[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / arch / ia64 / kernel / kprobes.c
blob5bc46f1513443b3fa6e28d82baced294d7c776d7
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45 { M, I, I }, /* 00 */
46 { M, I, I }, /* 01 */
47 { M, I, I }, /* 02 */
48 { M, I, I }, /* 03 */
49 { M, L, X }, /* 04 */
50 { M, L, X }, /* 05 */
51 { u, u, u }, /* 06 */
52 { u, u, u }, /* 07 */
53 { M, M, I }, /* 08 */
54 { M, M, I }, /* 09 */
55 { M, M, I }, /* 0A */
56 { M, M, I }, /* 0B */
57 { M, F, I }, /* 0C */
58 { M, F, I }, /* 0D */
59 { M, M, F }, /* 0E */
60 { M, M, F }, /* 0F */
61 { M, I, B }, /* 10 */
62 { M, I, B }, /* 11 */
63 { M, B, B }, /* 12 */
64 { M, B, B }, /* 13 */
65 { u, u, u }, /* 14 */
66 { u, u, u }, /* 15 */
67 { B, B, B }, /* 16 */
68 { B, B, B }, /* 17 */
69 { M, M, B }, /* 18 */
70 { M, M, B }, /* 19 */
71 { u, u, u }, /* 1A */
72 { u, u, u }, /* 1B */
73 { M, F, B }, /* 1C */
74 { M, F, B }, /* 1D */
75 { u, u, u }, /* 1E */
76 { u, u, u }, /* 1F */
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
85 uint major_opcode,
86 unsigned long kprobe_inst,
87 struct kprobe *p)
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
91 p->ainsn.slot = slot;
93 /* Check for Break instruction
94 * Bits 37:40 Major opcode to be zero
95 * Bits 27:32 X6 to be zero
96 * Bits 32:35 X3 to be zero
98 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
99 /* is a break instruction */
100 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
101 return;
104 if (bundle_encoding[template][slot] == B) {
105 switch (major_opcode) {
106 case INDIRECT_CALL_OPCODE:
107 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
108 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 break;
110 case IP_RELATIVE_PREDICT_OPCODE:
111 case IP_RELATIVE_BRANCH_OPCODE:
112 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 break;
114 case IP_RELATIVE_CALL_OPCODE:
115 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
116 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
117 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
118 break;
120 } else if (bundle_encoding[template][slot] == X) {
121 switch (major_opcode) {
122 case LONG_CALL_OPCODE:
123 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
124 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
125 break;
128 return;
132 * In this function we check to see if the instruction
133 * (qp) cmpx.crel.ctype p1,p2=r2,r3
134 * on which we are inserting kprobe is cmp instruction
135 * with ctype as unc.
137 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
138 uint major_opcode,
139 unsigned long kprobe_inst)
141 cmp_inst_t cmp_inst;
142 uint ctype_unc = 0;
144 if (!((bundle_encoding[template][slot] == I) ||
145 (bundle_encoding[template][slot] == M)))
146 goto out;
148 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
149 (major_opcode == 0xE)))
150 goto out;
152 cmp_inst.l = kprobe_inst;
153 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
154 /* Integer compare - Register Register (A6 type)*/
155 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
156 &&(cmp_inst.f.c == 1))
157 ctype_unc = 1;
158 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
159 /* Integer compare - Immediate Register (A8 type)*/
160 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
161 ctype_unc = 1;
163 out:
164 return ctype_unc;
168 * In this function we check to see if the instruction
169 * on which we are inserting kprobe is supported.
