vertixes whose contents are changed by shifting,
1228 and third the number of uncached vertixes whose contents are
1229 changed by shifting and must be read from disk. */
1230 int nver, lnver, rnver, lrnver;
1232 /* used at leaf level only, S0 = S[0] is the node being balanced,
1233 sInum [ I = 0,1,2 ] is the number of items that will
1234 remain in node SI after balancing. S1 and S2 are new
1235 nodes that might be created. */
1237 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1238 where 4th parameter is s1bytes and 5th - s2bytes
1240 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
1241 0,1 - do not shift and do not shift but bottle
1242 2 - shift only whole item to left
1243 3 - shift to left and bottle as much as possible
1244 4,5 - shift to right (whole items and as much as possible
1245 6,7 - shift to both directions (whole items and as much as possible)
1248 /* Sh is the node whose balance is currently being checked */
1249 struct buffer_head *Sh;
1251 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1252 levbytes = tb->insert_size[h];
1254 /* Calculate balance parameters for creating new root. */
1255 if (!Sh) {
1256 if (!h)
1257 reiserfs_panic(tb->tb_sb,
1258 "vs-8210: ip_check_balance: S[0] can not be 0");
1259 switch (n_ret_value = get_empty_nodes(tb, h)) {
1260 case CARRY_ON:
1261 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1262 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1264 case NO_DISK_SPACE:
1265 case REPEAT_SEARCH:
1266 return n_ret_value;
1267 default:
1268 reiserfs_panic(tb->tb_sb,
1269 "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1273 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1274 return n_ret_value;
1276 sfree = B_FREE_SPACE(Sh);
1278 /* get free space of neighbors */
1279 rfree = get_rfree(tb, h);
1280 lfree = get_lfree(tb, h);
1282 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1283 NO_BALANCING_NEEDED)
1284 /* and new item fits into node S[h] without any shifting */
1285 return NO_BALANCING_NEEDED;
1287 create_virtual_node(tb, h);
1290 determine maximal number of items we can shift to the left neighbor (in tb structure)
1291 and the maximal number of bytes that can flow to the left neighbor
1292 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1294 check_left(tb, h, lfree);
1297 determine maximal number of items we can shift to the right neighbor (in tb structure)
1298 and the maximal number of bytes that can flow to the right neighbor
1299 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1301 check_right(tb, h, rfree);
1303 /* all contents of internal node S[h] can be moved into its
1304 neighbors, S[h] will be removed after balancing */
1305 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1306 int to_r;
1308 /* Since we are working on internal nodes, and our internal
1309 nodes have fixed size entries, then we can balance by the
1310 number of items rather than the space they consume. In this
1311 routine we set the left node equal to the right node,
1312 allowing a difference of less than or equal to 1 child
1313 pointer. */
1314 to_r =
1315 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1316 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1317 tb->rnum[h]);
1318 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1319 -1, -1);
1320 return CARRY_ON;
1323 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1324 RFALSE(h &&
1325 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1326 tb->rnum[h] >= vn->vn_nr_item + 1),
1327 "vs-8220: tree is not balanced on internal level");
1328 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1329 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1330 "vs-8225: tree is not balanced on leaf level");
1332 /* all contents of S[0] can be moved into its neighbors
1333 S[0] will be removed after balancing. */
1334 if (!h && is_leaf_removable(tb))
1335 return CARRY_ON;
1337 /* why do we perform this check here rather than earlier??
1338 Answer: we can win 1 node in some cases above. Moreover we
1339 checked it above, when we checked, that S[0] is not removable
1340 in principle */
1341 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1342 if (!h)
1343 tb->s0num = vn->vn_nr_item;
1344 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1345 return NO_BALANCING_NEEDED;
1349 int lpar, rpar, nset, lset, rset, lrset;
1351 * regular overflowing of the node
1354 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1355 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1356 nset, lset, rset, lrset - shows, whether flowing items give better packing
1358 #define FLOW 1
1359 #define NO_FLOW 0 /* do not any splitting */
1361 /* we choose one the following */
1362 #define NOTHING_SHIFT_NO_FLOW 0
1363 #define NOTHING_SHIFT_FLOW 5
1364 #define LEFT_SHIFT_NO_FLOW 10
1365 #define LEFT_SHIFT_FLOW 15
1366 #define RIGHT_SHIFT_NO_FLOW 20
1367 #define RIGHT_SHIFT_FLOW 25
1368 #define LR_SHIFT_NO_FLOW 30
1369 #define LR_SHIFT_FLOW 35
1371 lpar = tb->lnum[h];
1372 rpar = tb->rnum[h];
1374 /* calculate number of blocks S[h] must be split into when
1375 nothing is shifted to the neighbors,