170 * Returns qp value if supported
171 * Returns -EINVAL if unsupported
173 static int __kprobes unsupported_inst(uint template, uint slot,
174 uint major_opcode,
175 unsigned long kprobe_inst,
176 unsigned long addr)
178 int qp;
180 qp = kprobe_inst & 0x3f;
181 if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
182 if (slot == 1 && qp) {
183 printk(KERN_WARNING "Kprobes on cmp unc"
184 "instruction on slot 1 at <0x%lx>"
185 "is not supported\n", addr);
186 return -EINVAL;
189 qp = 0;
191 else if (bundle_encoding[template][slot] == I) {
192 if (major_opcode == 0) {
194 * Check for Integer speculation instruction
195 * - Bit 33-35 to be equal to 0x1
197 if (((kprobe_inst >> 33) & 0x7) == 1) {
198 printk(KERN_WARNING
199 "Kprobes on speculation inst at <0x%lx> not supported\n",
200 addr);
201 return -EINVAL;
204 * IP relative mov instruction
205 * - Bit 27-35 to be equal to 0x30
207 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
208 printk(KERN_WARNING
209 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
210 addr);
211 return -EINVAL;
215 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
216 (kprobe_inst & (0x1UL << 12))) {
217 /* test bit instructions, tbit,tnat,tf
218 * bit 33-36 to be equal to 0
219 * bit 12 to be equal to 1
221 if (slot == 1 && qp) {
222 printk(KERN_WARNING "Kprobes on test bit"
223 "instruction on slot at <0x%lx>"
224 "is not supported\n", addr);
225 return -EINVAL;
227 qp = 0;
230 else if (bundle_encoding[template][slot] == B) {
231 if (major_opcode == 7) {
232 /* IP-Relative Predict major code is 7 */
233 printk(KERN_WARNING "Kprobes on IP-Relative"
234 "Predict is not supported\n");
235 return -EINVAL;
237 else if (major_opcode == 2) {
238 /* Indirect Predict, major code is 2
239 * bit 27-32 to be equal to 10 or 11
241 int x6=(kprobe_inst >> 27) & 0x3F;
242 if ((x6 == 0x10) || (x6 == 0x11)) {
243 printk(KERN_WARNING "Kprobes on"
244 "Indirect Predict is not supported\n");
245 return -EINVAL;
249 /* kernel does not use float instruction, here for safety kprobe
250 * will judge whether it is fcmp/flass/float approximation instruction
252 else if (unlikely(bundle_encoding[template][slot] == F)) {
253 if ((major_opcode == 4 || major_opcode == 5) &&
254 (kprobe_inst & (0x1 << 12))) {
255 /* fcmp/fclass unc instruction */
256 if (slot == 1 && qp) {
257 printk(KERN_WARNING "Kprobes on fcmp/fclass "
258 "instruction on slot at <0x%lx> "
259 "is not supported\n", addr);
260 return -EINVAL;
263 qp = 0;
265 if ((major_opcode == 0 || major_opcode == 1) &&
266 (kprobe_inst & (0x1UL << 33))) {
267 /* float Approximation instruction */
268 if (slot == 1 && qp) {
269 printk(KERN_WARNING "Kprobes on float Approx "
270 "instr at <0x%lx> is not supported\n",
271 addr);
272 return -EINVAL;
274 qp = 0;
277 return qp;
281 * In this function we override the bundle with
282 * the break instruction at the given slot.
284 static void __kprobes prepare_break_inst(uint template, uint slot,
285 uint major_opcode,
286 unsigned long kprobe_inst,
287 struct kprobe *p,
288 int qp)
290 unsigned long break_inst = BREAK_INST;
291 bundle_t *bundle = &p->opcode.bundle;
294 * Copy the original kprobe_inst qualifying predicate(qp)
295 * to the break instruction
297 break_inst |= qp;
299 switch (slot) {
300 case 0:
301 bundle->quad0.slot0 = break_inst;
302 break;
303 case 1:
304 bundle->quad0.slot1_p0 = break_inst;
305 bundle->quad1.slot1_p1 = break_inst >> (64-46);
306 break;
307 case 2:
308 bundle->quad1.slot2 = break_inst;
309 break;
313 * Update the instruction flag, so that we can
314 * emulate the instruction properly after we
315 * single step on original instruction
317 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
320 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
321 unsigned long *kprobe_inst, uint *major_opcode)
323 unsigned long kprobe_inst_p0, kprobe_inst_p1;
324 unsigned int template;
326 template = bundle->quad0.template;
328 switch (slot) {
329 case 0:
330 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
331 *kprobe_inst = bundle->quad0.slot0;
332 break;
333 case 1:
334 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
335 kprobe_inst_p0 = bundle->quad0.slot1_p0;
336 kprobe_inst_p1 = bundle->quad1.slot1_p1;
337 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
338 break;
339 case 2:
340 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
341 *kprobe_inst = bundle->quad1.slot2;
342 break;
346 /* Returns non-zero if the addr is in the Interrupt Vector Table */
347 static int __kprobes in_ivt_functions(unsigned long addr)
349 return (addr >= (unsigned long)__start_ivt_text
350 && addr < (unsigned long)__end_ivt_text);
353 static int __kprobes valid_kprobe_addr(int template, int slot,
354 unsigned long addr)
356 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
357 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
358 "at 0x%lx\n", addr);
359 return -EINVAL;
362 if (in_ivt_functions(addr)) {
363 printk(KERN_WARNING "Kprobes can't be inserted inside "