1376 as well as number of items in each part of the split node (s012 numbers),
1377 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1378 nset = NOTHING_SHIFT_NO_FLOW;
1379 nver = get_num_ver(vn->vn_mode, tb, h,
1380 0, -1, h ? vn->vn_nr_item : 0, -1,
1381 snum012, NO_FLOW);
1383 if (!h) {
1384 int nver1;
1386 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1387 nver1 = get_num_ver(vn->vn_mode, tb, h,
1388 0, -1, 0, -1,
1389 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1390 if (nver > nver1)
1391 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1394 /* calculate number of blocks S[h] must be split into when
1395 l_shift_num first items and l_shift_bytes of the right most
1396 liquid item to be shifted are shifted to the left neighbor,
1397 as well as number of items in each part of the splitted node (s012 numbers),
1398 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1400 lset = LEFT_SHIFT_NO_FLOW;
1401 lnver = get_num_ver(vn->vn_mode, tb, h,
1402 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1403 -1, h ? vn->vn_nr_item : 0, -1,
1404 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1405 if (!h) {
1406 int lnver1;
1408 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1409 lpar -
1410 ((tb->lbytes != -1) ? 1 : 0),
1411 tb->lbytes, 0, -1,
1412 snum012 + LEFT_SHIFT_FLOW, FLOW);
1413 if (lnver > lnver1)
1414 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1417 /* calculate number of blocks S[h] must be split into when
1418 r_shift_num first items and r_shift_bytes of the left most
1419 liquid item to be shifted are shifted to the right neighbor,
1420 as well as number of items in each part of the splitted node (s012 numbers),
1421 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1423 rset = RIGHT_SHIFT_NO_FLOW;
1424 rnver = get_num_ver(vn->vn_mode, tb, h,
1425 0, -1,
1426 h ? (vn->vn_nr_item - rpar) : (rpar -
1427 ((tb->
1428 rbytes !=
1429 -1) ? 1 :
1430 0)), -1,
1431 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1432 if (!h) {
1433 int rnver1;
1435 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1436 0, -1,
1437 (rpar -
1438 ((tb->rbytes != -1) ? 1 : 0)),
1439 tb->rbytes,
1440 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1442 if (rnver > rnver1)
1443 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1446 /* calculate number of blocks S[h] must be split into when
1447 items are shifted in both directions,
1448 as well as number of items in each part of the splitted node (s012 numbers),
1449 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1451 lrset = LR_SHIFT_NO_FLOW;
1452 lrnver = get_num_ver(vn->vn_mode, tb, h,
1453 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1455 h ? (vn->vn_nr_item - rpar) : (rpar -
1456 ((tb->
1457 rbytes !=
1458 -1) ? 1 :
1459 0)), -1,
1460 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1461 if (!h) {
1462 int lrnver1;
1464 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1465 lpar -
1466 ((tb->lbytes != -1) ? 1 : 0),
1467 tb->lbytes,
1468 (rpar -
1469 ((tb->rbytes != -1) ? 1 : 0)),
1470 tb->rbytes,
1471 snum012 + LR_SHIFT_FLOW, FLOW);
1472 if (lrnver > lrnver1)
1473 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1476 /* Our general shifting strategy is:
1477 1) to minimized number of new nodes;
1478 2) to minimized number of neighbors involved in shifting;
1479 3) to minimized number of disk reads; */
1481 /* we can win TWO or ONE nodes by shifting in both directions */
1482 if (lrnver < lnver && lrnver < rnver) {
1483 RFALSE(h &&
1484 (tb->lnum[h] != 1 ||
1485 tb->rnum[h] != 1 ||
1486 lrnver != 1 || rnver != 2 || lnver != 2
1487 || h != 1), "vs-8230: bad h");
1488 if (lrset == LR_SHIFT_FLOW)
1489 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1490 lrnver, snum012 + lrset,
1491 tb->lbytes, tb->rbytes);
1492 else
1493 set_parameters(tb, h,
1494 tb->lnum[h] -
1495 ((tb->lbytes == -1) ? 0 : 1),
1496 tb->rnum[h] -
1497 ((tb->rbytes == -1) ? 0 : 1),
1498 lrnver, snum012 + lrset, -1, -1);
1500 return CARRY_ON;
1503 /* if shifting doesn't lead to better packing then don't shift */
1504 if (nver == lrnver) {
1505 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1506 -1);
1507 return CARRY_ON;
1510 /* now we know that for better packing shifting in only one
1511 direction either to the left or to the right is required */
1513 /* if shifting to the left is better than shifting to the right */
1514 if (lnver < rnver) {
1515 SET_PAR_SHIFT_LEFT;
1516 return CARRY_ON;
1519 /* if shifting to the right is better than shifting to the left */
1520 if (lnver > rnver) {
1521 SET_PAR_SHIFT_RIGHT;
1522 return CARRY_ON;
1525 /* now shifting in either direction gives the same number
1526 of nodes and we can make use of the cached neighbors */
1527 if (is_left_neighbor_in_cache(tb, h)) {
1528 SET_PAR_SHIFT_LEFT;
1529 return CARRY_ON;
1532 /* shift to the right independently on whether the right neighbor in cache or not */
1533 SET_PAR_SHIFT_RIGHT;
1534 return CARRY_ON;
1538 /* Check whether current node S[h] is balanced when Decreasing its size by
1539 * Deleting or Cutting for INTERNAL node of S+tree.
1540 * Calculate parameters for balancing for current level h.
1541 * Parameters:
1542 * tb tree_balance structure;
1543 * h current level of the node;
1544 * inum item number in S[h];
1545 * mode i - insert, p - paste;
1546 * Returns: 1 - schedule occurred;
1547 * 0 - balancing for higher levels needed;
1548 * -1 - no balancing for higher levels needed;
1549 * -2 - no disk space.
1551 * Note: Items of internal nodes have fixed size, so the balance condition for
1552 * the internal part of S+tree is as for the B-trees.
1554 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1556 struct virtual_node *vn = tb->tb_vn;
1558 /* Sh is the node whose balance is currently being checked,
1559 and Fh is its father. */
1560 struct buffer_head *Sh, *Fh;
1561 int maxsize, n_ret_value;
1562 int lfree, rfree /* free space in L and R */ ;
1564 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1565 Fh = PATH_H_PPARENT(tb->tb_path, h);
1567 maxsize = MAX_CHILD_SIZE(Sh);
1569 /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1570 /* new_nr_item = number of items node would have if operation is */
1571 /* performed without balancing (new_nr_item); */
1572 create_virtual_node(tb, h);
1574 if (!Fh) { /* S[h] is the root. */
1575 if (vn->vn_nr_item > 0) {
1576 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1577 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1579 /* new_nr_item == 0.
1580 * Current root will be deleted resulting in
1581 * decrementing the tree height. */
1582 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1583 return CARRY_ON;
1586 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1587 return n_ret_value;
1589 /* get free space of neighbors */
1590 rfree = get_rfree(tb, h);
1591 lfree = get_lfree(tb, h);
1593 /* determine maximal number of items we can fit into neighbors */
1594 check_left(tb, h, lfree);
1595 check_right(tb, h, rfree);
1597 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1598 * In this case we balance only if it leads to better packing. */
1599 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1600 * which is impossible with greater values of new_nr_item. */
1601 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1602 /* All contents of S[h] can be moved to L[h]. */
1603 int n;
1604 int order_L;
1606 order_L =
1607 ((n =
1608 PATH_H_B_ITEM_ORDER(tb->tb_path,
1609 h)) ==
1610 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1611 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1612 (DC_SIZE + KEY_SIZE);
1613 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1614 -1);
1615 return CARRY_ON;
1618 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1619 /* All contents of S[h] can be moved to R[h]. */
1620 int n;
1621 int order_R;
1623 order_R =
1624 ((n =
1625 PATH_H_B_ITEM_ORDER(tb->tb_path,
1626 h)) ==
1627 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1628 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1629 (DC_SIZE + KEY_SIZE);
1630 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1631 -1);
1632 return CARRY_ON;
1636 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1637 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1638 int to_r;
1640 to_r =
1641 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1642 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1643 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1644 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1645 0, NULL, -1, -1);
1646 return CARRY_ON;
1649 /* Balancing does not lead to better packing. */
1650 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1651 return NO_BALANCING_NEEDED;
1654 /* Current node contain insufficient number of items. Balancing is required. */
1655 /* Check whether we can merge S[h] with left neighbor. */
1656 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1657 if (is_left_neighbor_in_cache(tb, h)
1658 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1659 int n;
1660 int order_L;
1662 order_L =
1663 ((n =
1664 PATH_H_B_ITEM_ORDER(tb->tb_path,
1665 h)) ==
1666 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1667 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1668 KEY_SIZE);
1669 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1670 return CARRY_ON;
1673 /* Check whether we can merge S[h] with right neighbor. */
1674 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1675 int n;
1676 int order_R;
1678 order_R =
1679 ((n =
1680 PATH_H_B_ITEM_ORDER(tb->tb_path,
1681 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1682 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1683 KEY_SIZE);
1684 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1685 return CARRY_ON;
1688 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1689 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1690 int to_r;
1692 to_r =
1693 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1694 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1695 tb->rnum[h]);
1696 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1697 -1, -1);
1698 return CARRY_ON;
1701 /* For internal nodes try to borrow item from a neighbor */
1702 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1704 /* Borrow one or two items from caching neighbor */
1705 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1706 int from_l;
1708 from_l =
1709 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1710 1) / 2 - (vn->vn_nr_item + 1);
1711 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1712 return CARRY_ON;
1715 set_parameters(tb, h, 0,
1716 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1717 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1718 return CARRY_ON;
1721 /* Check whether current node S[h] is balanced when Decreasing its size by
1722 * Deleting or Truncating for LEAF node of S+tree.
1723 * Calculate parameters for balancing for current level h.
1724 * Parameters:
1725 * tb tree_balance structure;
1726 * h current level of the node;
1727 * inum item number in S[h];
1728 * mode i - insert, p - paste;
1729 * Returns: 1 - schedule occurred;
1730 * 0 - balancing for higher levels needed;
1731 * -1 - no balancing for higher levels needed;
1732 * -2 - no disk space.