364 "IVT functions at 0x%lx\n", addr);
365 return -EINVAL;
368 return 0;
371 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373 unsigned int i;
374 i = atomic_add_return(1, &kcb->prev_kprobe_index);
375 kcb->prev_kprobe[i-1].kp = kprobe_running();
376 kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
379 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381 unsigned int i;
382 i = atomic_sub_return(1, &kcb->prev_kprobe_index);
383 __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp;
384 kcb->kprobe_status = kcb->prev_kprobe[i].status;
387 static void __kprobes set_current_kprobe(struct kprobe *p,
388 struct kprobe_ctlblk *kcb)
390 __get_cpu_var(current_kprobe) = p;
393 static void kretprobe_trampoline(void)
398 * At this point the target function has been tricked into
399 * returning into our trampoline. Lookup the associated instance
400 * and then:
401 * - call the handler function
402 * - cleanup by marking the instance as unused
403 * - long jump back to the original return address
405 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
407 struct kretprobe_instance *ri = NULL;
408 struct hlist_head *head, empty_rp;
409 struct hlist_node *node, *tmp;
410 unsigned long flags, orig_ret_address = 0;
411 unsigned long trampoline_address =
412 ((struct fnptr *)kretprobe_trampoline)->ip;
414 INIT_HLIST_HEAD(&empty_rp);
415 spin_lock_irqsave(&kretprobe_lock, flags);
416 head = kretprobe_inst_table_head(current);
419 * It is possible to have multiple instances associated with a given
420 * task either because an multiple functions in the call path
421 * have a return probe installed on them, and/or more then one return
422 * return probe was registered for a target function.
424 * We can handle this because:
425 * - instances are always inserted at the head of the list
426 * - when multiple return probes are registered for the same
427 * function, the first instance's ret_addr will point to the
428 * real return address, and all the rest will point to
429 * kretprobe_trampoline
431 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
432 if (ri->task != current)
433 /* another task is sharing our hash bucket */
434 continue;
436 if (ri->rp && ri->rp->handler)
437 ri->rp->handler(ri, regs);
439 orig_ret_address = (unsigned long)ri->ret_addr;
440 recycle_rp_inst(ri, &empty_rp);
442 if (orig_ret_address != trampoline_address)
444 * This is the real return address. Any other
445 * instances associated with this task are for
446 * other calls deeper on the call stack
448 break;
451 kretprobe_assert(ri, orig_ret_address, trampoline_address);
453 regs->cr_iip = orig_ret_address;
455 reset_current_kprobe();
456 spin_unlock_irqrestore(&kretprobe_lock, flags);
457 preempt_enable_no_resched();
459 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
460 hlist_del(&ri->hlist);
461 kfree(ri);
464 * By returning a non-zero value, we are telling
465 * kprobe_handler() that we don't want the post_handler
466 * to run (and have re-enabled preemption)
468 return 1;
471 /* Called with kretprobe_lock held */
472 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
473 struct pt_regs *regs)
475 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
477 /* Replace the return addr with trampoline addr */
478 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
481 int __kprobes arch_prepare_kprobe(struct kprobe *p)
483 unsigned long addr = (unsigned long) p->addr;
484 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
485 unsigned long kprobe_inst=0;
486 unsigned int slot = addr & 0xf, template, major_opcode = 0;
487 bundle_t *bundle;
488 int qp;
490 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
491 template = bundle->quad0.template;
493 if(valid_kprobe_addr(template, slot, addr))
494 return -EINVAL;
496 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
497 if (slot == 1 && bundle_encoding[template][1] == L)
498 slot++;
500 /* Get kprobe_inst and major_opcode from the bundle */
501 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
503 qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
504 if (qp < 0)
505 return -EINVAL;
507 p->ainsn.insn = get_insn_slot();
508 if (!p->ainsn.insn)
509 return -ENOMEM;
510 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
511 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
513 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
515 return 0;
518 void __kprobes arch_arm_kprobe(struct kprobe *p)
520 unsigned long arm_addr;
521 bundle_t *src, *dest;
523 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
524 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
525 src = &p->opcode.bundle;
527 flush_icache_range((unsigned long)p->ainsn.insn,
528 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
529 switch (p->ainsn.slot) {
530 case 0:
531 dest->quad0.slot0 = src->quad0.slot0;
532 break;
533 case 1:
534 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
535 break;
536 case 2:
537 dest->quad1.slot2 = src->quad1.slot2;