1734 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1736 struct virtual_node *vn = tb->tb_vn;
1738 /* Number of bytes that must be deleted from
1739 (value is negative if bytes are deleted) buffer which
1740 contains node being balanced. The mnemonic is that the
1741 attempted change in node space used level is levbytes bytes. */
1742 int levbytes;
1743 /* the maximal item size */
1744 int maxsize, n_ret_value;
1745 /* S0 is the node whose balance is currently being checked,
1746 and F0 is its father. */
1747 struct buffer_head *S0, *F0;
1748 int lfree, rfree /* free space in L and R */ ;
1750 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1751 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1753 levbytes = tb->insert_size[h];
1755 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1757 if (!F0) { /* S[0] is the root now. */
1759 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1760 "vs-8240: attempt to create empty buffer tree");
1762 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1763 return NO_BALANCING_NEEDED;
1766 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1767 return n_ret_value;
1769 /* get free space of neighbors */
1770 rfree = get_rfree(tb, h);
1771 lfree = get_lfree(tb, h);
1773 create_virtual_node(tb, h);
1775 /* if 3 leaves can be merge to one, set parameters and return */
1776 if (are_leaves_removable(tb, lfree, rfree))
1777 return CARRY_ON;
1779 /* determine maximal number of items we can shift to the left/right neighbor
1780 and the maximal number of bytes that can flow to the left/right neighbor
1781 from the left/right most liquid item that cannot be shifted from S[0] entirely
1783 check_left(tb, h, lfree);
1784 check_right(tb, h, rfree);
1786 /* check whether we can merge S with left neighbor. */
1787 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1788 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1789 !tb->FR[h]) {
1791 RFALSE(!tb->FL[h],
1792 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1794 /* set parameter to merge S[0] with its left neighbor */
1795 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1796 return CARRY_ON;
1799 /* check whether we can merge S[0] with right neighbor. */
1800 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1801 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1802 return CARRY_ON;
1805 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1806 if (is_leaf_removable(tb))
1807 return CARRY_ON;
1809 /* Balancing is not required. */
1810 tb->s0num = vn->vn_nr_item;
1811 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1812 return NO_BALANCING_NEEDED;
1815 /* Check whether current node S[h] is balanced when Decreasing its size by
1816 * Deleting or Cutting.
1817 * Calculate parameters for balancing for current level h.
1818 * Parameters:
1819 * tb tree_balance structure;
1820 * h current level of the node;
1821 * inum item number in S[h];
1822 * mode d - delete, c - cut.
1823 * Returns: 1 - schedule occurred;
1824 * 0 - balancing for higher levels needed;
1825 * -1 - no balancing for higher levels needed;
1826 * -2 - no disk space.
1828 static int dc_check_balance(struct tree_balance *tb, int h)
1830 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1831 "vs-8250: S is not initialized");
1833 if (h)
1834 return dc_check_balance_internal(tb, h);
1835 else
1836 return dc_check_balance_leaf(tb, h);
1839 /* Check whether current node S[h] is balanced.
1840 * Calculate parameters for balancing for current level h.
1841 * Parameters:
1843 * tb tree_balance structure:
1845 * tb is a large structure that must be read about in the header file
1846 * at the same time as this procedure if the reader is to successfully
1847 * understand this procedure
1849 * h current level of the node;
1850 * inum item number in S[h];
1851 * mode i - insert, p - paste, d - delete, c - cut.
1852 * Returns: 1 - schedule occurred;
1853 * 0 - balancing for higher levels needed;
1854 * -1 - no balancing for higher levels needed;
1855 * -2 - no disk space.
1857 static int check_balance(int mode,
1858 struct tree_balance *tb,
1859 int h,
1860 int inum,
1861 int pos_in_item,
1862 struct item_head *ins_ih, const void *data)
1864 struct virtual_node *vn;
1866 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1867 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1868 vn->vn_mode = mode;
1869 vn->vn_affected_item_num = inum;
1870 vn->vn_pos_in_item = pos_in_item;
1871 vn->vn_ins_ih = ins_ih;
1872 vn->vn_data = data;
1874 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1875 "vs-8255: ins_ih can not be 0 in insert mode");
1877 if (tb->insert_size[h] > 0)
1878 /* Calculate balance parameters when size of node is increasing. */
1879 return ip_check_balance(tb, h);
1881 /* Calculate balance parameters when size of node is decreasing. */
1882 return dc_check_balance(tb, h);
1885 /* Check whether parent at the path is the really parent of the current node.*/
1886 static int get_direct_parent(struct tree_balance *p_s_tb, int n_h)
1888 struct buffer_head *p_s_bh;
1889 struct path *p_s_path = p_s_tb->tb_path;
1890 int n_position,
1891 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1893 /* We are in the root or in the new root. */
1894 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1896 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1897 "PAP-8260: invalid offset in the path");
1899 if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
1900 b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1901 /* Root is not changed. */
1902 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1903 PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1904 return CARRY_ON;
1906 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1909 if (!B_IS_IN_TREE
1910 (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
1911 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1913 if ((n_position =
1914 PATH_OFFSET_POSITION(p_s_path,
1915 n_path_offset - 1)) > B_NR_ITEMS(p_s_bh))
1916 return REPEAT_SEARCH;
1918 if (B_N_CHILD_NUM(p_s_bh, n_position) !=
1919 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
1920 /* Parent in the path is not parent of the current node in the tree. */
1921 return REPEAT_SEARCH;
1923 if (buffer_locked(p_s_bh)) {
1924 __wait_on_buffer(p_s_bh);
1925 if (FILESYSTEM_CHANGED_TB(p_s_tb))
1926 return REPEAT_SEARCH;
1929 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1932 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1933 * of S[n_h] we
1934 * need in order to balance S[n_h], and get them if necessary.
1935 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1936 * CARRY_ON - schedule didn't occur while the function worked;
1938 static int get_neighbors(struct tree_balance *p_s_tb, int n_h)
1940 int n_child_position,
1941 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1942 unsigned long n_son_number;
1943 struct super_block *p_s_sb = p_s_tb->tb_sb;
1944 struct buffer_head *p_s_bh;
1946 PROC_INFO_INC(p_s_sb, get_neighbors[n_h]);
1948 if (p_s_tb->lnum[n_h]) {
1949 /* We need left neighbor to balance S[n_h]. */
1950 PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]);
1951 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1953 RFALSE(p_s_bh == p_s_tb->FL[n_h] &&
1954 !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1955 "PAP-8270: invalid position in the parent");
1957 n_child_position =
1958 (p_s_bh ==
1959 p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->
1960 FL[n_h]);
1961 n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1962 p_s_bh = sb_bread(p_s_sb, n_son_number);
1963 if (!p_s_bh)
1964 return IO_ERROR;
1965 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1966 decrement_bcount(p_s_bh);
1967 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
1968 return REPEAT_SEARCH;
1971 RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1972 n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1973 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1974 p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1975 RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1976 RFALSE(!n_h &&
1977 B_FREE_SPACE(p_s_bh) !=
1978 MAX_CHILD_SIZE(p_s_bh) -
1979 dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)),
1980 "PAP-8290: invalid child size of left neighbor");
1982 decrement_bcount(p_s_tb->L[n_h]);
1983 p_s_tb->L[n_h] = p_s_bh;
1986 if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */
1987 PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]);
1988 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1990 RFALSE(p_s_bh == p_s_tb->FR[n_h] &&
1991 PATH_OFFSET_POSITION(p_s_tb->tb_path,
1992 n_path_offset) >=
1993 B_NR_ITEMS(p_s_bh),
1994 "PAP-8295: invalid position in the parent");
1996 n_child_position =
1997 (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0;
1998 n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
1999 p_s_bh = sb_bread(p_s_sb, n_son_number);
2000 if (!p_s_bh)
2001 return IO_ERROR;
2002 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2003 decrement_bcount(p_s_bh);
2004 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
2005 return REPEAT_SEARCH;
2007 decrement_bcount(p_s_tb->R[n_h]);
2008 p_s_tb->R[n_h] = p_s_bh;
2010 RFALSE(!n_h
2011 && B_FREE_SPACE(p_s_bh) !=
2012 MAX_CHILD_SIZE(p_s_bh) -
2013 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)),
2014 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2015 B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh),
2016 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)));
2019 return CARRY_ON;
2022 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2024 int max_num_of_items;
2025 int max_num_of_entries;
2026 unsigned long blocksize = sb->s_blocksize;
2028 #define MIN_NAME_LEN 1
2030 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2031 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2032 (DEH_SIZE + MIN_NAME_LEN);
2034 return sizeof(struct virtual_node) +
2035 max(max_num_of_items * sizeof(struct virtual_item),
2036 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2037 (max_num_of_entries - 1) * sizeof(__u16));
2040 /* maybe we should fail balancing we are going to perform when kmalloc
2041 fails several times. But now it will loop until kmalloc gets
2042 required memory */
2043 static int get_mem_for_virtual_node(struct tree_balance *tb)
2045 int check_fs = 0;
2046 int size;
2047 char *buf;
2049 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2051 if (size > tb->vn_buf_size) {
2052 /* we have to allocate more memory for virtual node */
2053 if (tb->vn_buf) {
2054 /* free memory allocated before */
2055 kfree(tb->vn_buf);
2056 /* this is not needed if kfree is atomic */
2057 check_fs = 1;
2060 /* virtual node requires now more memory */
2061 tb->vn_buf_size = size;
2063 /* get memory for virtual item */
2064 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2065 if (!buf) {
2066 /* getting memory with GFP_KERNEL priority may involve
2067 balancing now (due to indirect_to_direct conversion on