538 break;
540 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
543 void __kprobes arch_disarm_kprobe(struct kprobe *p)
545 unsigned long arm_addr;
546 bundle_t *src, *dest;
548 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
549 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
550 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
551 src = &p->ainsn.insn->bundle;
552 switch (p->ainsn.slot) {
553 case 0:
554 dest->quad0.slot0 = src->quad0.slot0;
555 break;
556 case 1:
557 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
558 break;
559 case 2:
560 dest->quad1.slot2 = src->quad1.slot2;
561 break;
563 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
566 void __kprobes arch_remove_kprobe(struct kprobe *p)
568 mutex_lock(&kprobe_mutex);
569 free_insn_slot(p->ainsn.insn, 0);
570 mutex_unlock(&kprobe_mutex);
573 * We are resuming execution after a single step fault, so the pt_regs
574 * structure reflects the register state after we executed the instruction
575 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
576 * the ip to point back to the original stack address. To set the IP address
577 * to original stack address, handle the case where we need to fixup the
578 * relative IP address and/or fixup branch register.
580 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
582 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
583 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
584 unsigned long template;
585 int slot = ((unsigned long)p->addr & 0xf);
587 template = p->ainsn.insn->bundle.quad0.template;
589 if (slot == 1 && bundle_encoding[template][1] == L)
590 slot = 2;
592 if (p->ainsn.inst_flag) {
594 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
595 /* Fix relative IP address */
596 regs->cr_iip = (regs->cr_iip - bundle_addr) +
597 resume_addr;
600 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
602 * Fix target branch register, software convention is
603 * to use either b0 or b6 or b7, so just checking
604 * only those registers
606 switch (p->ainsn.target_br_reg) {
607 case 0:
608 if ((regs->b0 == bundle_addr) ||
609 (regs->b0 == bundle_addr + 0x10)) {
610 regs->b0 = (regs->b0 - bundle_addr) +
611 resume_addr;
613 break;
614 case 6:
615 if ((regs->b6 == bundle_addr) ||
616 (regs->b6 == bundle_addr + 0x10)) {
617 regs->b6 = (regs->b6 - bundle_addr) +
618 resume_addr;
620 break;
621 case 7:
622 if ((regs->b7 == bundle_addr) ||
623 (regs->b7 == bundle_addr + 0x10)) {
624 regs->b7 = (regs->b7 - bundle_addr) +
625 resume_addr;
627 break;
628 } /* end switch */
630 goto turn_ss_off;
633 if (slot == 2) {
634 if (regs->cr_iip == bundle_addr + 0x10) {
635 regs->cr_iip = resume_addr + 0x10;
637 } else {
638 if (regs->cr_iip == bundle_addr) {
639 regs->cr_iip = resume_addr;
643 turn_ss_off:
644 /* Turn off Single Step bit */
645 ia64_psr(regs)->ss = 0;
648 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
650 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
651 unsigned long slot = (unsigned long)p->addr & 0xf;
653 /* single step inline if break instruction */
654 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
655 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
656 else
657 regs->cr_iip = bundle_addr & ~0xFULL;
659 if (slot > 2)
660 slot = 0;
662 ia64_psr(regs)->ri = slot;
664 /* turn on single stepping */
665 ia64_psr(regs)->ss = 1;
668 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
670 unsigned int slot = ia64_psr(regs)->ri;
671 unsigned int template, major_opcode;
672 unsigned long kprobe_inst;
673 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
674 bundle_t bundle;
676 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
677 template = bundle.quad0.template;
679 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
680 if (slot == 1 && bundle_encoding[template][1] == L)
681 slot++;
683 /* Get Kprobe probe instruction at given slot*/
684 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
686 /* For break instruction,
687 * Bits 37:40 Major opcode to be zero
688 * Bits 27:32 X6 to be zero
689 * Bits 32:35 X3 to be zero
691 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
692 /* Not a break instruction */
693 return 0;
696 /* Is a break instruction */
697 return 1;
700 static int __kprobes pre_kprobes_handler(struct die_args *args)
702 struct kprobe *p;
703 int ret = 0;
704 struct pt_regs *regs = args->regs;
705 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
706 struct kprobe_ctlblk *kcb;
709 * We don't want to be preempted for the entire
710 * duration of kprobe processing
712 preempt_disable();
713 kcb = get_kprobe_ctlblk();
715 /* Handle recursion cases */
716 if (kprobe_running()) {
717 p = get_kprobe(addr);
718 if (p) {
719 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
720 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
721 ia64_psr(regs)->ss = 0;
722 goto no_kprobe;
724 /* We have reentered the pre_kprobe_handler(), since
725 * another probe was hit while within the handler.