2068 dcache shrinking). So, release path and collected
2069 resources here */
2070 free_buffers_in_tb(tb);
2071 buf = kmalloc(size, GFP_NOFS);
2072 if (!buf) {
2073 tb->vn_buf_size = 0;
2075 tb->vn_buf = buf;
2076 schedule();
2077 return REPEAT_SEARCH;
2080 tb->vn_buf = buf;
2083 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2084 return REPEAT_SEARCH;
2086 return CARRY_ON;
2089 #ifdef CONFIG_REISERFS_CHECK
2090 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2091 struct buffer_head *p_s_bh,
2092 const char *descr, int level)
2094 if (p_s_bh) {
2095 if (atomic_read(&(p_s_bh->b_count)) <= 0) {
2097 reiserfs_panic(p_s_sb,
2098 "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n",
2099 descr, level, p_s_bh);
2102 if (!buffer_uptodate(p_s_bh)) {
2103 reiserfs_panic(p_s_sb,
2104 "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n",
2105 descr, level, p_s_bh);
2108 if (!B_IS_IN_TREE(p_s_bh)) {
2109 reiserfs_panic(p_s_sb,
2110 "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n",
2111 descr, level, p_s_bh);
2114 if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2115 reiserfs_panic(p_s_sb,
2116 "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n",
2117 descr, level, p_s_bh);
2120 if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2121 reiserfs_panic(p_s_sb,
2122 "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n",
2123 descr, level, p_s_bh);
2126 if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2127 reiserfs_panic(p_s_sb,
2128 "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n",
2129 descr, level, p_s_bh);
2133 #else
2134 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2135 struct buffer_head *p_s_bh,
2136 const char *descr, int level)
2139 #endif
2141 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2143 return reiserfs_prepare_for_journal(s, bh, 0);
2146 static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
2148 struct buffer_head *locked;
2149 #ifdef CONFIG_REISERFS_CHECK
2150 int repeat_counter = 0;
2151 #endif
2152 int i;
2154 do {
2156 locked = NULL;
2158 for (i = p_s_tb->tb_path->path_length;
2159 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2160 if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2161 /* if I understand correctly, we can only be sure the last buffer
2162 ** in the path is in the tree --clm
2164 #ifdef CONFIG_REISERFS_CHECK
2165 if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2166 PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2167 tb_buffer_sanity_check(p_s_tb->tb_sb,
2168 PATH_OFFSET_PBUFFER
2169 (p_s_tb->tb_path,
2170 i), "S",
2171 p_s_tb->tb_path->
2172 path_length - i);
2174 #endif
2175 if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2176 PATH_OFFSET_PBUFFER
2177 (p_s_tb->tb_path,
2178 i))) {
2179 locked =
2180 PATH_OFFSET_PBUFFER(p_s_tb->tb_path,
2186 for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i];
2187 i++) {
2189 if (p_s_tb->lnum[i]) {
2191 if (p_s_tb->L[i]) {
2192 tb_buffer_sanity_check(p_s_tb->tb_sb,
2193 p_s_tb->L[i],
2194 "L", i);
2195 if (!clear_all_dirty_bits
2196 (p_s_tb->tb_sb, p_s_tb->L[i]))
2197 locked = p_s_tb->L[i];
2200 if (!locked && p_s_tb->FL[i]) {
2201 tb_buffer_sanity_check(p_s_tb->tb_sb,
2202 p_s_tb->FL[i],
2203 "FL", i);
2204 if (!clear_all_dirty_bits
2205 (p_s_tb->tb_sb, p_s_tb->FL[i]))
2206 locked = p_s_tb->FL[i];
2209 if (!locked && p_s_tb->CFL[i]) {
2210 tb_buffer_sanity_check(p_s_tb->tb_sb,
2211 p_s_tb->CFL[i],
2212 "CFL", i);
2213 if (!clear_all_dirty_bits
2214 (p_s_tb->tb_sb, p_s_tb->CFL[i]))
2215 locked = p_s_tb->CFL[i];
2220 if (!locked && (p_s_tb->rnum[i])) {
2222 if (p_s_tb->R[i]) {
2223 tb_buffer_sanity_check(p_s_tb->tb_sb,
2224 p_s_tb->R[i],
2225 "R", i);
2226 if (!clear_all_dirty_bits
2227 (p_s_tb->tb_sb, p_s_tb->R[i]))
2228 locked = p_s_tb->R[i];
2231 if (!locked && p_s_tb->FR[i]) {
2232 tb_buffer_sanity_check(p_s_tb->tb_sb,
2233 p_s_tb->FR[i],
2234 "FR", i);
2235 if (!clear_all_dirty_bits
2236 (p_s_tb->tb_sb, p_s_tb->FR[i]))
2237 locked = p_s_tb->FR[i];
2240 if (!locked && p_s_tb->CFR[i]) {
2241 tb_buffer_sanity_check(p_s_tb->tb_sb,
2242 p_s_tb->CFR[i],
2243 "CFR", i);
2244 if (!clear_all_dirty_bits
2245 (p_s_tb->tb_sb, p_s_tb->CFR[i]))
2246 locked = p_s_tb->CFR[i];
2250 /* as far as I can tell, this is not required. The FEB list seems
2251 ** to be full of newly allocated nodes, which will never be locked,
2252 ** dirty, or anything else.
2253 ** To be safe, I'm putting in the checks and waits in. For the moment,
2254 ** they are needed to keep the code in journal.c from complaining
2255 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2256 ** --clm
2258 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2259 if (p_s_tb->FEB[i]) {
2260 if (!clear_all_dirty_bits
2261 (p_s_tb->tb_sb, p_s_tb->FEB[i]))
2262 locked = p_s_tb->FEB[i];
2266 if (locked) {
2267 #ifdef CONFIG_REISERFS_CHECK
2268 repeat_counter++;
2269 if ((repeat_counter % 10000) == 0) {
2270 reiserfs_warning(p_s_tb->tb_sb,
2271 "wait_tb_buffers_until_released(): too many "
2272 "iterations waiting for buffer to unlock "
2273 "(%b)", locked);
2275 /* Don't loop forever. Try to recover from possible error. */
2277 return (FILESYSTEM_CHANGED_TB(p_s_tb)) ?
2278 REPEAT_SEARCH : CARRY_ON;
2280 #endif
2281 __wait_on_buffer(locked);
2282 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2283 return REPEAT_SEARCH;
2287 } while (locked);
2289 return CARRY_ON;
2292 /* Prepare for balancing, that is
2293 * get all necessary parents, and neighbors;
2294 * analyze what and where should be moved;
2295 * get sufficient number of new nodes;
2296 * Balancing will start only after all resources will be collected at a time.
2298 * When ported to SMP kernels, only at the last moment after all needed nodes
2299 * are collected in cache, will the resources be locked using the usual
2300 * textbook ordered lock acquisition algorithms. Note that ensuring that
2301 * this code neither write locks what it does not need to write lock nor locks out of order
2302 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2304 * fix is meant in the sense of render unchanging
2306 * Latency might be improved by first gathering a list of what buffers are needed
2307 * and then getting as many of them in parallel as possible? -Hans
2309 * Parameters:
2310 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2311 * tb tree_balance structure;
2312 * inum item number in S[h];
2313 * pos_in_item - comment this if you can
2314 * ins_ih & ins_sd are used when inserting
2315 * Returns: 1 - schedule occurred while the function worked;
2316 * 0 - schedule didn't occur while the function worked;
2317 * -1 - if no_disk_space
2320 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted
2321 const void *data // inserted item or data to be pasted
2324 int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2325 int n_pos_in_item;
2327 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2328 ** during wait_tb_buffers_run
2330 int wait_tb_buffers_run = 0;
2331 struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2333 ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes;
2335 n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2337 p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb);
2339 /* we prepare and log the super here so it will already be in the
2340 ** transaction when do_balance needs to change it.
2341 ** This way do_balance won't have to schedule when trying to prepare
2342 ** the super for logging
2344 reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2345 SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1);
2346 journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2347 SB_BUFFER_WITH_SB(p_s_tb->tb_sb));
2348 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2349 return REPEAT_SEARCH;
2351 /* if it possible in indirect_to_direct conversion */
2352 if (buffer_locked(p_s_tbS0)) {
2353 __wait_on_buffer(p_s_tbS0);
2354 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2355 return REPEAT_SEARCH;
2357 #ifdef CONFIG_REISERFS_CHECK
2358 if (cur_tb) {
2359 print_cur_tb("fix_nodes");
2360 reiserfs_panic(p_s_tb->tb_sb,
2361 "PAP-8305: fix_nodes: there is pending do_balance");
2364 if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) {
2365 reiserfs_panic(p_s_tb->tb_sb,
2366 "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2367 "at the beginning of fix_nodes or not in tree (mode %c)",
2368 p_s_tbS0, p_s_tbS0, n_op_mode);
2371 /* Check parameters. */
2372 switch (n_op_mode) {
2373 case M_INSERT:
2374 if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0))
2375 reiserfs_panic(p_s_tb->tb_sb,
2376 "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2377 n_item_num, B_NR_ITEMS(p_s_tbS0));
2378 break;
2379 case M_PASTE:
2380 case M_DELETE:
2381 case M_CUT:
2382 if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) {
2383 print_block(p_s_tbS0, 0, -1, -1);
2384 reiserfs_panic(p_s_tb->tb_sb,
2385 "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n",
2386 n_item_num, n_op_mode,
2387 p_s_tb->insert_size[0]);
2389 break;
2390 default:
2391 reiserfs_panic(p_s_tb->tb_sb,
2392 "PAP-8340: fix_nodes: Incorrect mode of operation");
2394 #endif
2396 if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH)
2397 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2398 return REPEAT_SEARCH;
2400 /* Starting from the leaf level; for all levels n_h of the tree. */
2401 for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) {
2402 if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) {