726 * We here save the original kprobes variables and
727 * just single step on the instruction of the new probe
728 * without calling any user handlers.
730 save_previous_kprobe(kcb);
731 set_current_kprobe(p, kcb);
732 kprobes_inc_nmissed_count(p);
733 prepare_ss(p, regs);
734 kcb->kprobe_status = KPROBE_REENTER;
735 return 1;
736 } else if (args->err == __IA64_BREAK_JPROBE) {
738 * jprobe instrumented function just completed
740 p = __get_cpu_var(current_kprobe);
741 if (p->break_handler && p->break_handler(p, regs)) {
742 goto ss_probe;
744 } else if (!is_ia64_break_inst(regs)) {
745 /* The breakpoint instruction was removed by
746 * another cpu right after we hit, no further
747 * handling of this interrupt is appropriate
749 ret = 1;
750 goto no_kprobe;
751 } else {
752 /* Not our break */
753 goto no_kprobe;
757 p = get_kprobe(addr);
758 if (!p) {
759 if (!is_ia64_break_inst(regs)) {
761 * The breakpoint instruction was removed right
762 * after we hit it. Another cpu has removed
763 * either a probepoint or a debugger breakpoint
764 * at this address. In either case, no further
765 * handling of this interrupt is appropriate.
767 ret = 1;
771 /* Not one of our break, let kernel handle it */
772 goto no_kprobe;
775 set_current_kprobe(p, kcb);
776 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
778 if (p->pre_handler && p->pre_handler(p, regs))
780 * Our pre-handler is specifically requesting that we just
781 * do a return. This is used for both the jprobe pre-handler
782 * and the kretprobe trampoline
784 return 1;
786 ss_probe:
787 prepare_ss(p, regs);
788 kcb->kprobe_status = KPROBE_HIT_SS;
789 return 1;
791 no_kprobe:
792 preempt_enable_no_resched();
793 return ret;
796 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
798 struct kprobe *cur = kprobe_running();
799 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
801 if (!cur)
802 return 0;
804 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
805 kcb->kprobe_status = KPROBE_HIT_SSDONE;
806 cur->post_handler(cur, regs, 0);
809 resume_execution(cur, regs);
811 /*Restore back the original saved kprobes variables and continue. */
812 if (kcb->kprobe_status == KPROBE_REENTER) {
813 restore_previous_kprobe(kcb);
814 goto out;
816 reset_current_kprobe();
818 out:
819 preempt_enable_no_resched();
820 return 1;
823 int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
825 struct kprobe *cur = kprobe_running();
826 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
829 switch(kcb->kprobe_status) {
830 case KPROBE_HIT_SS:
831 case KPROBE_REENTER:
833 * We are here because the instruction being single
834 * stepped caused a page fault. We reset the current
835 * kprobe and the instruction pointer points back to
836 * the probe address and allow the page fault handler
837 * to continue as a normal page fault.