2403 goto repeat;
2406 if ((n_ret_value =
2407 check_balance(n_op_mode, p_s_tb, n_h, n_item_num,
2408 n_pos_in_item, p_s_ins_ih,
2409 data)) != CARRY_ON) {
2410 if (n_ret_value == NO_BALANCING_NEEDED) {
2411 /* No balancing for higher levels needed. */
2412 if ((n_ret_value =
2413 get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2414 goto repeat;
2416 if (n_h != MAX_HEIGHT - 1)
2417 p_s_tb->insert_size[n_h + 1] = 0;
2418 /* ok, analysis and resource gathering are complete */
2419 break;
2421 goto repeat;
2424 if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2425 goto repeat;
2428 if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) {
2429 goto repeat; /* No disk space, or schedule occurred and
2430 analysis may be invalid and needs to be redone. */
2433 if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) {
2434 /* We have a positive insert size but no nodes exist on this
2435 level, this means that we are creating a new root. */
2437 RFALSE(p_s_tb->blknum[n_h] != 1,
2438 "PAP-8350: creating new empty root");
2440 if (n_h < MAX_HEIGHT - 1)
2441 p_s_tb->insert_size[n_h + 1] = 0;
2442 } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) {
2443 if (p_s_tb->blknum[n_h] > 1) {
2444 /* The tree needs to be grown, so this node S[n_h]
2445 which is the root node is split into two nodes,
2446 and a new node (S[n_h+1]) will be created to
2447 become the root node. */
2449 RFALSE(n_h == MAX_HEIGHT - 1,
2450 "PAP-8355: attempt to create too high of a tree");
2452 p_s_tb->insert_size[n_h + 1] =
2453 (DC_SIZE +
2454 KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) +
2455 DC_SIZE;
2456 } else if (n_h < MAX_HEIGHT - 1)
2457 p_s_tb->insert_size[n_h + 1] = 0;
2458 } else
2459 p_s_tb->insert_size[n_h + 1] =
2460 (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2463 if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) {
2464 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2465 wait_tb_buffers_run = 1;
2466 n_ret_value = REPEAT_SEARCH;
2467 goto repeat;
2468 } else {
2469 return CARRY_ON;
2471 } else {
2472 wait_tb_buffers_run = 1;
2473 goto repeat;
2476 repeat:
2477 // fix_nodes was unable to perform its calculation due to
2478 // filesystem got changed under us, lack of free disk space or i/o
2479 // failure. If the first is the case - the search will be
2480 // repeated. For now - free all resources acquired so far except
2481 // for the new allocated nodes
2483 int i;
2485 /* Release path buffers. */
2486 if (wait_tb_buffers_run) {
2487 pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path);
2488 } else {
2489 pathrelse(p_s_tb->tb_path);
2491 /* brelse all resources collected for balancing */
2492 for (i = 0; i < MAX_HEIGHT; i++) {
2493 if (wait_tb_buffers_run) {
2494 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2495 p_s_tb->L[i]);
2496 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2497 p_s_tb->R[i]);
2498 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2499 p_s_tb->FL[i]);
2500 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2501 p_s_tb->FR[i]);
2502 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2503 p_s_tb->
2504 CFL[i]);
2505 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2506 p_s_tb->
2507 CFR[i]);
2510 brelse(p_s_tb->L[i]);
2511 p_s_tb->L[i] = NULL;
2512 brelse(p_s_tb->R[i]);
2513 p_s_tb->R[i] = NULL;
2514 brelse(p_s_tb->FL[i]);
2515 p_s_tb->FL[i] = NULL;
2516 brelse(p_s_tb->FR[i]);
2517 p_s_tb->FR[i] = NULL;
2518 brelse(p_s_tb->CFL[i]);
2519 p_s_tb->CFL[i] = NULL;
2520 brelse(p_s_tb->CFR[i]);
2521 p_s_tb->CFR[i] = NULL;
2524 if (wait_tb_buffers_run) {
2525 for (i = 0; i < MAX_FEB_SIZE; i++) {
2526 if (p_s_tb->FEB[i]) {
2527 reiserfs_restore_prepared_buffer
2528 (p_s_tb->tb_sb, p_s_tb->FEB[i]);
2532 return n_ret_value;
2537 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2538 wanted to make lines shorter */
2539 void unfix_nodes(struct tree_balance *tb)
2541 int i;
2543 /* Release path buffers. */
2544 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2546 /* brelse all resources collected for balancing */
2547 for (i = 0; i < MAX_HEIGHT; i++) {
2548 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2549 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2550 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2551 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2552 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2553 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2555 brelse(tb->L[i]);
2556 brelse(tb->R[i]);
2557 brelse(tb->FL[i]);
2558 brelse(tb->FR[i]);
2559 brelse(tb->CFL[i]);
2560 brelse(tb->CFR[i]);
2563 /* deal with list of allocated (used and unused) nodes */
2564 for (i = 0; i < MAX_FEB_SIZE; i++) {
2565 if (tb->FEB[i]) {
2566 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2567 /* de-allocated block which was not used by balancing and
2568 bforget about buffer for it */
2569 brelse(tb->FEB[i]);
2570 reiserfs_free_block(tb->transaction_handle, NULL,
2571 blocknr, 0);
2573 if (tb->used[i]) {
2574 /* release used as new nodes including a new root */
2575 brelse(tb->used[i]);
2579 kfree(tb->vn_buf);