839 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
840 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
841 if (kcb->kprobe_status == KPROBE_REENTER)
842 restore_previous_kprobe(kcb);
843 else
844 reset_current_kprobe();
845 preempt_enable_no_resched();
846 break;
847 case KPROBE_HIT_ACTIVE:
848 case KPROBE_HIT_SSDONE:
850 * We increment the nmissed count for accounting,
851 * we can also use npre/npostfault count for accouting
852 * these specific fault cases.
854 kprobes_inc_nmissed_count(cur);
857 * We come here because instructions in the pre/post
858 * handler caused the page_fault, this could happen
859 * if handler tries to access user space by
860 * copy_from_user(), get_user() etc. Let the
861 * user-specified handler try to fix it first.
863 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
864 return 1;
866 * In case the user-specified fault handler returned
867 * zero, try to fix up.
869 if (ia64_done_with_exception(regs))
870 return 1;
873 * Let ia64_do_page_fault() fix it.
875 break;
876 default:
877 break;
880 return 0;
883 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
884 unsigned long val, void *data)
886 struct die_args *args = (struct die_args *)data;
887 int ret = NOTIFY_DONE;
889 if (args->regs && user_mode(args->regs))
890 return ret;
892 switch(val) {
893 case DIE_BREAK:
894 /* err is break number from ia64_bad_break() */
895 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
896 || args->err == __IA64_BREAK_JPROBE
897 || args->err == 0)
898 if (pre_kprobes_handler(args))
899 ret = NOTIFY_STOP;
900 break;
901 case DIE_FAULT:
902 /* err is vector number from ia64_fault() */
903 if (args->err == 36)
904 if (post_kprobes_handler(args->regs))
905 ret = NOTIFY_STOP;
906 break;
907 default:
908 break;
910 return ret;
913 struct param_bsp_cfm {
914 unsigned long ip;
915 unsigned long *bsp;
916 unsigned long cfm;
919 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
921 unsigned long ip;
922 struct param_bsp_cfm *lp = arg;
924 do {
925 unw_get_ip(info, &ip);
926 if (ip == 0)
927 break;
928 if (ip == lp->ip) {
929 unw_get_bsp(info, (unsigned long*)&lp->bsp);
930 unw_get_cfm(info, (unsigned long*)&lp->cfm);
931 return;
933 } while (unw_unwind(info) >= 0);
934 lp->bsp = NULL;
935 lp->cfm = 0;
936 return;
939 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
941 struct jprobe *jp = container_of(p, struct jprobe, kp);
942 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
943 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
944 struct param_bsp_cfm pa;
945 int bytes;
948 * Callee owns the argument space and could overwrite it, eg
949 * tail call optimization. So to be absolutely safe
950 * we save the argument space before transferring the control
951 * to instrumented jprobe function which runs in
952 * the process context
954 pa.ip = regs->cr_iip;
955 unw_init_running(ia64_get_bsp_cfm, &pa);
956 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
957 - (char *)pa.bsp;
958 memcpy( kcb->jprobes_saved_stacked_regs,
959 pa.bsp,
960 bytes );
961 kcb->bsp = pa.bsp;
962 kcb->cfm = pa.cfm;
964 /* save architectural state */
965 kcb->jprobe_saved_regs = *regs;
967 /* after rfi, execute the jprobe instrumented function */
968 regs->cr_iip = addr & ~0xFULL;
969 ia64_psr(regs)->ri = addr & 0xf;
970 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
973 * fix the return address to our jprobe_inst_return() function
974 * in the jprobes.S file
976 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
978 return 1;
981 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
983 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
984 int bytes;
986 /* restoring architectural state */
987 *regs = kcb->jprobe_saved_regs;
989 /* restoring the original argument space */
990 flush_register_stack();
991 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
992 - (char *)kcb->bsp;
993 memcpy( kcb->bsp,
994 kcb->jprobes_saved_stacked_regs,
995 bytes );
996 invalidate_stacked_regs();
998 preempt_enable_no_resched();
999 return 1;
1002 static struct kprobe trampoline_p = {
1003 .pre_handler = trampoline_probe_handler
1006 int __init arch_init_kprobes(void)
1008 trampoline_p.addr =
1009 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1010 return register_kprobe(&trampoline_p);
1013 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1015 if (p->addr ==
1016 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1017 return 1;
1019 return 0;